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Abstract— This paper introduces a new invariant extended
Kalman filter design that produces real-time state estimates
and rapid error convergence for the estimation of the human
body movement even in the presence of sensor misalignment
and initial state estimation errors. The filter fuses the data
returned by an inertial measurement unit (IMU) attached to
the body (e.g., pelvis or chest) and a virtual measurement of zero
stance-foot velocity (i.e., leg odometry). The key novelty of the
proposed filter lies in that its process model meets the group
affine property while the filter explicitly addresses the IMU
placement error by formulating its stochastic process model
as Brownian motions and incorporating the error in the leg
odometry. Although the measurement model is imperfect (i.e.,
it does not possess an invariant form) and thus its linearization
relies on the state estimate, experimental results demonstrate
fast convergence of the proposed filter (within 0.2 seconds)
during squatting motions even under significant IMU placement
inaccuracy and initial estimation errors.

I. INTRODUCTION

Over the past decades, wearable robots have become
increasingly applied in daily living assistance, neurorehabil-
itation, and power augmentation [1]. For a wearable robot to
function autonomously with different users in various tasks,
it needs to collect sensor data to understand human states
and intents in real time. For lower-extremity wearable robots,
human data have been primarily gathered using wearable sen-
sors, including optical encoders, inertial measurement units
(IMU), surface electromyography (EMG) sensors, to name
a few. However, a significant amount of useful information
cannot be directly measured by sensors since it is impractical
to implant sensors inside the human body. In this case, it is
critical to define and estimate human states in various human-
robot interactive tasks.

For human locomotion, both continuous and discrete states
have been introduced to quantify and differentiate various
motion patterns and intents. Gait phases have been widely
used to describe the human states during walking: a typical
step involves stance and swing phases, each with multiple
sub-phases defined [2]. Besides gait phases, wearable robots
also need to estimate the human motion intents, such as
sitting, walking, standing, and stair-climbing [3]. Gait phases
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and motion intents are often finite, and they can be estimated
from lower-extremity joint angles and ground reaction forces
using finite-state machines [4], fuzzy logic [5], and learning-
based classifiers [6]. In contrast, continuous human states
are often estimated by sensor fusion and regression models
for improved accuracy. One variable of particular interest in
continuous state estimation is a person’s stance-foot position
in the world, which can be used to represent a locomotor’s
global position in an environment [7]. With an IMU attached
to each toe, the dead reckoning method [12] obtains the toe
velocity by integrating the accelerometer reading, and re-
moves the accumulated velocity errors due to the integration
by resetting the velocity to zero when the toe is static on
the ground. The dead reckoning method has been applied
to achieve real-time human localization [8], and extended
to further improve its accuracy through smoothing [9] or
filtering [9].

Besides the stance-foot location, the pose (position and
orientation) and velocity of the body (e.g., pelvis or chest) are
also of particular interest in gait analysis and wearable robot
controller design, because they can be used to study postural
balance and gait stability [10]. Body pose and velocity have
been estimated through the nonlinear forward kinematics
between the stance foot, which is obtained through accurate
initialization and contact detection, and the body frame [11].
This method assumes the leg kinematics is precisely known,
and thus has been extended based on Kalman filtering (KF)
to explicitly address uncertainties such as sensor noises [12].
Recently, extended Kalman filtering (EKF) has been ap-
plied to further address the inaccuracy of the nonlinear
kinematics chain, in addition to sensor imperfections, for
real-time movement estimation under small initial estimation
errors [13], [14]. Yet, conventional EKF suffers the major
weakness that its design relies on the linearization of process
and measurement models at the state estimates instead of
the true states. Due to this weakness, the EKF cannot
provably guarantee error convergence in the presence of large
estimation errors.

Recently, invariant extended Kalman filtering (InEKF) has
been introduced to ensure real-time, provable error con-
vergence even in the presence of large initial estimation
errors [15]. The InEKF exploits nonlinear state estimation
errors that are invariant on the matrix Lie group, and ensures
that the dynamics of the logarithmic error is exactly linear
and independent of the state estimate if the process model
meets the group affine condition and if the measurement
model is in the invariant observation form. The filtering
method has been applied to solve the real-time state esti-
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mation problem for aircraft [15], legged robots [16], [17],
[18], [19], and underwater vehicles [20].

While the InEKF method [16] has achieved impressive
estimation performance for robot locomotion, it has not been
applied to solve some of the key challenges in the state
estimation of continuous human movement state, such as
the inaccurate kinematic parameters and imperfect sensor
placement. One common solution to imperfect sensor place-
ment is manual sensor calibration [11], which is often time-
consuming and thus may not be suitable for real-world appli-
cations (e.g., daily movement monitoring) that could demand
frequent re-calibration. Motivated by the practical demand of
addressing inaccurate sensor placement, this paper introduces
an InEKF that produces real-time state estimates and rapid
error convergence of the body’s pose and movement even
in the presence of significant sensor placement offsets and
large initial state estimation errors. The key novelty of the
proposed filter lies in that its process model meets the group
affine property while the filter explicitly addresses the IMU
placement error by formulating its stochastic process model
as Brownian motions and incorporating the error in the leg
odometry.

The rest of the paper is structured as follows. Section
II introduces the problem formulation. Section III presents
the proposed InEKF design with explicit treatment of sensor
placement errors. Section IV reports the experimental setup
and validation results. Section V provides the concluding
remarks and future research directions.

II. PROBLEM FORMULATION

In this section, we will introduce an InEKF to estimate
the states of the body (e.g., pelvis or chest) and the IMU
placement offset, by using an IMU placed on the body to
form the process model and by exploiting the stance leg’s
forward kinematic velocity to build a measurement model.

The human forward kinematic model provides the con-
tact point position in the measurement frame (as shown
in Fig. 1). Thus there are some orientation and positional
offsets between the measurement frame, which is considered
in the human forward kinematic model, and where IMU is
placed. The “perfect” placement of the IMU would allow
the exact alignment between the IMU and the measure-
ment frames. Yet, such a placement is difficult to achieve
in real-world applications without resorting to careful and
often time-consuming manual calibration. Here, to address
the “imperfect” alignment between frames, we include the
(orientation and positional) placement offset as part of the
state estimation to make the connection between the process
model (IMU) and the measurement more accurate. This will
lead to more accurate estimation of the body pose, and
eliminate the need for accurate calibration between the IMU
and the measurement frames.

A. Process and Measurement Models

Since the filtering objective is to estimate the body move-
ment, we choose the state variables of the filter system to
be the position p ∈ R3, velocity v ∈ R3, and orientation

Fig. 1. Measured and estimated variables in the proposed human
body movement estimation. {World} represents the world frame and
{Measurement} is the frame at which the measurements are provided. For
the leg forward kinematic measurements, the measurement frame is defined
at the center of pelvis. {IMU} is the frame attached to the IMU. This figure
illustrates the rotational and positional offset between the measurement and
IMU frames, as well as the forward kinematics chain.

R ∈ SO(3) of the IMU, which is placed on the body, ex-
pressed in the world frame. In addition, to explicitly treat the
IMU placement offsets, the state variables also include the
positional offset ∆p ∈R3 and orientation offset ∆R ∈ SO(3)
of the IMU frame, represented in the measurement frame.

1) Process model: The process model is based on the
IMU motion characteristics. The IMU measures the linear
acceleration a ∈R3 and angular velocity ωωω ∈R3 in the IMU
frame. The sensor readings ã and ω̃ωω are corrupted by zero-
mean Gaussian white noise wa and wω :

ã = a+wa, ω̃ωω = ωωω +wω . (1)

Note that for simplicity, the biases in the raw data returned
by the IMU are not considered here. Such biases could
be treated by including them in the state and explicitly
considering their dynamics [16].

Considering these measurements as the input of the IMU
motion dynamics, the process model becomes:

d
dt

R = R(ω̃ωω−wω)×,
d
dt

p = v,
d
dt

v = R(ã−wa)+g, (2)

where (.)× denotes a skew-symmetric matrix and g is the
gravitational acceleration vector.

As the IMU placement offsets are typically constant, we
model their dynamics as zero plus small zero-mean white
Gaussian noise w∆p and w∆R:

d
dt

∆p = w∆p,
d
dt

∆R = ∆R(w∆R)×. (3)

2) Leg kinematics measurement: When either of the hu-
man feet is in a secured contact with the ground, we can
estimate the position of one of many contact points (for
example, toe) in the measurement frame, using the forward
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kinematics, which requires knowledge of the joint angles and
the links depicted in Fig. 1. The forward kinematic model can
be built using the Denavit-Hartenberg (DH) table approach
[21]. The contact point position in the measurement frame
dM ∈ R3 is then acquired by the forward kinematic model
as shown in Fig. 1:

dM = FK(ααα). (4)

Later in our filter design (Sec. III) we show how we use
this model to get the contact-point velocity update equation
that explicitly incorporates the IMU placement offsets and
helps ensure some important properties for the filter.

III. INEKF DESIGN WITH IMPERFECT SENSOR
PLACEMENT

In this section we show the design of the proposed
filter, incorporating the measurement frame positional and
rotational offsets into the InEKF defined on a Lie group.

A. State Representation and Propagation

The first step to design an InEKF is to define the states
on a matrix Lie group G [22], [23], with its associated Lie
algebra g. Here the variables we wish to estimate (introduced
in Sec. II-A) are represented on a matrix Lie group:

X =


R v p 03,3 03,1

01,3 1 0 01,3 03,1
01,3 0 1 01,3 03,1
03,1 03,1 03,1 ∆R ∆p
01,3 0 0 01,3 1

 ∈ G, (5)

where the matrix Lie group G is an extension of the special
Euclidean group SE(3), and 0n,m represents an n×m matrix
with all elements being zero. The proof that G is a matrix
Lie group is omitted due to space limit.

The core idea of the InEKF is the invariant error definition.
The right-invariant error ηηη between the true and estimation
values is defined as [15]:

ηηη = X̄X−1 ∈ G, (6)

where (·) denotes the estimated value of the variable (·).
The tangent space g (defined at the identity element I∈G)

is a vector space that can also be represented by vectors in
the Cartesian space Rdimg. This transformation is a linear
map defined as (.)∧ : Rdimg → g. Therefore, for the vector
ζζζ = vec(ζζζ R,ζζζ v,ζζζ p,ζζζ ∆R,ζζζ ∆p) ∈ Rdimg, this linear map has
the form [23],[16]:

ζζζ
∧
=


(ζζζ R)× ζζζ v ζζζ p 03,3 03,1

01,3 0 0 01,3 03,1
01,3 0 0 01,3 03,1
03,3 03,1 03,1 (ζζζ ∆R)× ζζζ ∆p
01,3 0 0 01,3 0

 ∈ g. (7)

Now we can define the exponential map of our Lie group,
ηηη t = exp(ζζζ ). This exponential map takes ∀ζζζ ∈ Rn to the
corresponding matrix representation in G as:

exp(.) : Rdimg→ G, exp(ζζζ ) = expm(ζζζ
∧
), (8)

where expm(.) is the matrix exponential.
The dynamics of the system can be written using (1)-(3):

d
dt

Xt =


Rt(ω̃ωω t)× Rt ãt +g vt 03,3 03,1

01,3 0 0 01,3 03,1
01,3 0 0 01,3 03,1
03,3 03,1 03,1 03,3 03,1
01,3 0 0 01,3 0



−Xt


(wωt )× wat 03,1 03,3 03,1

01,3 0 0 01,3 03,1
01,3 0 0 01,3 03,1
03,3 03,3 03,3 (w∆Rt )× w∆pt

01,3 0 0 01,3 0


, fut (Xt)−Xtw∧t ,

(9)

where (·)t denotes the value of the variable (·) at time
instant t. Here the noise vector wt is defined as wt ,
vec(wωt ,wat ,03,1,w∆Rt ,w∆pt ).

It can be shown that the deterministic dynamics fut (.)
meets the following group affine condition [15]:

fut (X1X2) = fut (X1)X2 +X1 fut (X2)−X1 fut (I)X2. (10)

Therefore, according to [15], the right-invariant error has
deterministic autonomous dynamics (that are independent of
state) as below:

d
dt

ηηη t = gut (ηηη t), gut (ηηη t) = fut (ηηη t)−ηηη t fut (I), (11)

and if we consider the noise in the system we will have:

d
dt

ηηη t = gut (ηηη t)+AdX̄t
w∧t . (12)

Here, for any Xt ∈ G, the adjoint map AdXt : g→ g is the
linear mapping from the local tangent space (defined at Xt ) to
the global tangent space (defined at the identity element I) in
the Lie algebra, defined as AdXt (·)∧ ,Xt(·)∧X−1

t . Therefore,
the adjoint matrix representation for Xt can be obtained as:

AdXt =


Rt 03,3 03,3 03,3 03,3

(vt)×Rt Rt 03,3 03,3 03,3
(pt)×Rt 03,3 Rt 03,3 03,3

03,3 03,3 03,3 ∆Rt 03,3
03,3 03,3 03,3 (∆pt)×∆Rt ∆Rt

 . (13)

Moreover, we can obtain a log-linear error equation using the
first-order approximation of the exponential map and (12).
By the definition of exp, we have ηηη t = exp(ζζζ t) ≈ I+ ζζζ

∧
t .

Also, by the theory of invariant filtering [15], we can obtain
the Jacobian At of the deterministic portion of (12):

gut (exp(ζζζ t)) = (Atζζζ t)
∧+h.o.t.(||ζζζ t ||)≈ (Atζζζ t)

∧, (14)

where h.o.t. represents the higher-order terms. Then, from
(11), we obtain the log-linear error equation:

d
dt

ζζζ t = Atζζζ t . (15)

Therefore, given the initial right-invariant error ηηη0 =
exp(ζζζ 0), ηηη t can be recovered using (15). This results in
a linear right-invariant error propagation (prediction) in the
filter, which is exact for the deterministic case. With the
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process noise considered, the linear error equation in ζζζ t
becomes d

dt ζζζ t = Atζζζ t +AdX̄t
w∧t .

We are now ready to derive the expression of At defined
in (14), by substituting the first-order approximation of the
right-invariant error into the definition of gut in (12):

gut (exp(ζζζ t))≈ gut (I+ζζζ
∧
t )

=


(I3 +(ζζζ Rt

)×)(ω̃ωωt)× (I3 +(ζζζ Rt
)×)ãt +g ζζζ vt

03,4
01,3 0 0 01,4
01,3 0 0 01,4
03,3 03,1 03,1 03,4
01,3 0 0 01,4



−


I3 +(ζζζ Rt

)× ζζζ vt
ζζζ pt

03,3 0
01,3 0 0 01,3 0
01,3 0 0 01,3 0
03,3 03,1 03,1 (ζζζ ∆Rt

)× ζζζ ∆pt
01,3 0 0 01,3 0



(ω̃ωωt)× ãt +g 03,5

01,3 0 01,5
01,3 0 01,5
03,3 03,1 03,5
01,3 0 01,5



=


03,3 (g)×ζζζ Rt

ζζζ vt
03,4

01,3 0 0 01,4
01,3 0 0 01,4
03,3 03,1 03,1 03,4
01,3 0 0 01,4

=


03,1
(g)×
ζζζ vt
03,1
03,1


∧

,

(16)
which yields

At =


03,3 03,3 03,3 03,3 03,3
(g)× 03,3 03,3 03,3 03,3
03,3 I3 03,3 03,3 03,3
03,3 03,3 03,3 03,3 03,3
03,3 03,3 03,3 03,3 03,3

 , (17)

where I3 is the 3×3 identity matrix.
Now we can write down the predication step of our InEKF,

which consists of the propagation of the state estimate X̄t
through the process model as well as the propagation of the
covariance matrix Pt through the Riccati equation [24]:

d
dt

X̄t = fut (X̄t),
d
dt

Pt = AtPt +PtAT
t + Q̄t , (18)

where Q̄t is the process noise covariance defined as Q̄t =
AdX̄t

Cov(wt)AdX̄t
.

B. Measurement Model and Update
As stated in Sec. II-A.2, we are using leg forward kine-

matics to get the relative position of the desired contact point
(toe) in the measurement frame. However, unlike [16], we
cannot directly use (4) as our measurement model since we
did not include the position of the contact point as part of the
state. Instead, inspired by [19], we used the derivative of (4)
as our measurement model. Such a formulation allows the
stochastic dynamics (i.e., the noise term) in (9) to be linear,
so that we can achieve log-linear error dynamics (15) while
including the offset variables.

Considering the contact point position in the world frame
(i.e., dt ), we have:

dM
t = (∆Rt)RT

t (dt −pt)−∆pt = FK(ααα t)

⇒ dt −pt = Rt(∆Rt)
T (∆pt +FK(ααα t))

⇒ d
dt
(dt −pt) = Rt(∆Rt)

T (w∆pt + J(ααα t)(α̇αα t +wα̇t ))

+
(
Rt(ωωω)×RT

t +Rt(∆Rt(w∆Rt )×)
T )(FK(ααα t)+∆pt),

(19)

where J is the forward kinematic Jacobian (J(ααα), ∂FK(ααα)
∂ααα

)
and wα̇t is the joint velocity measurement noise.

Assuming that the contact point is stationary in the world
frame (i.e., ḋt = 0), knowing ṗt = vt , and using the property
of the multiplication of a skew-symmetric matrix and a
vector (i.e. (a)×b = −(b)×a), the measurement model can
be simplified as:

y = h(Xt)+nt (20)

where y =−J(ααα t)α̇αα t , h(Xt) = (∆Rt)RT
t vt− (∆pt)×∆Rtωωω t−

(FK(ααα t))×∆Rtωωω t , and the vector nt contains the measure-
ment noise terms.

Note that our measurement model is nonlinear and does
not have the right-invariant observation form, meaning the
innovation does not solely depends on the invariant error
[15], [16]. Therefore, we used the standard EKF procedure
here to formulate the innovation and update equations.

First we need to find the Jacobian of the measurement
model with respect to ζζζ t , denoted as Ht :

Htζζζ t +h.o.t(ζζζ t), h(X̄t)−h(Xt). (21)

To express h(X̄t)−h(Xt) in terms of ζζζ t , we need to use the
following first-order approximation along with (7):

ηηη t = X̄tX−1
t

=



R̄tRT
t v̄t p̄t 03,3 0
−R̄tRT

t vt −R̄tRT
t pt

01,3 0 0 01,3 0
01,3 0 0 01,3 0
03,1 03,1 03,1 ∆Rt∆RT

t ∆pt
−∆Rt∆RT

t ∆pt
01,3 0 0 01,3 0


≈ I+ζζζ

∧
t

⇒ RT
t ≈ R̄T

t (I+(ζζζ Rt
)×), ∆RT

t ≈ ∆RT
t (I+(ζζζ ∆Rt

)×)

vt ≈ (I− (ζζζ Rt
)×)(v̄t −ζζζ vt

), ∆pt ≈ (I− (ζζζ ∆Rt
)×)(∆pt −ζζζ ∆pt

).

After ignoring the higher-order terms, we take the deriva-
tive of (21) with respect to ζζζ t to find Ht :

Ht = [03,3, ∆RtR̄t
T
, 03,3, h4, (∆Rtωωω t)×],

h4 =−(∆RtR̄T
t v̄t)×− (∆Rtωωω t)×(∆pt)×+(∆pt)×(∆Rtωωω t)×

+(FK(ααα t))×(∆Rtωωω t)×
(22)

Similar to [25], [19], we can write the update equation for
our InEKF as:

X̄+
t = exp(Kt(yt −h(X̄−t )))X̄

−
t ,

P+
t = (I−KtHt)P−t (I−KtHt)

T +KtNtKT
t ,

(23)

where the Kalman gain Kt and measurement noise covari-
ance N are defined as:

Kt = PtHT
t S−1

t ,

St = HtP−t HT
t +Nt , Nt = R̄t∆RT

t Cov(nt)∆RtR̄T
t .

(24)
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Fig. 2. Experiment setup that emulates the scenario with a large offset
between the IMU and measurement frames. The left marker plate in the
left figure is rigidly attached to the IMU. The right marker plate is aligned
with the measurement frame. The blue, dashed-line arrow indicates the 3-D
contact point position in the measurement frame, which is obtained by the
motion capture system.

IV. EXPERIMENT RESULTS
This section introduces the experimental setup and valida-

tion results for the proposed InEKF.
Ideally, the “perfect” placement of the IMU should be

exactly aligned with the measurement frame, because the
measurement frame is one end of the stance leg’s kinematic
chain. However, in the real-world application, such a perfect
placement is difficult to realize. To demonstrate that the
proposed InEKF can indeed handle large offsets between the
IMU and measurement frames, we perform pilot experiments
with the setup shown in Fig. 2. Note that, with this exper-
imental setup, the measurement frame is now attached to
the chest, instead of the pelvis center shown in Fig. 1. One
healthy, 24-year old male subject with height of 1.8 m and
weight of 75 kg participated in the experiments.

A. Measurement model simplification

In this pilot study, we adopt a simpler version of the
proposed measurement model in (20). This simplification
allows us to more easily collect data for validating the key
aspects of the proposed filter, including the new state repre-
sentation, group-affine process model, and contact-velocity
based measurement model.

Instead of using the joint-angle based forward kinematics
to form the measurement model, the 3-D velocity of the
ground-contact point relative to the measurement frame, i.e.,
ḋM , is directly used to form the measurement model. To
obtain the 3-D velocity vector for filter validation, we place
a rigid plate (with four markers attached) at the chest of
the subject, and choose its local frame as the measurement
frame (i.e., the right plate in Fig. 2). With such simplification,
the 3-D velocity vector could be obtained through a motion
capture system, which is explained later with greater detail.

With the aforementioned simplification, the measurement
model in (20) can be obtained by replacing FK(ααα t) and
J(ααα t)α̇αα t with dM and ḋM , respectively.

B. Setup for Data Collection

Sensors used. An APDM Opal IMU sensor is used to sense
the subject’s body (chest) movement. The IMU, along with

TABLE I
NOISE CHARACTERISTICS

Measurement type Noise SD Noise SD
(proposed InEKF) (existing InEKF)

Linear acceleration 0.589 m/s2 0.5 m/s2

Angular velocity 0.055 rad/s 0.05 rad/s
Kinematics measurement 0.2 m/s 0.05 m

Placement offset (∆p, ∆R) (0.01 m, 0.01 rad) NA
Contact velocity NA 0.05 m/s

four markers, is fixed on a rigid plate (i.e., the left plate in
Fig. 2), and the plate is attached to the subject’s chest. The
position of the markers on this rigid plate is captured by
eight Kestrel cameras, and is used to obtain the ground truth
of the IMU pose via the Cortex software (Motion Analysis
Corp.). The other rigid marker plate in Fig. 2 is used to
emulate the measurement frame, and the four markers on
the plate are used to get its ground truth pose. To emulate
the offset between the IMU and the measurement frames, the
measurement marker plate is placed with a rotational offset
of approximately 45 degrees in magnitude and a positional
offset of approximately 0.12 m in magnitude. All data were
collected at 100 Hz.
Movement types. The human subject stood statically for 5
seconds and then began to continuously squat for 55 seconds.
Every squatting cycle took about 1.5 seconds.
Filters compared. To show the performance comparison
between the proposed filter and the state of the art, the
existing InEKF [16] is also evaluated. This existing InEKF
was applied on a Cassie series bipedal robot where the
IMU and measurement frames are perfectly aligned. Yet, for
human movement estimation, these two frames are often not
perfectly aligned. Here we evaluate its performance when
the two frames are not aligned. In the existing filter, the
state variables are the orientation, velocity, and position of
the IMU frame as well as the foot position. It uses the contact
point position with respect to the measurement frame to
form the measurement model, which is in the right-invariant
observation form. Its deterministic system dynamics also
possesses the group affine property. In contrast, while the
deterministic system dynamics of our proposed filter satisfies
the group affine property, our measurement model is not in
an invariant observation form.
Initial estimation errors. To illustrate the convergence rates
of the two filters, we varied the initial estimated values of
velocity v and orientation R across 50 trials. The initial
velocity and orientation estimates were sampled uniformly
from -1 m/s to 1 m/s and from -30 degrees to 30 degrees,
respectively. The initial estimated values of ∆p and ∆R are
set as zeros for all 50 trials. This setting of initial estimates
is used to validate both filters.
Covariance settings. The characteristics (i.e., standard de-
viation (SD)) of process and measurement noises for the
proposed InEKF and the state-of-the-art filter [16] are shown
in Table I. The noise characteristics for linear acceleration
and angular velocity are obtained based on the nominal IMU
specifications provided by APDM. The covariances of linear
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Fig. 3. Estimation results of the IMU velocity (v , [vx,vy,vz]
T ) under the

proposed InEKF (left) and the existing design (right). The shaded and clear
backgrounds respectively indicate the periods of standing and squatting. The
solid and dashed lines are the estimates and the ground truth of the state
variables, respectively.

acceleration and angular velocity for the two filters are indi-
vidually tuned to ensure their respective best performances.
The kinematic measurement noise of the proposed filter is
the vector nt in (20), which contains the noise terms for the
measurement of the position vector dM and its derivative,
the effect of foot slippage, and the IMU measurement. The
kinematic measurement noise of the previous filter only
contains the uncertainties of the measurement of dM and foot
slippage, which are relatively low in our experiments. Since
the IMU placement offsets ∆p and ∆R are approximately
constant, the noises for these two terms are chosen to be
small. Also, the contact velocity noise term only exists for
the previous filter, which accounts for foot slippage.

C. Results

Computational cost. The proposed and existing filters pro-
cessed the experimental data in MATLAB. The computation
time of one filter loop for both filters was approximately 1
ms. Thus, both filters give reasonable computational loads.
Convergence rate. Figures 3 and 4 display the estimation
results of IMU velocity and orientation under the proposed
and existing filters. Although both filters converge fast in the
presence of large initial errors and IMU placement offset, the
convergence rate of the proposed filter is 75% faster than the
existing design. The improved convergence rate can be at-
tributed to the higher accuracy of the proposed measurement
model under large IMU placement offset, which results in
more effective error correction during the update step of the
proposed filter.
Estimation accuracy. The root mean square errors (RMSEs)
of the estimated IMU velocity and orientation (only roll and
pitch) for all 50 trials are presented in Fig. 5. While the
yaw angle of the IMU frame is not observable under both
filters, the estimated roll and pitch angles converge to a small
neighborhood of the ground truth under both filters. Yet,
Figs. 3 and 5 clearly indicate that the accuracy of the velocity
estimation of the proposed filter is better than the existing
filter, especially for the estimation of vy and vz.

Fig. 4. Estimation results of IMU orientation R under the proposed InEKF
(left) and the existing design (right). The shaded and clear backgrounds
respectively indicate the periods of standing and squatting. The solid and
dashed lines are the estimates and the ground truth of the state variables,
respectively.

Fig. 5. The RMSE of the estimated IMU velocity and orientation (only
roll and pitch) for 50 trials. The shaded and clear backgrounds respectively
indicate the periods of standing and squatting.

Observability of IMU placement offsets. Figure 6 presents
the estimation results of IMU placement offsets under the
proposed filter. No comparative results are shown here be-
cause the existing filter [16] does not explicitly treat sensor
placement errors. When the human subject begins to squat (at
t = 5 sec), the gyroscope reading starts to give significantly
larger values of ω̃ωω , and the estimated value of ∆R begins to
converge to its ground truth, indicating ∆R might become
observable during squat. The IMU position offset (∆p ,
[∆px,∆py,∆pz]

T ) did not converge when the subject was
standing still, which might be due to the non-observability of
the offset during standing. Once the subject began to squat,
the estimated value of ∆px started to converge to the ground
truth, but those of ∆py and ∆pz converged towards certain
final values far from their ground truth.

V. CONCLUSIONS

This paper presented a right-invariant extended Kalman
filter for estimating the human body movement during squat-
ting motions. The offsets between the IMU sensor and the
measurement frame (at which the kinematic measurements
are provided) were explicitly considered in the filter design.
The deterministic system dynamics satisfied the group affine
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Fig. 6. Estimation results of the IMU position offset ∆p (left) and
orientation offset ∆R (right) under the proposed filter. The shaded and clear
backgrounds respectively indicate the periods of standing and squatting. The
solid and dashed lines are the estimates and the ground truth of the state
variables, respectively.

property. Yet, the measurement model did not have the
right-invariant observation form, which made the design an
“imperfect” invariant extended Kalman filter.

The experimental validation of human movement was
performed with one human subject during repeated squat
motion. The proposed filter demonstrate faster convergence
and more accurate IMU velocity estimation than the state-
of-the-art filter [16]. From the results, the rotation about the
gravity vector and the IMU positions were not observable;
the y-axis and z-axis components of the position offsets
were not observable but detectable. The rest of the estimated
states are observable and our proposed filter gives better
performance than the existing InEKF.

In our future work, instead of using a motion capture
system to obtain the accurate joint angles, a suite of IMU
sensors will be used to obtain joint angles of the human
subject to make the results more practical. We will consider
the biases in the raw data returned by IMUs in the process
model. The uncertainties in joint angle measurements and
the forward kinematics model will also be addressed. We
will also test the filter with other types of motions and more
human subjects for a longer duration.
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