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Boundary Tracking Control for An Unstable Wave
Equation with Boundary Uncertainties: A

Backstepping Adaptive NN Approach
Jingting Zhang, Yan Gu, Wei Zeng, Chengzhi Yuan

Abstract—This paper investigates the tracking control problem
of an unstable wave equation with boundary uncertainties.
The wave equation under consideration has a negative damper
(unstable) at the uncontrolled boundary and uncertain nonlinear
dynamics at the controlled boundary. A novel boundary tracking
control scheme is proposed by incorporating the backstepping
method with adaptive neural networks (NN). Specifically, an
adaptive radial basis function (RBF) NN model is first developed
to approximate/counteract the system uncertainties. A boundary-
feedback observer is then designed with such a NN model
to estimate the overall state of the wave equation. Based on
this, a boundary tracking controller is finally proposed using
the adaptive backstepping technique. Uniquely, this new control
scheme is capable of rendering stable state tracking (i.e., driv-
ing the system’s holistic state to track a prescribed reference
trajectory), significantly advancing the current literature that is
largely focused on output tracking control. Rigorous analysis is
performed to verify the well-posedness and stability of the overall
closed-loop system. Simulation studies have been conducted to
demonstrate effectiveness of the proposed results.

Index Terms—Distributed parameter systems, wave equation,
boundary tracking control, backstepping, adaptive neural net-
work.

I. INTRODUCTION

STRING and flexible beams—usually modeled by
wave/beam equations—are important benchmarks for the

development of distributed parameter system theory [1]. They
are crucial for many flexible distributed parameter systems,
such as flexible manipulator [2] and flexible link robot arms
[3]. Research on wave/beam equations has been attracting
considerable attention over the past few decades, e.g., [1],
[4], [5], [6].

Tracking control design of wave equations is an impor-
tant problem from both theoretical and practical perspectives,
owing to the ever-increasing demands of many applications,
e.g., flexible robots in manufacturing [7], [8] which require
the operating system’s state/output to track a certain pre-
scribed trajectory. In particular, boundary control design for
such a tracking control problem of wave equations has been
of interests, due to its practical advantages of demanding
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fewer sensors and actuators for controller implementations [6].
Many research efforts have been dedicated to this field. For
example, researchers of [9] developed a boundary-feedback
tracking control scheme for a wave equation with harmonic
disturbances. [6] proposed an adaptive neural network (NN)
based boundary control scheme for the reference-tracking
problem of a wave equation with both matched and unmatched
boundary uncertainties. [5] studied a wave equation with
internal uncertainty and external disturbance. However, most
of these schemes only considered the wave equations with
dissipative/stable system operator (e.g., the systems of [9],
[6], [5] have a positive damper at the uncontrolled boundary),
whose associated open-loop systems are usually stable. For
those unstable wave equations, e.g., the one in [10] that has
a negative damper (unstable) at the uncontrolled boundary,
the associated tracking control design is a rather challenging
problem and still under-explored.

In this paper, we investigate the tracking control problem
of an unstable uncertain wave equation, which has a negative
damper at the uncontrolled boundary and uncertain nonlinear
dynamics at the controlled boundary. A novel boundary adap-
tive tracking control scheme will be developed by: (i) utilizing
the backstepping technique to handle the system’s instability
at the uncontrolled boundary; and (ii) employing adaptive NN
technique to deal with the dynamic system uncertainties at
the controlled boundary. More specific, we first develop an
adaptive radial basis function neural network (RBF NN) model
to approximate/counteract the system’s uncertain dynamics.
With this NN model, a boundary-feedback observer is then
designed to estimate the overall system state of the wave
equation. Using this observer, a boundary tracking control
scheme is finally developed with the backstepping method
and adaptive NN technique, which is capable of rendering
stable and accurate tracking control for the wave equation. It
is worth mentioning that our control scheme is able to drive
the system’s holistic state (instead of just system’s output) to
track a prescribed reference trajectory, which advances most
of existing schemes, e.g., [9], [6], [5]. Rigorous analysis about
the well-posedness and system stability of the overall closed-
loop system is provided.

We would like to emphasize that the current research work
significantly expands our previous work [6] by proposing
a novel backstepping-adaptive-NN-based boundary tracking
control scheme for a wave equation with boundary uncer-
tainties. Specifically, different from [6] focusing on a stable
wave equation, the current paper considers an unstable wave
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equation, whose tracking control design is more challenging.
Moreover, distinguished from the scheme of [6] only using
adaptive NN techniques, the approaches proposed in the
current paper are developed by combining the backstepping
method with adaptive NNs, which are capable of (i) guaran-
teeing the closed-loop stability for the unstable wave equation;
and (ii) rendering accurate tracking for the system’s holistic
state.

The main contributions of this paper are summarized as
follows. (i) The challenging problem of tracking control of
unstable wave equations with boundary uncertainties is suc-
cessfully addressed. (ii) The proposed boundary adaptive NN
backstepping tracking control scheme is novel in the sense that
it can provide stable holistic state tracking control (instead
of only output tracking) for unstable wave equations. (iii)
Rigorous analysis is performed to verify well-posedness and
demonstrate stability of the overall closed-loop system.

The rest of this paper is organized as follows. Section II pro-
vides preliminary results and the problem formulation. Section
III presents the design of a state-feedback backstepping control
scheme. Section IV shows the proposed boundary-feedback
adaptive NN backsetpping control scheme. Simulation results
are presented in Section V. Conclusions are drawn in Section
VI.
Notation. R, R+ and N+ denote, respectively, the set of real
numbers, the set of positive real numbers and the set of positive
integers; Rn denotes the set of n× 1 real column vectors; | · |
is the absolute value of a real number; ‖·‖ is the 2-norm of
a vector or a matrix; L∞(Ω) denotes the set of functions that
are almost everywhere bounded on a measure space Ω; (·)x,
(·)xx, (·)t, (·)tt denote ∂(·)

∂x , ∂
2(·)
∂x2 , ∂(·)

∂t , ∂
2(·)
∂t2 , respectively; ˙(·)

denotes ∂(·)
∂t .

II. PRELIMINARIES AND PROBLEM FOMULATION

A. Preliminaries

The RBF networks can be described by fnn(Z) =∑Nn

i=1 wisi(Z) = W>S(Z) [11], where Z ∈ ΩZ ⊂ Rq
is the input vector, W = [w1, · · · , wNn ]> ∈ RNn is the
weight vector, Nn is the NN node number, and S(Z) =
[s1(‖Z − ς1‖), · · · , sNn

(‖Z − ςNn
‖)]>, with si(·) being a

radial basis function, and ςi (i = 1, 2, · · · , Nn) being distinct
points in state space. The Gaussian function si(‖Z − ςi‖) =

exp[−(Z−ςi)>(Z−ςi)
η2i

] is one of the most commonly used radial
basis functions, where ςi = [ςi1, ςi2, · · · , ςiq]> is the center of
the receptive field and ηi is the width of the receptive field.
The Gaussian function belongs to the class of localized RBFs
in the sense that si(‖Z − ςi‖)→ 0 as ‖Z‖ → ∞. According
to [11], for any continuous function f(Z) : ΩZ → R where
ΩZ ⊂ Rq is a compact set, and for the NN approximator,
where the node number Nn is sufficiently large, there exists
an ideal constant weight vector W ∗, such that for any ε∗ > 0,
f(Z) = W ∗>S(Z) + ε, ∀Z ∈ ΩZ , where |ε| < ε∗ is the
ideal approximation error. The ideal weight vector W ∗ is an
“artificial” quantity required for analysis, and is defined as the
value of W that minimizes |ε| for all Z ∈ ΩZ ⊂ Rq , i.e.,
W ∗ , argminW∈RNn {supZ∈ΩZ

|f(Z)−W>S(Z)|}.

B. Problem Formulation

Consider a one-dimensional unstable wave equation with
boundary uncertainties:

ytt(x, t) = yxx(x, t), x ∈ (0, 1), t ∈ (0,∞)

yx(0, t) = −qyt(0, t)
yx(1, t) = u(t) + f(y(1, t), yt(1, t))

y(x, 0) = y0(x), yt(x, 0) = y1(x)

(1)

where y(x, t) ∈ R is the system state at the position x ∈ [0, 1]
for time t ∈ [0,∞); u ∈ R is the system boundary control
input; q > 0 (q 6= 1) is a known constant; f(y(1, t), yt(1, t))
is an unknown locally Lipschitz continuous nonlinear function,
representing the system boundary uncertainty; y0(x) and y1(x)
are initial conditions. Assume that the boundary signals y(0, t),
yt(0, t), y(1, t), and yt(1, t) of (1) are all measurable.

In this paper, our objective is to design a boundary tracking
control scheme for the system (1) with its boundary signals,
i.e., y(0, t), yt(0, t), y(1, t) and yt(1, t), aiming to drive
the system state y(x, t) (∀x ∈ [0, 1]) to track a prescribed
reference signal r(x, t) with guaranteed well-posedness and
system stability. In particular, note that the wave equation
(1) has a negative damper at the uncontrolled boundary, i.e.,
yx(0, t) = −qyt(0, t), which will lead the system to an
unstable manner; furthermore, the system (1) has uncertain
nonlinear dynamics f(y(1, t), yt(1, t)), which will challenge
the subsequent designs of system’s state estimation and ref-
erence tracking. In view of this, our control scheme will be
deigned by: (i) employing the backstepping technique to han-
dle the system’s instability at the boundary; and (ii) utilizing
adaptive NN technique to deal with the system uncertainty
f(y(1, t), yt(1, t)).

Before proceeding, a reference model used to generate the
desired reference signal r(x, t) is constructed as follows:

vtt(x, t) = vxx(x, t)

vx(0, t) = cvt(0, t)

v(1, t) = wref (t)

v(x, 0) = v0(x), vt(x, 0) = v1(x),

(2)

where c is a design parameter satisfying c > 0, c 6= 1 and
qc 6= −1; wref (t) is a reference command that can be chosen
freely to satisfy wref (t) ∈ W 2,∞(0,∞) := {w(t) |w ∈
L∞(0,∞), wt ∈ L∞(0,∞), wtt ∈ L∞(0,∞)}; v0(x) and
v1(x) are initial conditions. With this model, the generated
reference signal r(x, t) can be described by:

r(x, t) =− 1 + qc

c2 − 1
v(x, t) +

c(q + c)

c2 − 1
v(0, t)

+
q + c

c2 − 1

∫ x

0

vt(ς, t)dς.

(3)

Lemma 1. If the design parameters satisfy c > 0, c 6= 1,
and wref (t) ∈ W 2,∞(0,∞), the reference system (2)–(3) is
well-posed and bounded.

Proof. Well-posedness and system stability of the reference
model (2) can be proved by following a similar line of our
previous work [6, Lem. 2], which is omitted here. This can
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guarantee that the overall reference model (2)–(3) is well-
posed and bounded.

Remark 1. The reference model (2)–(3) is designed based on
a backstepping transformation, as will be discussed in (5)–(6).
Such a setup can facilitate designing a backstepping controller
for driving the system (1) to track the reference model (2)–(3)
with guaranteed well-posedness and stability. We stress that
implementation of (2)–(3) is feasible in practice. The signal
r(x, t) can be obtained with a suitable state v(x, t), which can
be generated by appropriately selecting the design parameter
c and the reference command wref (t) of (2). An example will
be given in the simulation section for illustration.

III. STATE-FEEDBACK BACKSTEPPING CONTROL

In this section, we will first present the design of a state-
feedback backstepping control scheme for the system (1),
which can enable the system state y(x, t) to track the reference
trajectory r(x, t) of (3) with ∀x ∈ [0, 1]. We assume that the
system dynamics f(y(1, t), yt(1, t)) in (1) is precisely known,
and the system states [y(x, t), yt(x, t)] are measurable for all
x ∈ [0, 1] and t ∈ [0,∞).

Specifically, for the system (1) and the reference model (2)–
(3), a state-feedback backstepping controller is designed as
follows:

u(t) = −f(y(1, t), yt(1, t))−
q2 − 1

1 + qc
(c0v(1, t) + vx(1, t))

− c0y(1, t) +
q + c

1 + qc
(c0qy(0, t)− yt(1, t)− c0

∫ 1

0

ytdx),

(4)
where c0 > 0 is a design parameter; q is the parameter from
(1); and c is from (2).

Consider the system (1) with the controller (4), following
a similar idea of [10], we define an invertible backstepping
transformation:

w(x, t) =− 1 + qc

q2 − 1
y(x, t) +

q(q + c)

q2 − 1
y(0, t)

− q + c

q2 − 1

∫ x

0

yt(ς, t)dς.

(5)

It can map the system (1) into the following system:

wtt(x, t) = wxx(x, t)

wx(0, t) = cwt(0, t)

wx(1, t) = −c0(w(1, t)− v(1, t)) + vx(1, t)

y(x, t) = − 1+qc
c2−1w(x, t) + c(q+c)

c2−1 w(0, t)

+ q+c
c2−1

∫ x
0
wt(ς, t)dς.

(6)

By comparing the system (6) with the reference model (2)–
(3), denoting ε(x, t) = w(x, t)−v(x, t) and e(x, t) = y(x, t)−
r(x, t), we can obtain the following error dynamics:

εtt(x, t) = εxx(x, t)

εx(0, t) = cεt(0, t)

εx(1, t) = −c0ε(1, t)
e(x, t) = − 1+qc

c2−1ε(x, t) + c(q+c)
c2−1 ε(0, t)

+ q+c
c2−1

∫ x
0
εt(ς, t)dς.

(7)

Theorem 1. Consider the closed-loop system consisting of the
plant (1), the reference model (2)–(3), and the controller (4).
If the design parameters satisfy c0 > 0, c > 0, c 6= 1 and
qc 6= −1, we have: the closed-loop system is well-posed and
exponentially stable in the sense of (

∫ 1

0
(e2
x+e2

t )dx+e2(1, t))
1
2

with e(x, t) = y(x, t)− r(x, t).

Proof. Following a similar line of the proof for [10, Th.
1], it can be proved that the error system (7) is well-posed
and exponentially stable in the sense of (

∫ 1

0
(e2
x + e2

t )dx +

e2(1, t))
1
2 . Then, noting that y(x, t) = e(x, t) + r(x, t), and

the reference model (2)–(3) is well-posed and bounded from
Lemma 1, we have: the system (1) with controller (4) is
well-posed and bounded. Consequently, it can be deduced
that the closed-loop system of (1)–(4) is well-posed and
bounded; moreover, it is exponentially stable in the sense of
(
∫ 1

0
(e2
x + e2

t )dx+ e2(1, t))
1
2 . This ends the proof.

IV. BOUNDARY-FEEDBACK ADAPTIVE NN BACKSTEPPING
CONTROL

In the previous section, the design of controller (4) requires
the information of system dynamics f(y(1, t), yt(x, t)) and the
measurement of system’s overall state yt(x, t), which could
be very difficult in practice. To deal with these issues, in
this section, we will design a boundary-feedback observer to
estimate the overall state [y(x, t), yt(x, t)] of (1), in which
adaptive NN technique will be used to deal with the effect
of system uncertainty f(y(1, t), yt(1, t)). With this observer,
a more practical boundary-feedback backstepping controller
can be designed.

A. Boundary-Feedback Adaptive NN Observer

For the system uncertain dynamics f(y(1, t), yt(1, t)) in (1),
according to Section II-A, we know that there exists a constant
NN weight W ∗ ∈ RNn (with Nn ∈ N+ denoting the number
of NN nodes) such that:

f(y(1, t), yt(1, t)) = W ∗>S(y(1, t), yt(1, t)) + ε, (8)

where S(·) : R2 → RNn is a smooth RBF vector, ε ∈ R
is the NN estimation error satisfying |ε| < ε∗ with ε∗ being
a small positive constant. Based on this, for the system (1),
we can propose a boundary-feedback adaptive NN observer as
follows:

ŷtt(x, t) = ŷxx(x, t)

ŷx(0, t) = −qyt(0, t)− c1(yt(0, t)− ŷt(0, t))
ŷx(1, t) = u(t) + Ŵ>S(y(1, t), yt(1, t))

+c2(y(1, t)− ŷ(1, t))

ŷ(x, 0) = ŷ0(x), ŷt(x, 0) = ŷ1(x)
˙̂
W = Γ(ỹt(1, t) + δ1c2ỹ(1, t))S − ΓγŴ ,

(9)

where yt(0, t), y(1, t) and yt(1, t) are system boundary signals
of (1); q is the system parameter of (1); Ŵ ∈ RNn is the
estimate of W ∗ in (8); c1 > 0, c2 > 0, Γ = Γ> > 0, γ > 0
and 0 < δ1 < min{ c1

1+c21
, 1

2} are design parameters; ỹ(x, t) =

y(x, t)− ŷ(x, t).
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Comparing the observer (9) with the system (1), from (8),
denoting W̃ = Ŵ −W ∗, we obtain the error dynamics as:

ỹtt(x, t) = ỹxx(x, t)

ỹx(0, t) = c1ỹt(0, t)

ỹx(1, t) = −c2ỹ(1, t)− W̃>S + ε
˙̃W = Γ(ỹt(1, t) + δ1c2ỹ(1, t))S − ΓγŴ .

(10)

Lemma 2. If the design parameters satisfy c1 > 0, c2 >
0, Γ = Γ> > 0, γ > 0, and 0 < δ1 < min{ c1

1+c21
, 1

2},
the observation error dynamics system (10) is well-posed and
bounded.

Proof. Well-posedness of system (10) can easily be proved by
following a similar line of the proof in our previous work [6,
Th. 1], which thus is omitted here.

We study the stability of system (10). Define a Lyapunov
function as: V1 = 1

2

∫ 1

0
(ỹ2
x + ỹ2

t )dx+ c2
2 ỹ

2(1, t) + δ1
∫ 1

0
(x−

2)ỹxỹtdx + 1
2W̃

>Γ−1W̃ , which is positive definite since
0 < δ1 < 1

2 . From (10), according to Young’s inequality,
the derivative of V1 is derived as:

V̇1 = −(c1 − δ1(1 + c21))ỹ2
t (0, t)− δ1

2
ỹ2
t (1, t)− δ1c

2
2

2
ỹ2(1, t)

− δ1
2

∫ 1

0

(ỹ2
x + ỹ2

t )dx− γW̃>W̃ − γW̃>W ∗

− δ1
2

(W̃>S − ε)2 + δ1c2ỹ(1, t)ε+ ỹt(1, t)ε

≤ −(c1 − δ1(1 + c21))ỹ2
t (0, t)− δ1

4
ỹ2
t (1, t)− δ1c

2
2

4
ỹ2(1, t)

− δ1
2

∫ 1

0

(ỹ2
x + ỹ2

t )dx− γ

2

∥∥∥W̃∥∥∥2

+
γ

2
‖W ∗‖2 +

δ2
1 + 1

δ1
ε∗2

(11)
where |ε| < ε∗ from (8). Then, since 0 < δ1 <

c1
1+c21

leading

to c1 − δ1(1 + c21) > 0, we have V̇1(t) < 0 whenever:

ỹ2(1, t) ≥4(δ2
1 + 1)

δ2
1c

2
2

ε∗2 +
2γ

δ1c22
‖W ∗‖2 ;∫ 1

0

(ỹ2
x + ỹ2

t )dx ≥2(δ2
1 + 1)

δ2
1

ε∗2 +
γ

δ1
‖W ∗‖2 ;∥∥∥W̃∥∥∥2

≥2(δ2
1 + 1)

γδ1
ε∗2 + ‖W ∗‖2 .

(12)

This guarantees that the signals of ỹ(1, t), ỹx(x, t), ỹt(x, t)
and W̃ of (10) are all bounded. Based on this and from the
Poincare inequality, we have: all the signals of system (10),
including ỹ(x, t), ỹt(x, t) and W̃ are bounded. This ends the
proof.

B. Boundary-Feedback Backstepping Controller

Using the observer (9), considering the system (1), from
(4), we propose to design the following boundary-feedback
adaptive NN backstepping controller:

u(t) =− Ŵ>S − q2 − 1

1 + qc
(c0v(1, t) + vx(1, t))− c0ŷ(1, t)

+
q + c

1 + qc
(c0qŷ(0, t)− ŷt(1, t)− c0

∫ 1

0

ŷtdx),

(13)

where ŷ(1, t), ŷ0(0, t) and ŷt(x, t) are signals of observer (9);
Ŵ>S is the adaptive NN model used in (9); v(1, t), vx(1, t)
are reference signals from (2).

Before investigating the performance of the controller (13)
on the system (1), we first study its performance on the
observer (9). We use the backstepping transformation of (5)
to map the system (9) into the following system:

ŵtt(x, t) = ŵxx(x, t)− (q+c)(c1+q)
q2−1 ỹtt(0, t)

ŵx(0, t) = cŵt(0, t) + (1+qc)(c1+q)
q2−1 ỹt(0, t)

ŵx(1, t) = −c0 (ŵ(1, t)− v(1, t)) + vx(1, t)

− (1+qc)c2
q2−1 ỹ(1, t).

(14)

Comparing this system with the reference model (2), and then
combining with system (10), by denoting ε̂(x, t) = ŵ(x, t)−
v(x, t), we obtain the overall error dynamics as follows:

ε̂tt(x, t) = ε̂xx(x, t)− (q+c)(c1+q)
q2−1 ỹtt(0, t)

ε̂x(0, t) = cε̂t(0, t) + (1+qc)(c1+q)
q2−1 ỹt(0, t)

ε̂x(1, t) = −c0ε̂(1, t)− (1+qc)c2
q2−1 ỹ(1, t)

ỹtt(x, t) = ỹxx(x, t)

ỹx(0, t) = c1ỹt(0, t)

ỹx(1, t) = −c2ỹ(1, t)− W̃>S + ε
˙̃W = Γ(ỹt(1, t) + δ1c2ỹ(1, t))S − ΓγŴ .

(15)

Lemma 3. If the design parameters satisfy: c > 0, c 6= 1,
qc 6= −1, c0 > 0, c1 > 0, c2 > 0, Γ = Γ> > 0, γ > 0,
and 0 < δ1 < min{ c1

1+c21
, 1

2}, system (15) is well-posed and
bounded.

Proof. We consider a variable transformation: ε̃(x, t) =

ε̂(x, t) + (q+c)(c1+q)
q2−1 ỹ(0, t), to rewrite system (15) as:

ε̃tt(x, t) = ε̃xx(x, t)

ε̃x(0, t) = cε̃t(0, t)− (c2−1)(c1+q)
q2−1 ỹt(0, t)

ε̃x(1, t) = −c0ε̃(1, t) + (q+c)(c1+q)c0
q2−1 ỹ(0, t)

− (1+qc)c2
q2−1 ỹ(1, t)

ỹtt(x, t) = ỹxx(x, t)

ỹx(0, t) = c1ỹt(0, t)

ỹx(1, t) = −c2ỹ(1, t)− W̃>S + ε
˙̃W = Γ(ỹt(1, t) + δ1c2ỹ(1, t))S − ΓγŴ .

(16)

It is easily seen that well-posedness and stability of the original
system (15) can be investigated by studying the system (16).

Specifically, the well-posedness of system (16) can be
proved by following a similar line of our previous work [6, Th.
1], which is omitted here. We investigate its system stability
in the following. Define a positive-definite Lyapunov function:
V = KV1 + V2, where K > 0, V1 = 1

2

∫ 1

0
(ỹ2
x + ỹ2

t )dx +
c2
2 ỹ

2(1, t) + δ1
∫ 1

0
(x − 2)ỹxỹtdx + 1

2W̃
>Γ−1W̃ as given in

(11), and V2 is defined as: V2 = 1
2

∫ 1

0
(ε̃2
x+ε̃2

t )dx+ c0
2 ε̃

2(1, t)+

δ2
∫ 1

0
(x− 2)ε̃xε̃tdx, with 0 < δ2 < min{ c

2+4c2 ,
1
2}.

From (16), according to Young’s inequality and following
a similar line of (11), the derivative of V2 is obtained as:

V̇2 ≤ −(
c

2
− δ2(1 + 2c2))ε̃2

t (0, t)−
δ2
4
ε̃2
t (1, t)−

δ2c
2
0

4
ε̃2(1, t)
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− δ2
2

∫ 1

0

(ε̃2
x + ε̃2

t )dx+ (
2

δ2
+ 2δ2)(

(1 + qc)c2
q2 − 1

)2ỹ2(1, t)

+ (
1

2c
+ 2δ2)(

(c2 − 1)(c1 + q)

q2 − 1
)2ỹ2

t (0, t)

+ (
2

δ2
+ 2δ2)(

(q + c)(c1 + q)c0
q2 − 1

)2ỹ2(0, t).

(17)
From the Cauchy-Schwarz inequality and Young’s inequal-

ity, we have: −
∫ 1

0
ỹ2
xdx ≤ −(

∫ 1

0
ỹxdx)2 ≤ −1

2 ỹ
2(0, t) +

ỹ2(1, t), leading to ỹ2(0, t) ≤ 2
∫ 1

0
ỹ2
xdx + 2ỹ2(1, t). Based

on this, combining (IV-B) with (11), the derivative of V =
KV1 + V2 is obtained as:

V̇ ≤ −(
c

2
− δ2(1 + 2c2))ε̃2

t (0, t)−
δ2
4
ε̃2
t (1, t)−

δ2c
2
0

4
ε̃2(1, t)

− δ2
2

∫ 1

0

(ε̃2
x + ε̃2

t )dx− (K(c1 − δ1(1 + c21))

− (
1

2c
+ 2δ2)(

(c2 − 1)(c1 + q)

q2 − 1
)2)ỹ2

t (0, t)−Kδ1
4
ỹ2
t (1, t)

− (K
δ1c

2
2

4
− (

2

δ2
+ 2δ2)(

(1 + qc)c2
q2 − 1

)2 − (
4

δ2
+ 4δ2)

· ( (q + c)(c1 + q)c0
q2 − 1

)2)ỹ2(1, t)−Kδ1
2

∫ 1

0

ỹ2
t dx

− (K
δ1
2
− (

4

δ2
+ 4δ2)(

(q + c)(c1 + q)c0
q2 − 1

)2)

∫ 1

0

ỹ2
xdx

−Kγ

2

∥∥∥W̃∥∥∥2

+K
γ

2
‖W ∗‖2 +K

δ2
1 + 1

δ1
ε∗2.

(18)
Based on this, with 0 < δ2 <

c
2+4c2 , 0 < δ1 <

c1
1+c21

, γ > 0

and a sufficiently large value of K > 0, following a similar
line of the proof in Lemma 2, we have: all signals of the
error system (16), including ε̃(x, t), ε̃t(x, t), ỹ(x, t), ỹt(x, t)
and W̃ , are bounded. Consequently, we can conclude that the
original error dynamics (15) is well-posed and bounded. This
ends the proof.

With Lemmas 1–3, we can establish the well-posedness
and stability of the overall closed-loop system under our
approaches as follows. In particular, from (1), (2), (3), (5),
(7), (9) and (13), we obtain the overall error dynamic system
as follows:

εtt(x, t) = εxx(x, t)

εx(0, t) = cεt(0, t)

εx(1, t) = −c0ε(1, t) + 1+qc
q2−1 (W̃>S − ε)− 1+qc

q2−1c0ỹ(1, t)

+ q+c
q2−1 (c0qỹ(0, t)− ỹt(1, t)− c0

∫ 1

0
ỹtdx)

e(x, t) = − 1+qc
c2−1ε(x, t) + c(q+c)

c2−1 ε(0, t)

+ q+c
c2−1

∫ x
0
εt(ς, t)dς

ỹtt(x, t) = ỹxx(x, t)

ỹx(0, t) = c1ỹt(0, t)

ỹx(1, t) = −c2ỹ(1, t)− W̃>S + ε
˙̃W = Γ(ỹt(1, t) + δ1c2ỹ(1, t))S − ΓγŴ .

(19)

Theorem 2. Consider the closed-loop system consisting of the
plant (1), the reference model (2)–(3), the observer (9), and
the controller (13). If the design parameters satisfy: c > 0,
c 6= 1, qc 6= −1, c0 > 0, c1 > 0, c2 > 0, Γ = Γ> > 0,
γ > 0, and 0 < δ1 < min{ c1

1+c21
, 1

2}, the closed-loop system
is well-posed and bounded.

Proof. Consider the error system (19). From (15), we
have: ε(x, t) = ε̂(x, t) − 1+qc

q2−1 ỹ(x, t) + q(q+c)
q2−1 ỹ(0, t) −

q+c
q2−1

∫ x
0
ỹt(ς, t)dς . Since the system (15) is well-posed and

bounded from Lemma 3, it is easy to deduce that the system
(19) is well-posed and bounded. Based on this, noting that
y(x, t) = e(x, t) + r(x, t), ŷ(x, t) = y(x, t) − ỹ(x, t), and
the reference model (2)–(3) is well-posed and bounded from
Lemma 1, we have: both the system (1) and the observer (9)
under the controller (13) are well-posed and bounded. Conse-
quently, it is verified that the closed-loop system consisting of
(1), (2), (3), (9) and (13) are well-posed and bounded.

V. SIMULATION STUDIES

To demonstrate the effectiveness of our approaches, this
section will perform a simulation study by using a numerical
example. Specifically, the system (1) is given with q = 0.6,
f(y(1, t), yt(1, t)) = 0.4y(1, t) + 0.3 cos(y2

t (1, t)), y0(x) =
0.3 sin(2πx) and y1(x) = 0.3 cos(2πx). The reference model
(2)–(3) is designed with c = 0.7, wref (t) = 0.5 sin(π5 t) +
cos(π4 t), v0(x) = 0.1 and v1(x) = 0.1. The observer (9)
is designed with c1 = 0.7, c2 = 1.2, δ1 = 0.45, Γ = 3,
γ = 0.01, ŷ0(x) = 0.1, ŷ1(x) = 0.1, Ŵ (0) = 0, and the RBF
NN model Ŵ>S is constructed in a regular lattice with the
number of nodes Nn = 5× 13, the centers evenly spaced on
[−2, 2] × [−7, 5], and the widths ηi = 1 (i = 1, 2, · · · , 65).
The controller (13) is with c0 = 1.2.

Performance of the overall closed-loop system consisting
of the plant (1), the reference model (2)–(3), the observer (9)
and the controller (13) are shown in Figs. 1–2. It is shown that
all signals of the closed-loop system, including system state
y(x, t), reference signal r(x, t), observer state ŷ(x, t), control
signal u(t) and NN weight Ŵ (t), are stable. The signal-
tracking performances of our scheme are illustrated in Fig. 3,
showing that both the state estimation error y(x, t) − ŷ(x, t)
of (1) and (9), and the state tracking error y(x, t) − r(x, t)
of (1) and (3), can converge to a small neighborhood around
zero. Consequently, these simulation results verify that our
approaches can provide desired performance of closed-loop
stability, state estimation, as well as reference tracking control.
In particular, the results of Fig. 3 also justify that our control
scheme can drive the system’s holistic state y(x, t) to track the
reference signal r(x, t) with ∀x ∈ [0, 1], which is advanced
over most of the existing schemes of [9], [6], [5] that only
achieve output tracking.

VI. CONCLUSIONS

In this paper, we have developed a backstepping adaptive
NN boundary control scheme for the tracking control problem
of an unstable wave equation with boundary uncertainties.
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(a) System state y(x, t) of (1). (b) Reference signal r(x, t) of (3). (c) Observer state ŷ(x, t) of (9).

Fig. 1: Overall system state.

(a) NN weights Ŵ (t) of (9).
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(b) Control signal u(t) of (13).

Fig. 2: Closed-loop system response.

(a) State estimation error y(x, t)− ŷ(x, t) of (1)
and (9).

(b) State tracking error y(x, t)−r(x, t) of (1) and
(3).

Fig. 3: Signal-tracking performance.

Specifically, an adaptive RBF NN model has been devel-
oped to approximate/counteract the effect of system uncertain
dynamics. A boundary-feedback observer has been designed
with the NN model, to estimate the system’s overall state.
Using this observer, a boundary tracking control scheme has
been proposed based on the backstepping method and adaptive
NN technique. This control scheme is able to provide stable
tracking control for the unstable wave equation, in which the
system’s holistic state can be driven to track a prescribed
reference trajectory. Rigorous analysis has been performed to
demonstrate the well-posedness and stability of the overall
closed-loop system. In the future work, we expect to extend the
proposed tracking control scheme to a more general case, e.g.,
an unstable wave equation with both matched and unmatched
boundary uncertainties.
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