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Abstract: This study proposes an integrated planning and
control framework for achieving three-dimensional robust
and dynamic legged locomotion over uneven terrain. The
proposed framework is composed of three hierarchical lay-
ers. The high-level layer is a state-space motion planner
designing highly dynamic locomotion behaviors based on a
reduced-order robot model. This motion planner incorpo-
rates two robust bundles, named as invariant and recoverabil-
ity bundles, which quantify analytical state-space deviations
for robust planning design. The low-level layer is a model-
based trajectory tracking controller capable of robustly real-
izing the planned locomotion behaviors. This controller is
synthesized based on full-order hybrid dynamic modeling,
model-based state feedback control, and Lyapunov stability
analysis. The planning and control layers are concatenated
by a middle-level trajectory generator that produces nomi-
nal behaviors for a full-order robot model. The proposed
framework is validated through flat and uneven terrain walk-
ing simulations of a three-dimensional bipedal robot.

1 Introduction
Achieving robust and dynamic legged locomotion in

complex environments becomes imperative for numerous
real-world robotic applications such as search and rescue op-
erations, disaster response, and supply delivery. Although
planning and control for robust and dynamic locomotion has
been extensively investigated during the past few decades,
it is still a fundamentally challenging problem. Typically,
in the legged locomotion community, planning and control
problems are handled separately, which greatly limits the
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overall locomotion performance and achievable formal guar-
antees. For instance, motion planning approaches [1, 2] of-
ten ignore stabilization and trajectory tracking capabilities of
the underlying controllers, leaving the control systems lack
of formal guarantees on stability as well as robustness to ex-
ternal disturbance and model uncertainties. Meanwhile, al-
though various locomotion control approaches, such as the
Hybrid-Zero-Dynamics (HZD) framework [3,4,5,6,7], have
realized provable stabilization, it remains an open problem
to seamlessly integrate these controllers with high-level task
and motion planners.

A typical approach of integrated planning and control is
to use a reduced-order dynamic model at the high-level mo-
tion planner while leaving the full-order robot model to be
handled by the low-level controller [8,9,?]. Using a reduced-
order model (e.g., prismatic inverted pendulum model [10]
or a centroidal momentum model [11]) significantly reduces
the computational burden, allowing for efficient and multi-
task motion planning. Meanwhile, a full-order model accu-
rately captures whole-body dynamics, and thus enables con-
troller design that achieves significantly higher legged loco-
motion performance [5] than a reduced-order model based
controller design [12]. Despite significant progress in simul-
taneously reasoning locomotion planning and control, ex-
isting approaches tend to assume that the low-level control
can always successfully track desired trajectories designed
by the high-level planner [13, 14], which is often violated in
the presence of external disturbance and model uncertainties
and thus lacks formal guarantees on robustness.

Providing formal robustness guarantee through inte-
grated planning and control is essential to achieving robust
and dynamic legged locomotion in complex environments. It



is difficult to provide formal guarantees on the robust perfor-
mance of a locomotion system that exploits different mod-
els for planning and control. If this difficulty is overcome
properly, an integrated planning and control framework can
potentially scale up to a high-dimensional space while main-
taining formal guarantees on robustness.

The objective of this work is to take an initial step towards
a seamlessly integrated planning and control framework that
can provably achieve robust and dynamic locomotion behav-
iors over uneven terrain. The pivotal components of this
framework include: (i) a motion planner that uses reduced-
order dynamic modeling and generates non-periodic nominal
motions; (ii) a hybrid automaton that guides the high-level
planning sequence; (iii) invariant and recoverability bundles
that characterize center-of-mass state-space robustness for
high-level re-planning; (iv) a trajectory generator that pro-
duces full-dimensional nominal trajectories based on full-
order modeling; and (v) a feedback controller that uses full-
order dynamic modeling and can provably guarantee reliable
trajectory tracking.

The main contributions of this study are summarized as
follows.

• Designing a robust, non-periodic state-space planner
capable of generating dynamic three-dimensional non-
periodic locomotion behaviors. Compared to other
reduced-model-based locomotion planners, we have a
large focus on the generation of non-periodic gait over
uneven terrains and under external disturbances.

• Proposing robustness metrics in the motion planner and
a re-planning mechanism to deal with disturbances: (i)
the motion planner devises an analytical robust metric to
characterize state-space deviations; and (ii) a feedback
mechanism sends full-order joint states from the low-
level controller to the motion planner for trajectory re-
planning when a large external disturbance perturbs the
state out of the robust bundles defined in (i).

• Providing formal controller design. A trajectory track-
ing controller is introduced to provably achieve reli-
able tracking of non-periodic trajectories generated by
the high-level motion planner. To the best of the au-
thors’ knowledge, it is the first time that provably re-
liable tracking of non-periodic trajectories over uneven
terrains is realized.

• Designing a middle-layer trajectory generator to seam-
lessly integrate high-level motion planner and low-level
controller.

This paper is organized as follows: Related work is elab-
orated in Section 2. A reduced-order of bipedal locomotion
is presented in Section 3. Section 4 introduces robust bun-
dles and a hybrid automaton that governs an overall loco-
motion planning process. In Section 5, a trajectory tracking
controller is proposed based on full-order dynamic model-
ing, input-output linearization, and formal stability analysis.
Section 6 introduces a trajectory generation method to build
the connection between the high-level planner and low-level
controller layers. Simulation results are shown in Section 7.
This paper ends with discussions and conclusions in Sec-
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Fig. 1: A̧ full-order model of a biped with nine revolute joints (left) and a reduced-order
model with Center of Mass (CoM) motion constrained to a varying-height, piecewise-
linear 3D surface (right).

tions 8-9.

2 Related Work
Simplified locomotion models: Numerous center-of-mass
(CoM) trajectory design methods for dynamic locomotion
have been proposed over the past few decades. The Cap-
ture Point method [15] and Divergent Component of Mo-
tion [16] presented general three-dimensional locomotion
frameworks. However, a common shortcoming of these ap-
proaches lies in over-constraining the models and center-of-
mass (CoM) motions, for instance, a common assumption
on a constant CoM height as shown in the linear inverted
pendulum model. A tangible benefit of such an assumption
is the existence of closed-form solutions of the robot model
further facilitating the use of linear control analysis and syn-
thesis methods. However, leveraging these models to rough
terrain locomotion becomes limited. How to relax conserva-
tive model assumptions to target rough terrain maneuvering
becomes imperative. To relax this assumption, a variety of
extended work has been investigated recent years. For in-
stance, [17] allowed the CoM to move within a non-constant
height 3D plane. Designing CoM trajectories with varying
heights was also studied in [16, 18]. The work in [19] pro-
posed a nonlinear inverted pendulum model where the CoM
path is extended to a parabola, but it focuses on planar loco-
motion, and the induced nonlinearities eliminate appealing
linear system properties. In contrast to these previous stud-
ies, our work allows the CoM to stay within a parametric 3D
surface such that the framework is applicable to rough ter-
rain locomotion while maintaining the favorable linear sys-
tem properties.
Robustness reasoning in motion planning: The concept of
robust hybrid automaton was introduced in [20] to achieve
time-optimal motion planning of a helicopter in an environ-
ment with obstacles. The same group studied robustness to
model uncertainties [21] but ignored large external distur-
bances. Lately, [22] extended this line of research to ac-
commodate external disturbances (e.g., cross-wind) by com-
puting funnels via Lyapunov functions and switching among
them for maneuvering unmanned air vehicles. Regarding the
natural hybrid property of legged locomotion, we propose to



develop a hybrid automaton algorithm that robustly switches
among different contact modes and govern the whole plan-
ning process. Another significant feature of our work is
that we design a state-space re-planning strategy at run-time
while the previous works merely rely on pre-defined motion
primitives.

Provable walking stabilization: Provably stable bipedal
robotic walking was first realized through the HZD frame-
work [3, 23, 24], which stabilizes legged locomotion by or-
bitally stabilizing the control system. To realize non-periodic
locomotion, the concept of gait library has been introduced
within the HZD framework [6], and velocity tracking in
Cartesian space has been investigated based on the Partial-
Hybrid-Zero-Dynamics (PHZD) framework [4]. Because or-
bitally stabilizing control drives a robot’s state to a periodic
orbit (or curve) in the state space instead of a specific time
trajectory residing in the orbit, it cannot realize reliable track-
ing of time-varying trajectories, which, however, is often re-
quired in practical robotic applications. Indeed, trajectory
tracking control of hybrid systems that include legged robots
is an active research area. Previous studies have investi-
gated Lyapunov-based controller design methods for prov-
ably solving the tracking problem [25, 26, 27, 28, 29]. How-
ever, it is not clear how these methods could be used to ex-
plicitly inform the design of tracking controllers for legged
locomotion systems. Thus, we propose a low-level controller
based on Lyapunov stability analysis for provably solving the
control problem of tracking time-varying trajectories.

3 Non-periodic Motion Planning
This section presents a reduced-order bipedal walking

model designed for phase-space locomotion planning. A
salient feature of this model is to allow non-periodic locomo-
tion and non-constant-height center-of-mass (CoM) surface
design.

3.1 Reduced-order model
Reduced-order models have been extensively used in

legged locomotion planning due to its tractable com-
putation effort and convenient walking trajectory de-
sign [30] [31] [32]. As observed by studies in human dy-
namic locomotion [33], a bipedal walking robot resembles an
inverted pendulum model (see the right subfigure in Fig. 1).
A bipedal walking robot can behave as an inverted pendu-
lum under the assumptions of massless legs and whole-body
mass concentrated at the hip position. We propose a reduced-
order model named as Prismatic Inverted Pendulum Model
(PIPM), suitable for non-periodic walking. In this model, a
biped’s position is typically represented by its 3D center-of-
mass (CoM) position pCoM = (xCoM,yCoM,zCoM)T . Numer-
ous human walking [34] and balancing [35] results empha-
size that controlling the centroidal angular momentum im-
proves CoM tracking, balancing and recovering from distur-
bances. During a single-support phase, the sum of moments
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Fig. 2: Hierarchical planning and control framework. This framework is composed
of the high-level state-space planner and the low-level trajectory tracking controller.
There exists a middle layer for generating nominal trajectories for the full-order model,
dubbed as ”trajectory generator for full-order model”. The high-level planner sends
nominal CoM trajectories pCoM(t), foot placements pfoot, and landing instants ζtrans to
the low-level controller. After the middle layer, the controller computes joint torque
commands sent to the robot. The feedback loop sends the robot measured states to the
low-level controller. These measured states are only sent to the high-level planner for
the re-planning strategy whenever necessary, i.e., when a disturbance is detected.

with respect to the global reference frame is

− pfoot× f r + pCoM×
(

f CoM +mg
)
+ τCoM = 0, (1)

where pfoot = (xfoot,yfoot,zfoot)
T is the support foot posi-

tion, f r ∈ R3 is the ground-reaction force, f CoM ∈ R3 is
the center-of-mass inertial force, m is the whole-body mass,
g = (0,0,−9.8)T ∈ R3 is the gravitational acceleration, and
τCoM = (τx,τy,τz)

T is the whole-body inertial torque about
the CoM. The system’s linear force equilibrium are formu-
lated as f r = f CoM +mg, allowing us to simplify Eq. (1) to
the following general PIPM equation

(
pCoM− pfoot

)
× ( f CoM +mg) =−τCoM. (2)

For our purposes, we consider a class of prismatic in-
verted pendulums whose CoM is restricted to a 3D non-
constant-height path surface, as summarized below.

Assumption 1. The CoM motion of the inverted pendulum
model is constrained within piece-wise linear 3D planes (i.e.,
path surfaces). During the kth step, the linear CoM path



surface SCoMk is defined as

SCoMk = {pCoMk
|zCoM−akxCoM−bkyCoM− ck = 0}, (3)

where ak and bk are slope coefficients of the linear CoM path
surfaces that we design while ck is a constant coefficient of
this surface.

Let xr =(pT
CoM, ṗT

CoM)T ∈Xr ⊆R6 be the state-space vec-
tor, where Xr is a compact set of admissible CoM positions
and velocities. Based on Assumption 1, the general PIPM
model during the kth walking step ẋr = F (k,xr,ur) is sim-
plified to the state-space equations with three-dimensional
accelerations

ẍCoM
ÿCoM
z̈CoM

=



ω
2
k(xCoM− xfootk)−

ω2
k

mg
(τy +bkτz)︸ ︷︷ ︸

Ax

ω
2
k(yCoM− yfootk)−

ω2
k

mg
(τx +akτz)︸ ︷︷ ︸

Ay

akAx +bkAy


, (4)

where ur = (ωk,τCoMk , pfootk)
T ∈ Ur represents the input

variables (Ur is a compact set of admissible inputs); the
subscript “r” denotes ”reduced-order”. F represents a vec-
tor field of inverted pendulum dynamics, which, given fixed
input ur, is assumed to be infinitely continuous and differ-
entiable in the domain D(qk) and globally Lipschitz in Xr,
where qk indicates the locomotion mode of kth walking step.
The slope of locomotion state-space asymptotic ωk is a con-
trol parameter defined as

ωk =

√
g

zapexk

, (5)

where zapexk = (akxfootk + bkyfootk + ck− zfootk) corresponds
to the vertical distance between the CoM and the location of
the foot contact at the instant when the CoM is on the top
of the foot location. Note that this reduced-order model only
presents continuous dynamics. We will handle the discrete
impact dynamics in the full-order model for the controller
design.

3.2 Non-periodic state-space motion planner
Let us focus on the robot’s sagittal walking dynamics,

and the state vector xr is simplified as {xCoM, ẋCoM}. This
system has control inputs ur,x = (ω,τy,τz,xfoot,zfoot)

T , where
the subscript ’k’ is ignored for brevity. As we are previ-
ously motivated, the path manifold SCoM is defined a priori
conforming to contact terrains. By Eq. (5), once the path
manifold is defined for given contact locations, the set of
state-space asymptotic slopes ω is also known from Eq. (5).
Accordingly, we design the following algorithm to produce

nominal state-space trajectories of the robot’s center-of-mass
in the sagittal direction:
Algorithm 1. Nominal non-periodic motion planner.

Input:
(i): SCoM←{SCoMk : [ζk−1,ζk]→ R3, ∀k ∈ {1, . . . ,N}
(ii): xfoot←{xfoot1 ,xfoot2 , . . . ,xfootN}
(iii): zfoot←{zfoot1 ,zfoot2 , . . . ,zfootN}
(iv): ẋapex←{ẋapex1 , ẋapex2 , . . . , ẋapexN}
(v): (τy(t),τz(t))← 0
Operation:
(i): ω := {ω1,ω2, . . . ,ωN} is assigned via Eqs. (5)
(ii): (xCoM(t), ẋCoM(t), ẍCoM(t)) via Eq. (4)
Output:
State-space trajectories MCoM :=

⋃
k MCoMk

In this algorithm, ẋapex represents the desired CoM apex
velocity. It is worthy noting that the desired CoM sur-
faces, nominal foot positions, keyframe states, and zero torso
torques are provided a priori by the designer or high-level
task planning algorithms [36]. Although foot positions are
given as input, our planning method can handle terrain uncer-
tainties via robust concepts proposed in the next subsection.
For dynamic legged robots, knowing accurate terrain infor-
mation is unrealistic. Nevertheless, estimating the terrain
geometry to certain extent is practically plausible. There-
fore, we build robust bundles around the nominal trajecto-
ries to quantify local state deviations caused by terrain un-
certainties. Accordingly, the torso torque control input will
be non-zero. Considering the equivalence of sagittal and
lateral dynamics in Eq. (4), a similar algorithm can be de-
signed for lateral CoM trajectory generation. Compared with
other existing locomotion frameworks, a salient feature of
our algorithm is to allow non-periodic gait generation and
the ease of accomplishing complex locomotion behaviors via
the keyframe state design. In addition, only the CoM surface
is provided as input, and the actual CoM trajectory needs to
be solved based on the PIPM dynamics in Eq. (4). The end-
to-end locomotion planning process is shown in Fig. 2.

4 Robust Hybrid Locomotion Planning
Legged locomotion naturally exhibits hybrid dynamics.

In this section, we will propose a hybrid automaton to model
the hybrid process of bipedal walking as well as to propose
robustness concepts in the CoM state space. The hybrid
automaton serves as a core formulation throughout our in-
tegrated planning and control framework while governing
(i) the state-space planner in Section 3 and (ii) a robust re-
planning strategy to be introduced in Section 4).

We assign each walking step as a mode in finite state ma-
chine (FSM), i.e., qi ∈ Q = {q1,q2, ...,qnd}, where nd repre-
sents the number of FSM states. For bipedal robot walking,
we encode two modes: left foot contact ql and right foot
contact qr (i.e., Q = {ql ,qr}). On each mode q, we have
the state variables, xr ∈ Xr. The region of the state-space
that belongs to each mode qi is defined by domain D(·).
Thus D(q) : Q → 2Xr , where 2Xr represents the power set



(all the subsets) of Xr. For each mode, the governing con-
tinuous dynamics equation is defined as ẋr = F (q,xr,ur,w).
ur ∈ Ur ⊆ Rm is the control vector, and w ∈W ⊆ Rndist is
the disturbance vector. The state of the hybrid system con-
sists of both continuous and discrete states, s = (q,xr) ∈ S ,
where S : Q ×Xr is the hybrid automaton state space. The
initial condition is defined by s0 = (q0,xr,0) ∈ I : Q ×Xr.

We represent the hybrid system as a directed graph
(Q ,E). The nodes are represented by q ∈ Q , the edge
Ei, j = E(qi,q j) ∈ E : Q ×Q , and the transition is repre-
sented by qi → q j. The condition that triggers the discrete
event (i.e., switch or jump) is determined by the guard in
hybrid systems. The guard Gi, j = G(qi,q j) := {(qi,q j) ∈
Q ×Q → 2Xr}. The state, input, or their vector fields change
discontinuously after the transition.

Given an initial condition (ζ0,qi,xr(ζ0)) ∈ I \G(qi,q j)
(“\” represents set difference), the continuous state xr,qi

evolves within domain D(qi) where the discrete state q re-
mains qi. xr,qi evolves till hitting G(qi,q j) of E(qi,q j). Then
the discrete state switches from qi to q j while xr,qi is re-
set.After this reset, continuous state evolves till next step
transition occurs. Now let us formulate a robust hybrid au-
tomaton for the locomotion process. This robust hybrid au-
tomaton is inspired by the work of [37,20,38] and defined as
below.

Definition 1. A phase-space robust hybrid automaton HPSP
is a dynamical system, described by a n-tuple

HPSP = (Q ,Xr,Σ,W ,Ur,I ,D,R ,B,E ,G ,T ). (6)

The tuple components of this robust hybrid automaton are
defined in Appendix A, and in particular, the robust bundles
R and B will be introduced below. To the best of authors’
knowledge, we are among the first to propose robust hybrid
automaton for legged locomotion. Despite specific robot dy-
namics, this automaton is extendable to a broader class of
legged robots.

4.1 Robust bundles
The proposed hybrid automaton in Definition 1 incorpo-

rates two state-space robust bundles: an invariant set B(ε)
and a recoverability set R . The concept of robustness in
this study refers to CoM trajectory disturbance rejection.
Namely, given a state disturbance, the planner designs a con-
trol strategy to recover the CoM state to the nominal trajec-
tory. Again taking sagittal dynamics for instance, we define
the robust bundles as:

Definition 2 (Invariant Bundle). A bundle B(xr,ζ0 ,ε) is an
invariant bundle if

∀xr,0 ∈ B(xr,ζ0 ,ε), ε > 0, xr,ζ0 ⊆ X , ζ0 ∈ R≥0 (7)

xr,ζ satisfies:

xr,ζ ∈ B(xr,ζ0 ,ε) ∀ ζ≥ ζ0, (8)

where, ζ0 and ζ are initial and current phase progression
variables, respectively. xr,ζ0 is an initial condition.

Definition 3 (Finite Phase Recoverability Bundle). The bun-
dle B(xr,0,ε) around a CoM state-space manifold has a finite
phase recoverability bundle, R (B(xr,0,ε),ρ), for which there
exists a finite phase progression variable increment ζ̄ > 0
such that ∀xr,ζ0 ∈ R , xr,ζ will recover to the invariant bundle
after ζ0 + ζ̄ but before the final instant ζ f ,

R (B(xr,0,ε),ρ) =
{
∃ γ≥ ρ≥ ε, ζ̄ > 0

∣∣ ∀xr,ζ0 ∈ Bi(xr,0,γ)

→ xr,ζ ∈ B(xr,0,ε) ∀ζ0 + ζ̄≤ ζ≤ ζ f
}

Note that a control input needs to be designed for the
recoverability bundle in Def. 3. For general dynamical sys-
tems, it is challenging to compute exact solutions of these
two sets due to nonlinear system dynamics. Our study uses
the PIPM model in Eq. (4) to define the two robust bundles
above. In the simulation section, we will demonstrate how
to use these robust bundles to achieve robust re-planning
when disturbance occurs. In the next section, we will de-
sign an input-output linearizing controller at the low-level for
achieving robust trajectory tracking. In this study, we mainly
study the disturbance from initial state deviations and exter-
nal impulse perturbations on CoM states.

The non-periodic locomotion process can be character-
ized by a keyframe map as below.

Definition 4 (Non-Periodic Keyframe Mapping). We define
a keyframe map of non-periodic gaits as a return map Φ

that takes the robot’s center-of-mass state from one desired
keyframe (ẋapexq ,xfootq) to the next one, and via the control
input ur,x i.e.

(ẋapexq+1 ,xfootq+1) = Φ(ẋapexq ,xfootq ,ur,x). (9)

The CoM apex states represent key states for agile walking.
For instance, users can design “non-periodic” keyframes that
regulate the walking speed and steer the robot through its
walk. For this study, we design keyframes according to the
terrain geometries and locomotion tasks.

4.2 Robust re-planning strategy
This subsection presents our re-planning strategy in re-

sponse to external disturbances. Formal design of re-
planning strategies can be referred to the work [32]. When an
external sagittal disturbance is exerted on the robot’s trunk,
we detect whether the CoM state is perturbed outside the
recoverability bundle at run-time. If this situation occurs,
multiple strategies can be used to re-plan CoM trajectories,



such as redesigning keyframe states (i.e., next foot placement
and sagittal apex velocity), CoM surfaces, contact switching
instants, or a combination of them. In this study, the re-
planning horizon is chosen as one walking step unless oth-
erwise specified. It is noteworthy that all these strategies are
applicable to multi-step horizon. The re-planning principle
relies on two main factors: (i) allowable control authority,
and (ii) the direction, magnitude, and occurrence instant of
the disturbance. In addition, the planner can handle other
types of disturbances including lateral CoM disturbance, ter-
rain height uncertainties, and swing-foot disturbance.

5 Controller Design Based on a Full-Order Model
To achieve reliable trajectory tracking control for a fully

actuated bipedal robot, this section presents our proposed
controller design based on full-order dynamic modeling and
Lyapunov stability analysis.

5.1 Full-order dynamic modeling
A full-order model serves as a basis of controller design

in this study. Because a full-order model accurately captures
a robot’s complete dynamic behaviors for all degrees of free-
dom (DoFs) involved in walking, the controller designed to
achieve reliable trajectory tracking will also be valid for the
actual robot. The following assumption is made in full-order
dynamic modeling [5, 39]:

Assumption 2. a) All joints of the robot are independently
actuated. b) During single-support modes, the support foot
remains a static, full contact with the ground , i.e., no foot
slipping or rolling occurs. c) The swing-foot landing impact
is modeled as an impact between rigid bodies. d) Double-
support modes are instantaneous.

Assumption 2 indicates that the bipedal robot considered
in this study is fully actuated during continuous modes. Its
full-order dynamics during a continuous mode can be ex-
pressed as [3]

M(θ)θ̈+ c(θ, θ̇) = Bu f , (10)

where the subscript “ f ” denotes ”full-order”, θ ∈ Θ f ⊂ Rn

is the joint-position vector, u f ∈U f ⊂Rm is the joint-torque
vector, M : Θ f →Rn×n is the inertia matrix, c : T Θ f →Rn is
the sum of the Coriolis, centrifugal, and gravitational terms,
and B ∈ Rn×m is a nonsingular input matrix. Here, Θ f is the
configuration space, T Θ f is the tangential space of Θ f , and
U f is a compact set of admissible joint torques. m = n due
to full actuation. The impact dynamics can be expressed as:

[
θ
+

θ̇
+

]
= ∆ f (θ

−, θ̇
−
), (11)

where ∆ f : T Θ f → R2n. The guard representing the state-
triggered discrete event of a swing-foot landing can be ex-

pressed as

G f (θ, θ̇) := {(θ, θ̇) ∈ T Θ f : zsw(θ) = 0, żsw(θ, θ̇)< 0},

where zsw(θ) is the swing-foot height above the ground.

5.2 Model-based trajectory tracking control
The control objective of this study is to achieve provably

reliable tracking of the nominal trajectories. Note that stable
walking refers to walking without falling and is guaranteed
if the closed-loop control system is stable.

The variables of interest include: (i) the CoM position
for following the nominal CoM path; (ii) the swing-foot po-
sition for avoiding collision with the ground during swing-
ing and reaching the nominal touchdown position; and (iii)
the swing-f and the trunk angle for maintaining an upright
posture. The nominal trajectories of these variables are of-
ten planned as explicit functions of time in real-world robotic
applications. In this study, the nominal CoM and swing-foot
touchdown positions are planned by the state-space planner
in Section 3, while the nominal foot swinging and trunk tra-
jectories are planned by a trajectory generator to be intro-
duced in Section 6.

Designing a trajectory tracking controller for a bipedal
walking robot is complicated due to its hybrid, nonlinear
dynamics and the time-varying nature of the nominal tra-
jectories. To simplify the controller design, input-output
linearization [40] is first utilized to linearize the nonlinear
continuous-mode dynamics in Eq. (10).

Let h denote the trajectory tracking error, which is de-
fined in Section 6. Suppose that the inertia matrix M and
∂h
∂q M−1B are both invertible on Θ f [3]. Then, with h chosen
as the output function y, i.e., y= h, the proposed input-output
linearizing controller design can be expressed as

u f = ( ∂h
∂θ

M−1B)−1(v+ ∂h
∂θ

M−1c− ∂2h
∂t2 − ∂

∂θ
( ∂h

∂θ
θ̇)θ̇).

With v chosen as a proportional-derivative (PD) con-
trol law, i.e., v = −KPy − KDẏ, where KP ∈ Rm×m

and KD ∈ Rm×m are positive-definite diagonal matrices,
the continuous-mode closed-loop dynamics become ÿ =

−KPy−KDẏ. Defining x f :=
[
yT , ẏT ]T , one can compactly

express the closed-loop dynamics as:

Σ f :

{
ẋ f = Ax f , if (t,x−f ) /∈ G f ,x(t,x f );
x+f = ∆ f ,x(t,x−f ), if (t,x−f ) ∈ G f ,x(t,x f );

(12)

where A :=
[

0 I
−KP −KD

]
(0 ∈ Rm×m is a zero matrix and

I ∈ Rm×m is an identity matrix) and the expressions of G f ,x
and ∆ f ,x can be obtained from G f , ∆ f , and y. Note that G f ,x
and ∆ f ,x are explicitly time-dependent because the trajectory
tracking error h is explicitly time-dependent.



Thanks to full actuation during continuous modes, the
trajectory tracking error h can be exponentially driven to
zero within continuous modes if the PD gains KP and KD
are properly chosen. However, the discrete impact dynamics
cannot be directly controlled due to the infinitesimal duration
of a foot-landing impact, leaving the nonlinear, time-varying
closed-loop reset map in Eq. (12) uncontrolled. It is then nec-
essary to formally analyze the stability of the overall hybrid
closed-loop system for deriving sufficient conditions under
which the proposed continuous-mode control law can prov-
ably guarantee reliable trajectory tracking.

5.3 Closed-loop stability analysis
In this subsection, we utilize multiple Lyapunov analysis

to construct closed-loop stability conditions for the hybrid,
nonlinear, time-varying system in Eq. (12) [41, 42].

Analyzing the stability of the closed-loop system in
Eq. (12) is theoretically difficult due to two reasons. First,
the closed-loop reset map is highly complex, which is uncon-
trolled, time-varying, and highly nonlinear. Second, there is
always a mismatch between the actual and the nominal im-
pact times because the foot-landing event is state-triggered
rather than fixed-time [27, 29]. Hence, to establish the
closed-loop stability conditions, the effects of both the re-
set map and the impact-time mismatch on the evolution of a
Lyapunov function candidate should be explicitly analyzed,
leading to complex stability analysis.

According to the stability analysis via the construc-
tion of multiple Lyapunov functions [43], the hybrid time-
varying system in Eq. (12) is exponentially stable if there
exists a positive number d such that (i) V (x f ) is exponen-
tially decreasing during each continuous mode and that (ii)
the sequence {V |+1 ,V |

+
2 ,V |

+
3 ...} strictly decreases for any

x f (0+) ∈ Bd(0) := {x f : ‖x f ‖ ≤ d}.
Suppose the PD gains KP and KD are chosen such that

the matrix A in Eq. (12) is Hurwitz. Then, there exists a
Lyapunov function candidate V (x f ) and positive constants
c1, c2, and c3 such that V (x f ) satisfies

c1||x f ||2 ≤V (x f )≤ c2||x f ||2 and V̇ (x f )≤−c3V (x f ) (13)

for all x f during any continuous mode [40].

Let Tk denote the kth actual impact instant. In the fol-
lowing stability analysis, ?(T−k ) and ?(T+

k ) will be denoted
as ?|−k and ?|+k , respectively, as needed for notation brevity.
From Eq. (13), one has

V |−k ≤ e−c3(Tk+1−Tk)V |+k−1 (14)

during the kth step, that is, V (x f ) is exponentially decreasing
during each continuous mode.

The convergence of {V |+1 ,V |
+
2 ,V |

+
3 , ...} replies on the

continuous-mode convergence rate and the expansiveness of

the reset map. From Eq. (12), one has

‖x f |+k ‖=‖∆ f ,x(T−k ,x f |−k )‖
≤‖∆ f ,x(T−k ,x f |−k )−∆ f ,x(ζ

−
k ,x f |−k )‖

+‖∆ f ,x(ζ
−
k ,x f |−k )−∆ f ,x(ζ

−
k ,0)‖

+‖∆ f ,x(ζ
−
k ,0)‖.

(15)

Suppose that the nominal trajectories are continuously
differentiable in t during each continuous mode. Then, it is
provable that the reset map ∆ f ,x(t,x f ) is continuously differ-
entiable in t and x f . Therefore, from the previous study [41],
there exists a positive number r1 and Lipschitz constants L∆t

and L∆x such that

‖∆ f ,x(T−k ,x f |−k )−∆ f ,x(ζ
−
k ,x f |−k )‖ ≤ L∆t‖Tk−ζk‖ (16)

and

‖∆ f ,x(ζ
−
k ,x f |−k )−∆ f ,x(ζ

−
k ,0)‖ ≤ L∆x‖x f |−k ‖ (17)

hold for any x f (0+) ∈ Br1(0).
From our previous study [41], there exists a positive num-

ber r2 and a Lipschitz constant LTx such that

|Tk−ζk| ≤ LTx‖x̃ f (ζk;T+
k−1,x f |+k−1)‖ (18)

for any x f (0+) ∈ Br2(0), where x̃ f (t; t0,λ0) denotes a so-
lution of ˙̃x f = Ax̃ f with the initial condition x̃ f (t0) = λ0,
∀t > t0.

Suppose that ‖∆ f ,x(ζ
−
k ,0)‖ = 0 is always guaranteed

through the proposed trajectory generator to be introduced
in Section 6. Then, from Eqs. (15) - (18), one can see that
there exist positive constants d and Ld such that ‖x f |+k ‖ is
bounded by ‖x f |−k ‖ and ‖x̃(ζk;T+

k−1,x f |+k−1)‖ as

‖x f |+k ‖ ≤ Ld(‖x f |−k ‖+‖x̃ f (ζk;T+
k−1,x f |+k−1)‖),

where, from Eq. (13), one has

‖x f |−k ‖ ≤
√

c2

c1
e−

c3
2c2

(Tk−Tk−1)‖x f |+k−1‖

and

‖x̃ f (ζk;T+
k−1,x f |+k−1)‖ ≤

√
c2

c1
e−

c3
2c2

(ζk−Tk−1)‖x f |+k−1‖.

Hence, the three equations above yield

‖x f |+k ‖ ≤ Ld

√
c2

c1
e−

c3
2c2

(ζk−Tk−1)(1+ e−
c3
2c2

(Tk−ζk))‖x f |+k−1‖. (19)



Note that the convergence rate c3
2c2

in Eq. (19) is directly de-
termined by the PD gains. Thus, from Eqs. (13) and (19),
it can be known that {V |+1 ,V |

+
2 ,V |

+
3 ...} will be a strictly

decreasing sequence for any x f (0+) ∈ Bd(0), where d =
min(r1,r2), if the PD gains are chosen such that A in Eq. (12)
is Hurwitz and that the continuous-mode convergence rate is
sufficiently fast. Then, the closed-loop tracking error dynam-
ics in Eq. (12) will be locally (exponentially) stable.

6 Middle-Level Trajectory Generation
To effectively connect the high-level planner and low-

level controller, this section introduces a novel trajectory
generator that, in combination with the proposed state-space
planner in Section 3, produces a complete set of nominal tra-
jectories for the full-order dynamic model. The main chal-
lenge of synthesizing this trajectory generator is to guarantee
that the planned nominal trajectories agree with the CoM and
foot trajectories generated by the state space planner as well
the closed-loop reset map.

We will use the biped model in the left subfigure of Fig. 1
to illustrate our proposed trajectory generator. For simplicity
and without loss of generality, the swing-foot ankle joints are
not modeled in this study. As the biped has nine DOFs within
a continuous mode and is fully actuated (i.e., m = n = 9),
the biped can track nine nominal trajectories. Three of these
trajectories are chosen as the nominal CoM position trajecto-
ries, pCoM(t), which are generated by the state-space planner
in Section 3. The remaining six nominal trajectories are cho-
sen as the nominal swing-foot and trunk position trajectories,
denoted as pSw(t) : R+→ R3 and pTr(t) : R+→ R3, respec-
tively, and are generated by the proposed motion generator.

Let r(θ) and p(t) denote the actual and the nominal tra-
jectories of the control variables, respectively. The trajectory
tracking errors can be expressed as

h := r(θ)− p(t) :=

 rH(θ)
rTr(θ)
rSw(θ)

−
pCoM(t)

pTr(t)
pSw(t)

 , (20)

where rH := [xH,yH,zH] : Θ f →ΘH⊂R3 is the actual, 3D hip
position, rTr : Θ f → ΘTr ⊂ R3 indicates the actual trunk ori-
entation, and rSw : Θ f → ΘSw ⊂ R3 is the actual, 3D swing-
foot position. Note that for simplicity and without loss of
generality the hip position is used to approximate the CoM
position in this study. Also, the nominal trajectories p(t) in
Eq. (20) is planned as non-periodic because uneven terrain
walking naturally involves nonperiodic motions. The output
functions in Eq. (20) can be exponentially driven to zero dur-
ing continuous modes using the model-based tracking con-
troller introduced in Section 5.2.

Let pk(t) := [pT
CoMk

(t), pT
Swk

(t), pT
Trk

(t)]T be a continu-
ously differentiable function on t ∈ R+ that coincides with
p(t) during the kth step. The following conditions are en-
forced in the planning of the nominal swing-foot and trunk
trajectories:

(A1) The nominal CoM position trajectories pCoMk
(t), as well

as the (k+1)th nominal swing-foot landing instant ζk+1
and support-foot placement pfootk+1

, are provided by the
state-space planner in Algorithm 1.

(A2) The nominal trajectories p(t) should respect the discrete
reset map in Eq. (11) at t = ζk+1; i.e., ∆ f ,x(ζ

−
k+1,0) = 0

should hold.
(A3) The nominal swing-foot position at the end of the kth

step matches the (k+ 1)th nominal foot placement, i.e.,
pSwk

(ζk+1) = pfootk+1
.

(A4) The nominal trunk trajectories satisfy pTrk
(t) = 0, ∀t >

tp (ζk < tp < ζk+1), to emulate the upright trunk posture
during normal human walking [35, 44].

The conditions (A1)–(A4) are incorporated into the fol-
lowing planning algorithm for generating the nominal walk-
ing motions during the kth walking step:
Algorithm 2: Trajectory generator of pSwk

(t) and pTrk
(t).

min ‖ṽHk − ṗCoMk+1
(ζk+1)‖

subject to

(i) [ṽHk ; ṽSwk ; ṽTrk ] := ∂r
∂θ
(θ+)θ̇

+, where [θ+; θ̇
+
] =

∆ f (θ
−, θ̇

−
) with θ

− = r−1(pk(ζk+1)) and θ̇
−
=

( ∂r
∂θ
(θ−))−1 ṗk(ζk+1).

(ii) ‖ṽSwk‖ and ‖ṽTrk‖ are constrained with boxing
bounds.

(iii) ṗSwk
(ζk) = ṽSwk−1 and ṗTrk

(ζk) = ṽTrk−1 , where
ṽSwk−1 and ṽTrk−1 are provided by the previous-step
planner as in (i).

(iv) pSwk
(ζk+1) = pfootk+1

.
(v) pTrk

(t) = 0, ∀t > tp := λ(ζk+1−ζk)+ζk, λ← 1
3 .

Note that the condition (A2) is satisfied when the cost
function is minimized to zero and the constraints (i)–(iii) are
met in Algorithm 2. As analyzed in Section 5.3, the system
in Eq. (12) is proved to be locally exponentially stable when
the condition (A2) is strictly satisfied and the closed-loop
convergence rate is sufficiently high during each continuous
mode. In real-world implementations, minimizing the cost
function in Algorithm 2 exactly to zero is challenging given
limited computational power. Instead, when the minimal cost
is a non-zero finite number, the system in Eq. (12) will be
locally stable in the sense of Lyapunov, that is, reliable tra-
jectory tracking with a bounded tracking error is guaranteed.

7 Simulations
This section presents the simulation validation of the pro-

posed framework for both flat and uneven terrain walking.
We assume that the legs are much lighter and longer than the
trunk. Our model has two legs of 9 kg and 0.7 m each and a
trunk of 20 kg and 0.1 m.

The state-space motion planner introduced in Sec-
tion 3 generates nominal CoM trajectories pCoM(t) =
[xCoM(t),yCoM(t),zCoM(t)]T and foot placements pfoot(t).
Given these nominal trajectories, the full-order trajectory
generator in Section 6 plans the nominal swing-foot and
trunk trajectories pSw(t) and pTr(t). To track these nominal



trajectories, the model-based controller introduced in Sec-
tion 5 is applied with PD gains KP = 400 · I9×9 and KD =
40 · I9×9, yielding stable closed-loop poles for continuous
modes. To evaluate the closed-loop tracking performance of
the hybrid full-order model, the initial CoM state deviations
are specified as pH(0)− pCoM(0) = [−0.2,−0.2,−0.2]T m
and ṗH(0)− ṗCoM(0) = [−0.2,−0.2,−0.2]T m/s.

7.1 Flat terrain walking
The proposed planning and control framework is first

evaluated for simulated flat terrain walking. The CoM phase
portraits are illustrated in Fig 3. The black dashed lines show
the nominal CoM trajectories generated by the state-space
planner. Although both CoM positions and velocities experi-
ence large initial tracking errors, the actual CoM trajectories
converge to a close neighborhood of the nominal trajecto-
ries within 0.5 second. The hip velocity (ẋH, ẏH) experiences
persistent small jumps every time after a foot landing due to
the rigid-body impact dynamics. These jumps always have
bounded magnitudes since the proposed controller guaran-
tees the stability of the hybrid closed-loop system in Eq. (12)
in the sense of Lyapunov. As a result, (ẋH− ẋCoM, ẏH− ẏCoM)
will also always be bounded in magnitude after an impact.
In addition, if the cost function is minimized to zero and
the constraints (i)-(iii) in Algorithm 2 are strictly satisfied,
(ẋH− ẋCoM, ẏH− ẏCoM) will exponentially converge to zero;
i.e., the hybrid closed-loop system in Eq. (12) becomes ex-
ponentially stable.

Figure 4 shows the corresponding trunk and swing-foot
position trajectories. As shown in the upper plot, the trunk
angle rTr = [rTr1 ,rTr2 ,rTr3 ]

T experiences transient divergence
from zero upon a foot-landing impact and then quickly con-
verges to zero during the rest of a step. Also, the tracking
error divergence caused by landing impacts eventually di-
minishes.

Fig. 3: The CoM sagittal and lateral phase portraits of flat terrain walking. The ac-
tual CoM phase portraits (xH,ẋH) and (yH,ẏH) converge to the nominal phase portraits
(xCoM,ẋCoM) and (yCoM,ẏCoM) under large initial tracking errors. The initial “humps” in
the figures represent transient responses to the controller tracking, including accelera-
tion and deceleration phases to chase the desired CoM state.

Fig. 4: Trunk angle and swing-foot position trajectories of flat terrain walking.

7.2 Uneven terrain walking
This subsection presents simulation results of bipedal

robotic walking over a 3D terrain. The terrain height varies
within 15 cm. The nominal support-foot placements pfoot
are predefined. In this scenario, our simulation generates
a sequence of walking stance foot placements with the fol-
lowing terrain height sequence: 0m → 0.1m → 0.05m →
0.14m→ 0.04m→ 0.06m→ 0.1m→ 0m. The CoM posi-
tion and velocity trajectories are shown in Fig. 5. The terrain
unevenness is handled by the non-periodic state-space mo-
tion planner and reflected in the desired CoM trajectories.
The transient tracking errors rapidly decrease to small num-
bers within the first two steps, which validates the capability
of our proposed framework in addressing uneven terrains.

Fig. 5: Uneven terrain walking. The actual CoM trajectories converge sufficiently close
to the nominal ones under large initial tracking errors and the varying terrain height.

7.3 Robust walking with state-space re-planning
This subsection shows results of the re-planning strategy

in response to external disturbances. In this simulation, an
external sagittal disturbance is exerted on the robot’s trunk
inducing a sudden CoM velocity jump. Multiple strategies
can be used to re-plan CoM trajectories as introduced in Sub-
section 4.2.

High-level re-planning strategies. First, we demon-
strate a re-planning strategy that adjusts the next-step
keyframe state when an external disturbance causes a posi-
tive sagittal velocity jump of 0.2 m/s at x = 0.7 m, perturbing
the state to be out of the invariant bundle. The re-planning re-
sult is shown in Fig. 7(a). The second re-planning strategy is
to adjust the CoM surface. Specifically, when the planner de-
tects a sagittal velocity disturbance, the planner re-generates



a new CoM surface for the next step, resulting in a less steep
asymptote slope ω in Eq. (5) (see Fig. 6).

Fig. 6: Robust state-space re-planning via adjusting the desired CoM surface at next
walking step. This causes the change of valley-shaped trajectory “opening” profile.

After the state-space planner regenerates new nominal
CoM trajectories and foot placements, the trajectory gener-
ator in Algorithm 2 re-plans nominal swing-foot and trunk
trajectories accordingly, which are tracked by the proposed
low-level controller.

Control performance under velocity disturbance dur-
ing uneven terrain walking. Simulation results are shown
in Fig. 7(b). Despite large initial tracking errors and the pos-
itive sagittal velocity jump of 0.2 (m/s) at x = 0.7 m that per-
turbs the state out of the invariant bundle, the biped’s actual
phase portrait still converges to the nominal one sufficiently
fast. Compared to Fig. 3, the spikes of actual trajectories
in this case become larger due to external disturbance and
uneven terrain. Again, these spikes are bounded thanks to
(i) the velocity error minimization in Algorithm 2; and (ii)
the low-level controller that guarantees satisfactory trajec-
tory tracking of the closed-loop hybrid system.

Note that this simulation explicitly models rough terrain
in our motion planner instead of a blind walking without any
sense of the terrain profile. As visual sensing techniques
for locomotion planning and control become mature, reason-
ing robustness with accurate or at least partially observable
knowledge of the terrain profiles will become more promis-
ing means.

For comparison, the same scenario as shown in Fig. 7(b)
is simulated again without state-space re-planning of the
nominal CoM trajectories and foot placements. It turns out
that the walking process fails by the beginning of the third
step. This comparison illustrates the effectiveness of our pro-
posed re-planning strategy.

As to the maximum tolerable terrain height variation and
disturbance, they depend on the control capability and the
walking cycle phase when the disturbance is exerted. This
can be solved as an optimization problem and has been in-
vestigated in our previous work [32]. More advanced meth-
ods on reachability region estimation can be targeted, and we
leave it as a future work.

8 Discussions
Explicit robustness quantification regarding discrete dy-

namics is critical for hybrid systems. Robustness in this

study is mainly studied within continuous dynamics. Al-
though we evaluate the controller performance with respect
to impact dynamics, we have not proposed any metric to di-
rectly characterize the robustness. In future work, we will
investigate robustness metrics to quantify the controller per-
formance with respect to impact dynamics. Another future
improvement is to account for the impact effect in motion
planning to achieve a more coherent planning and control
framework.

One of our near-future works aims at incorporating adap-
tive robust control action into the proposed framework. The
trajectory tracking controller design proposed in this paper
utilizes input-output linearization, which is sensitive to un-
certainties such as external disturbances and modeling er-
rors. To enhance the robustness of trajectory tracking con-
trol, previous adaptive robust control [45] will be extended
from continuous systems to hybrid systems including legged
robots.

We plan to establish a task planning layer above the
motion planner layer to achieve more complex locomotion
tasks. In that regard, we will use formal methods, such
as linear temporal logic [46], to specify high-level abstract
tasks and synthesize provably-correct discrete task planners.
It will constitute a higher-level decision-making layer. In this
case, more advanced feedback re-planning mechanisms can
be targeted. In the long-term run, we target a framework of
integrated task planning, motion planning, and controller de-
sign for enhancing legged locomotion performance.

9 Conclusions
In this study, we propose an integrated planning and con-

trol framework to achieve robust and dynamic legged loco-
motion. The high-level motion planner employs a reduced-
order model for task-space trajectory generation. Robustness
is formally quantified in the CoM state space by using set
theory and incorporated into the robust hybrid automaton.
In particular, this non-periodic motion planner is suitable
for rough terrain locomotion. Hybrid dynamics are explic-
itly modeled and used as a basis of the low-level controller
design. Synthesized based on full-order dynamic modeling
and Lyapunov stability analysis, the low-level controller can
achieve provably reliable trajectory tracking. The high-level
planner and low-level controller are connected via a middle-
level layer of trajectory generation. Although the motion
planner and controller in this study are designed for our spe-
cific robot configurations, the proposed hierarchical frame-
work and concepts of robust invariant bundles and model-
based feedback controller are general to be leveraged to other
robotic systems. Flat and uneven terrain locomotion tasks are
evaluated in simulations.
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Appendix A: Tuple notations in Definition 1
To maintain the notation clarity, we remove the subscript

’r’ which denotes the ”reduced-order” model. The tuple
components of the robust hybrid automaton in Definition 1
are defined as

• Q – set of discrete states. Q := {qi}, i = 1, ...,n;
• X – set of spaces of continuous states, xq, X = ∪qXq.

Xq := {xq ∈ Rdq ,q ∈ Q };
• Σ – system dynamics, Σ = ∪qΣq, each described by vec-

tor field Fq, with Fq : Xq→ TXq ⊂ Rdq , where TXq is the
tangent bundle of Xq;

• W – disturbance input w space, w ∈W ⊆ Rndist ;
• U – control inputs space U := {uq,q ∈Q }. U = {uc}∪
{ud} where uc,ud are continuous and discrete control
inputs, respectively;
• I – set of allowable initial conditions, I := {ζ0}×{q}×
{xq}, q ∈ Q ;
• D – domain, D(q) := {xq};
• R – recoverability set, R := {Rq,q ∈ Q };
• B - invariant set, B := {Bq,q ∈ Q };
• E – edges, Ei, j = E(qi,q j) : Q ×Q ;
• G(qi,q j) – guard, G(qi,q j) := {Gqi , qi ∈ Q ,q j ∈ Q } ⊂

Xqi ;
• T (qi,q j) – jump termination set, T (qi,q j) := {Tq j ,qi ∈

Q ,q j ∈ Q } ⊂ Xq j ;

One thing worthy to concern is the well-posedness [20]
of phase-space manifolds. Since our phase-space dynamics
are piece-wise continuous, the maneuvers are a finite set of
primitives with a finite time durations and the well-posedness
of phase-space manifolds is guaranteed for our case.
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