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Abstract— This paper is focused on the reference-tracking
control problem of distributed parameter systems modeled by
a class of parabolic partial differential equations (PDEs) with
uncertain nonlinear dynamics. An adaptive tracking control
scheme is developed by utilizing radial basis function neural
networks (RBF NNs) to deal with nonlinear system uncer-
tainties. Specifically, the Galerkin method is first employed to
derive a reduced-order ordinary differential equation (ODE)
model to approximate the original PDE system. Based on
this, an adaptive tracking control scheme is developed based
on the singular perturbation theory and Lyapunov stability
theory. With the control scheme implemented on the original
PDE system, the system output can be guaranteed to track
a prescribed reference trajectory with desired system stability
and tracking accuracy. Simulation study on a representative
transport-reaction process is conducted to demonstrate the
effectiveness of the proposed approach.

I. INTRODUCTION

Distributed parameter systems (DPSs) are dynamical sys-
tems with inputs, outputs and process parameters varying
temporally and spatially [1]. They are usually modeled by
partial differential equations (PDEs) [1]. Many thermal pro-
cess, fluid flow process, biological process, and convection-
diffusion reaction process are typical examples of such
systems [2].

Modeling and control of DPSs are the most important and
challenging problems in the system and control community.
One of the technical difficulties lies in how to deal with the
infinite-dimensional nature of DPSs. Extensive research has
been carried out for this challenging problem over the past
decades (see, e.g., [3], [4], [5], [6]), which in general can
be categorized into two types: late lumping approach and
early lumping approach. In the late lumping approach, the
control design is performed using the infinite-dimensional
process model, and the obtained infinite-dimensional con-
troller is then lumped for implementation purpose. Some
successes have been seen along this direction, e.g., [3], [4],
which however are mainly limited to linear systems. For the
DPSs with more complicated nonlinear system dynamics,
most of existing methods are developed based on the early
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lumping approach, in which the controller design is based
on a finite-dimensional approximate model capturing the
essential dynamics of the original process model. A typical
example is the control design of a class of dissipative DPSs
modeled by parabolic PDEs [7]. The eigenspectrum of their
spatial differential operator can be partitioned into a finite-
dimensional slow one and an infinite-dimensional stable fast
complement. With this feature, the Galerkin method can
be employed to derive a reduced-order ODE (slow) system
capturing the dominant dynamics of the original PDE system,
which can be used to facilitate the subsequent control design.
Considerable research works have been reported using this
technique, e.g., [5], [6], [7]. However, these schemes virtually
require the system model to be known or at least the structure
to be known, which could not be applicable for the DPSs
with uncertain unstructured nonlinear dynamics.

For systems with unknown nonlinearities, the past decades
have witnessed tremendous progress in the research of con-
trol design by using neural networks (NNs) together with
adaptive control techniques, e.g., [8], [9]. Particularly, with
the approximation capability and online learning ability of
NN [10], the effect of system uncertain nonlinearities can
be properly dealt with, and the system stability, control
accuracy and robustness performance of the resulting control
system can be guaranteed based on the Lyapunov stability
theory [11]. Along this direction, some research efforts
have been devoted to the control problem of DPSs. For
example, in [12], radial basis function neural networks (RBF
NNs) were employed to deal with the system unknown
nonlinearity and persistent bounded disturbances, and an
adaptive NN-based control was proposed with guaranteed
L∞ gain performance. [13] developed a Galerkin-NN-based
control scheme guaranteeing an upper bound of a quadratic
cost function. In [14], critic NN was utilized to attenuate
the effect of system disturbance for improving the system’s
robustness property. However, most of these methods are
focused on the stabilization control problem. For the tracking
control problem, which is a more important problem in
practical applications, only a few research results have been
obtained in [3], [15], [16], [17]. Specifically, the tracking
problem of linear DPSs was investigated in [3], [15], [16];
while for the nonlinear case, there is only a study in [17]
employing a fuzzy interpolation approach to deal with the
system uncertain nonlinearity. This method required a high-
order ordinary differential equation (ODE) system for good
approximation, which could be computationally expensive
for real-time implementation. It is therefore of interest to
develop a new adaptive NN-based reference-tracking control



scheme for DPSs with nonlinear uncertainties.
In this paper, we consider the reference-tracking control

problem of DPSs modeled by a class of parabolic PDEs with
uncertain nonlinear dynamics, aiming to drive the system
output to track a prescribed reference trajectory. An adaptive
tracking control scheme will be developed by utilizing the
RBF NN to deal with the effect of system uncertain nonlinear
dynamics. Specifically, the Galerkin method is first employed
to derive a reduced-order ODE system to approximate the
original PDE system. Based on this ODE system, an adaptive
NN-based tracking control scheme is subsequently developed
by employing the singular perturbation theory and Lyapunov
stability theory [11]. With this controller implemented on
the original PDE system, it is verified through rigorous
analysis that the output of the PDE system can be guaranteed
to track the output of the reference model with desired
system stability and tracking accuracy. Simulation study of
a representative transport-reaction process is conducted to
demonstrate the effectiveness of the proposed approach.
Notation. R, R+ and N+ denote, respectively, the set of
real numbers, the set of positive real numbers and the set
of positive integers; Rm×n denotes the set of m × n real
matrices; Rn denotes the set of n × 1 real column vectors;
| · | is the absolute value of a real number; ∥·∥ is the 2-norm
of a vector or a matrix.

II. PRELIMINARIES AND PROBLEM FOMULATION

A. Preliminaries
The RBF networks can be described by fnn(Z) =∑Nn

i=1 wisi(Z) = WTS(Z) [10], where Z ∈ ΩZ ⊂ Rq

is the input vector, W = [w1, · · · , wNn
]T ∈ RNn is the

weight vector, Nn is the NN node number, and S(Z) =
[s1(∥Z − ς1∥), · · · , sNn

(∥Z − ςNn
∥)]T , with si(·) being a

radial basis function, and ςi (i = 1, 2, · · · , Nn) being distinct
points in state space. The Gaussian function si(∥Z − ςi∥) =
exp[−(Z−ςi)

T (Z−ςi)
η2
i

] is one of the most commonly used
radial basis functions, where ςi = [ςi1, ςi2, · · · , ςiq]T is the
center of the receptive field and ηi is the width of the
receptive field. The Gaussian function belongs to the class
of localized RBFs in the sense that si(∥Z − ςi∥) → 0 as
∥Z∥ → ∞. Note that S(Z) is bounded, and there exists a real
constant SM ∈ R+ such that ∥S(Z)∥ ⩽ SM [9]. According
to [10], for any continuous function f(Z) : ΩZ → R where
ΩZ ⊂ Rq is a compact set, and for the NN approximator,
where the node number Nn is sufficiently large, there exists
an ideal constant weight vector W ∗, such that for any ϵ∗ > 0,
f(Z) = W ∗TS(Z) + ϵ, ∀Z ∈ ΩZ , where |ϵ| < ϵ∗ is the
ideal approximation error. The ideal weight vector W ∗ is an
“artificial” quantity required for analysis, and is defined as
the value of W that minimizes |ϵ| for all Z ∈ ΩZ ⊂ Rq , i.e.,
W ∗ ≜ argminW∈RNn {supZ∈ΩZ

|f(Z)−WTS(Z)|}.

B. Problem Formulation
Consider a class of nonlinear parabolic PDE systems:

∂x(z, t)

∂t
= a1

∂x(z, t)

∂z
+ a2

∂2x(z, t)

∂z2
+ f(x) + kub(z)u(t),

(1)

with the system output: y(t) =
∫ z2
z1

c(z)x(z, t)dz, the bound-
ary conditions: mix(zi, t) + ni

∂x
∂z (zi, t) = di (i = 1, 2),

and initial condition: x(z, 0) = x0(z), where x(z, t) ∈ R is
system state, u(t) ∈ Rp is system input, y(t) ∈ R is system
output, z ∈ [z1, z2] is the spatial coordinate, t ∈ [0,∞)
is the time, f(x) ∈ R is an unknown nonlinear function
satisfying f(0) = 0 which represents system uncertain
dynamics, b(z) = [b1(z), · · · , bp(z)] is a known smooth
vector function, where bi(z) (i = 1, · · · , p) describes how the
control action ui(t) is distributed in the interval [z1, z2], and
c(z) is a known function that is determined by the desired
performance specifications in the process domain [z1, z2]. ∂x

∂z

and ∂2x
∂z2 are the first- and second-order spatial derivatives

of x(z, t), respectively. ku, a1, a2,m1, n1,m2, n2, d1, d2 are
known constants. Assume that the state x(z, t) is measurable
at all locations z ∈ [z1, z2] for all time t ∈ [0,∞).

Assumption 1: The function f(x) in (1) is locally Lips-
chitz continuous, i.e., for each compact subset D of R, there
exists a positive constant κ, such that |f(x1)− f(x2)| ≤
κ |x1 − x2| for any x1, x2 ∈ D.

In the following, the Galerkin method [7] will be employed
to obtain a low-order ODE system to approximate the PDE
system (1). Specifically, denote H as a Hilbert space of
1-D functions defined on [z1, z2] that satisfies the bound-
ary conditions given in (1), with inner product and norm:
⟨ω1, ω2⟩ =

∫ z2
z1

ω1(z)ω2(z)dz, ∥ω1∥2 = ⟨ω1, ω1⟩
1
2 , where

ω1(z), ω2(z) are two elements of H. Consider the system
(1), define the spatial operation A as: Ax = a1

∂x
∂z + a2

∂2x
∂z2 ,

x ∈ D(A) := {x ∈ H |Ax ∈ H, mix(zi, t) + ni
∂x
∂z (zi, t) =

di, i = 1, 2}. For this operator, the eigenvalue problem
is defined as Aϕj = λjϕj (j = 1, 2, · · · ,∞), where λj

denotes an eigenvalue, and ϕj denotes an eigenfunction. The
eigenspectrum of A, denoted by σ(A), is defined as the set
of all eigenvalues of A, i.e., σ(A) = {λ1, λ2, · · · , λ∞}. For
highly-dissipative PDE systems, the eigenspectrum of A can
be partitioned into a finite-dimensional part consisting of m
(m ∈ N+) slow eigenvalues and a stable infinite-dimensional
complement containing the remaining fast eigenvalues, and
the separation between the slow and fast eigenvalues of A
is large. These properties can be satisfied by the majority
of diffusion-convection-reaction processes [1], and are stated
precisely in the following assumption.

Assumption 2: (i) Re{λ1} ≥ Re{λ2} ≥ · · · ≥ Re{λj} ≥
· · · , where Re{λj} denotes the real part of λj ; (ii) σ(A)
can be partitioned as σ(A) = σs(A) + σf (A), where
σs(A) consists of the first m number of eigenvalues, that
is, σs(A) = {λ1, λ2, · · · , λm}, and | Re{λ1}

Re{λm} | = O(1); (iii)

Re{λm+1} < 0 and | Re{λm}
Re{λm+1} | = O(ϖ), where ϖ :=

| Re{λ1}
Re{λm+1} | < 1 is a small positive constant.

Based on this assumption, consider the decomposition
H = Hs ⊕ Hf , in which Hs = span{ϕ1, ϕ2, · · · , ϕm}
denotes the finite dimensional space spanned by the
slow eigenfunctions corresponding to σs(A), and Hf =
span{ϕm+1, ϕm+2, · · · , ϕ∞} denotes the infinite dimen-
sional complement one spanned by the fast eigenfunctions
corresponding to σf (A). Under such decomposition, by the



separation of time and spatial variables, the PDE system
(1) can be formulated as the following infinite-dimensional
nonlinear ODE system:

ẋs =Asxs + fs(xs, χf ) +Bsu, xs(0) = xs0 ,

χ̇f =Afχf + ff (xs, χf ) +Bfu, χf (0) = χf0 ,
(2)

with y = CT
s xs + CT

f χf , where xs = [xs1 , · · · , xsm ]T ∈
Rm, χf = [χfm+1 , · · · , χf∞ ]T ∈ R∞, fs =
⟨ϕs(z), f(x)⟩, ff = ⟨ϕf (z), f(x)⟩, Bs = ⟨ϕs(z), kub(z)⟩,
Bf = ⟨ϕf (z), kub(z)⟩, Cs = ⟨ϕs(z), c(z)⟩, Cf =
⟨ϕf (z), c(z)⟩, with ϕs(z) = [ϕ1(z), · · · , ϕm(z)]T , ϕf (z) =
[ϕm+1(z), · · · , ϕ∞(z)]T . Under Assumption 2, As is a di-
agonal matrix of dimension m × m of the form As =
diag{λ1, · · · , λm}, and Af is an unbounded differential
operator of the form Af = diag{λm+1, · · · , λ∞}, which
generates a strongly continuous exponentially stable semi-
group (following from the part (iii) of Assumption 2 and the
selection of Hs and Hf ). Neglecting the fast mode, we can
obtain the following finite-dimensional slow system:

ẋs = Asxs + fs(xs, 0) +Bsu, y = CT
s xs. (3)

Note that this system can still be not directly applied for
control design due to the presence of system uncertainty
fs(xs, 0). To facilitate the control design, the following
assumption is given:

Assumption 3: For the function fs(xs, 0) in (3), there
exist unknown functions g(xs), L(xs) and an unknown
matrix Lm > 0 satisfying: fs(xs, 0) = L(xs)xs + Bsg(xs)
and |L(xs)| ≤ Lm.

Remark 1: The existence of Lm can be guaranteed under
Assumption 1. Specifically, noting that the function fs(xs, 0)
satisfies fs(0, 0) = 0 and is locally Lischitz continuous
under Assumption 1, it leads to that |fs(xs, 0)| ≤ Ls |xs|
for some Ls. Based on this, we can deduce that there
exists a constant matrix Lm and some function g(xs) sat-
isfying |f(xs, 0)−Bsg(xs)| ≤ Lm |xs|. Under the above
assumption, the model (3) can be rewritten as: ẋs = (As +
L(xs))xs +Bs(u+ g(xs)).

In the next section, an adaptive NN-based control scheme
will be proposed based on the reduced-order ODE system
(3), aiming to drive the system output y to track a given
reference trajectory yd. To this end, we assume that there
exists a known reference model given as:

ẋd =Adxd +Bdrd, yd = CT
d xd, (4)

where xd ∈ Rm, rd ∈ Rp, Ad ∈ Rm×m, Bd ∈ Rm×p,
Cd ∈ R1×m. In this paper, since Bs and Cs of (3) are both
known, without loss of generality, we assume Bd = Bs, and
Cd = Cs. In light of (3)–(4), it is clear that to drive the
system output y of (3) to track the reference signal yd of
(4), we can design a control scheme for the system state xs

of (3) to track the reference signal xd of (4). To facilitate
the subsequent control design, the following assumptions are
made on the reference model (4).

Assumption 4: For the matrix Ad in (4), there exists a
matrix Ks such that: Ad = As + Lm − BsKs, where As,
Bs are from (3), and Lm is defined in Assumption 3.

Assumption 5: The signals xd, rd of the reference model
(4) are bounded, i.e., there exist some positive numbers
xdm, rdm such that: |xd| ≤ xdm, |rd| ≤ rdm.

III. ADAPTIVE NN CONTROL DESIGN

Given the reduced-order ODE system (3) and the reference
model (4), we first consider an ideal scenario that the
function g(xs) (defined in Assumption 3) and the matrix
Ks (defined in Assumption 4) are known, and a stabilizing
tracking control strategy u∗ can be designed as:

u∗ = −K(xs − xd) + rd −Ksxs − g(xs), (5)

with K ∈ Rp×m being a control gain matrix to be designed.
With this control strategy, from (3)–(4), we can obtain the
state tracking error dynamics (with e := xs − xd):

ė = (Ad −BsK)e− (Lm − L(xs))e− (Lm − L(xs))xd.
(6)

Note that Lm − L(xs) ≥ 0 and xd is bounded, the tracking
error e can be guaranteed stable as long as the control gain
matrix K is designed such that Ad −BsK < 0.

However, note that gs(xs) and Ks are unknown, the
controller (5) is not implementable. The RBF NNs will be
employed to overcome this issue. According to Section II,
there exists an ideal constant NN weight W ∗ ∈ RNn×p (with
Nn denoting the number of NN nodes) such that

Ksxs + g(xs) = W ∗TS(xs) + ϵ (7)

where S(xs) : Rm → RNn is a smooth RBF vector and ϵ ∈
Rp is the ideal approximation error satisfying |ϵ| < ϵ∗ with
ϵ∗ ∈ Rp being a positive constant that can be made arbitrarily
small given a sufficient large number of neurons. Based on
this, we propose to design an adaptive NN controller:

u = −K(xs − xd) + rd − ŴTS(xs)

˙̂
W =ΓS(xs)(xs − xd)

TPsBs − ΓγŴ ,
(8)

where K, Γ = ΓT > 0, Ps = PT
s > 0 are design matrices,

γ > 0 is a design constant of small value, Ŵ ∈ RNn×p is
the estimate of W ∗ in (7).

In the following, we will verify that with the controller
(8) implemented on the original PDE system (2), desired
tracking control performance can be guaranteed. To this end,
consider the system (2), by multiplying both sides of the χf

subsystem with ϖ (defined in Assumption 2), we can obtain
a standard singular perturbed (SP) form as follows:

ẋs =Asxs + fs(xs, χf ) +Bsu,

ϖχ̇f =Afϖχf +ϖff (xs, χf ) +ϖBfu,
(9)

where Afϖ = ϖAf . According to the singular perturbation
theory [11, Chap. 11], by introducing a fast time τ = t

ϖ
and setting ϖ = 0, we can obtain the following infinite-
dimensional fast subsystem from (9)

dχf

dτ
= Afϖχf . (10)

According to the definition of ϖ and the fact Re{λm+1} < 0,
we know that the system (10) is globally exponentially stable.



Then, according to [11], there exists a matrix Pf = PT
f > 0

that satisfies the following Lyapunov equation:

PfAfϖ +AT
fϖPf ≤ −Qf , (11)

where Qf > 0 is a given matrix.
Theorem 1: Consider the closed-loop system consisting of

the plant (2), the reference model (4), and the controller (8).
Under the Assumptions 1–5, with initial conditions x(z, 0) ∈
Ω0 (where Ω0 is a compact set) and Ŵ (0) = 0, assume that
there exists symmetric positive definite matrices Q̂s, P̂s and
a matrix K̂ such that

P̂sA
T
d +AdP̂s − (K̂TBT

s +BsK̂) ≤ −Q̂s. (12)

Then, under the control gain of (8) given as Ps = P̂−1
s and

K = K̂Ps, we have: there exists a positive real number ϖ∗

such that for ϖ ∈ (0, ϖ∗], (i) all signals in the closed-loop
system remain uniformly ultimately bounded (UUB); and (ii)
the fast state χf and the state tracking error e = xs −xd, as
well as the output tracking error ey = y − yd, all converge
exponentially to a small neighborhood around the origin.

Proof: (i) To prove the first part, from (4), (7)–(9), we
obtain the following error dynamics:

ė = Ace+∆fs − (Lm − L(xs))xs −BsW̃
TS(xs) +Bsϵ,

˙̃W =
˙̂
W = ΓS(xs)e

TPsBs − ΓγŴ ,

ϖχ̇f = Afϖχf +ϖff (xs, χf ) +ϖBfu,
(13)

with W̃ = Ŵ − W ∗, Ac = Ad − BsK and ∆fs =
fs(xs, χf )−fs(xs, 0). Particularly, note that fs(xs, χf ) and
ff (xs, χf ) are both Lipschitz continuous under Assumption
1, there exist positive real numbers r∗1 , r∗1 , κ1, κ2, and κ3

such that: for any ∥xs∥ ≤ r∗1 and ∥χf∥ ≤ r∗2 ,

∥∆fs∥ = ∥fs(xs, χf )− fs(xs, 0)∥ ≤ κ1 ∥χf∥ ,
∥ff (xs, χf )∥ ≤ κ2 ∥xs∥+ κ3 ∥χf∥ = κ2 ∥e+ xd∥

+ κ3 ∥χf∥ ≤ κ2 ∥e∥+ κ2 ∥xd∥+ κ3 ∥χf∥ .
(14)

Consider the positive definite Lyapunov function can-
didate for (13) as: V (e, χf , W̃ ) = Vs(e, W̃ ) + Vf (χf ),
where Vs(e, W̃ ) = eTPse + tr(W̃TΓ−1W̃ ) and Vf (χf ) =
χT
f Pfχf . From (12)–(14) and the definitions of xs = e+xd,

P̂s = P−1
s , Q̂s = P−1

s QsP
−1
s and K̂ = KP−1

s , we have

V̇s = eT (AT
c Ps + PsAc)e− 2eTPs(Lm − L(xs))(e+ xd)

+ 2eTPs∆fs − 2eTPsBsW̃
TS(xs) + 2eTPsBsϵ

+ 2tr(W̃TS(xs)e
TPsBs)− 2tr(W̃T γŴ )

≤− eTQse− 2eTPs(Lm − L(xs))xd + 2eTPs∆fs

+ 2eTPsBsϵ− 2γ
∥∥∥W̃∥∥∥2 − 2γtr(W̃TW ∗)

≤ − µ1 ∥e∥2 + 2µ9 ∥e∥ ∥xd∥+ 2µ3κ1 ∥e∥ ∥χf∥

+ 2µ2 ∥e∥ ∥ϵ∥ − 2γ
∥∥∥W̃∥∥∥2 + 2γ

∥∥∥W̃∥∥∥ ∥W ∗∥ ,
(15)

where Lm − L(xs) ≥ 0 under Assumption 3, and µ1 =
σ(Qs), µ2 = σ̄(PsBs), µ3 = σ̄(Ps), µ9 = σ̄(Ps(Lm −
L(xs))), with σ(·), σ̄(·) denoting the minimum and maxi-
mum eigenvalues of (·), respectively.

Then, from (8), (11)–(14), V̇f can be derived as:

V̇f ≤ − 1

ϖ
χT
f Qfχf + 2χT

f Pfff − 2χT
f PfBfKe

+ 2χT
f PfBfrd − 2χT

f PfBfŴ
TS(xs)

≤− µ5

ϖ
∥χf∥2 + 2µ8 ∥χf∥ ∥e∥+ 2µ7 ∥χf∥ ∥rd∥

+ 2µ6 ∥χf∥ (κ2 ∥e∥+ κ2 ∥xd∥+ κ3 ∥χf∥)

+ 2µ7SM ∥χf∥ (
∥∥∥W̃∥∥∥+ ∥W ∗∥)

(16)

where µ5 = σ(Qf ), µ6 = σ̄(Pf ), µ7 = σ̄(PfBf ), µ8 =
σ̄(PfBfK), SM is the upper bound of ∥S(xs)∥.

Based on (15)–(16), by completing the squares and taking
the upper bounds of |ϵ| < ϵ∗ in (7) and |rd| < rdm, |xd| <
xdm under Assumption 5, we obtain V̇ = V̇s + V̇f as:

V̇ ≤ −µ1 ∥e∥2 − 2γ
∥∥∥W̃∥∥∥2 − (

µ5

ϖ
− 2µ6κ3) ∥χf∥2

+ 2(µ3κ1 + µ6κ2 + µ8) ∥e∥ ∥χf∥+ 2µ9 ∥e∥ ∥xd∥
+ 2µ2 ∥e∥ ∥ϵ∥+ 2µ7 ∥χf∥ ∥rd∥+ 2µ6κ2 ∥χf∥ ∥xd∥

+ 2µ7SM ∥χf∥ (
∥∥∥W̃∥∥∥+ ∥W ∗∥) + 2γ

∥∥∥W̃∥∥∥ ∥W ∗∥

<− µ1

2
∥e∥2 − γ

2

∥∥∥W̃∥∥∥2 − (
µ5

ϖ
− ρ1) ∥χf∥2 +

γ

2
∥rdm∥2

+
6µ2

2

µ1
∥ϵ∗∥2 + (

γ

2
+

6µ2
9

µ1
) ∥xdm∥2 + 3γ

2
∥W ∗∥2

(17)
with ρ1 = 2µ6κ3 +

4(µ7SM )2+2(µ6κ2)
2+2µ2

7

γ +
6(µ3κ1+µ6κ2+µ8)

2

µ1
. Defining ϖ1 := µ5

ρ1
, if ϖ ∈ (0, ϖ1], we

have V̇ < 0 whenever:

∥e∥ ≥2
√
3 |µ2|
µ1

∥ϵ∗∥+
√

γ

µ1
∥rdm∥

+

√
γ

µ1
+

12µ2
9

µ2
1

∥xdm∥+
√

3γ

µ1
∥W ∗∥ ,

∥∥∥W̃∥∥∥ ≥

√
12µ2

2

γµ1
∥ϵ∗∥+ ∥rdm∥+

√
1 +

12µ2
9

γµ1
∥xdm∥

+
√
3 ∥W ∗∥ ,

∥χf∥ ≥
√

ϖ

µ5 −ϖρ1
(

√
6µ2

2

µ1
∥ϵ∗∥+

√
γ

2
∥rdm∥

+

√
γ

2
+

6µ2
9

µ1
∥xdm∥+

√
3γ

2
∥W ∗∥).

(18)

This leads to the uniform boundedness of e, W̃ and χf .
Noting that e = xs−xd and xd are bounded, xs is bounded
and S(xs) is also bounded. This enables that the control
signal u of (8) (where rd is bounded) is bounded. Thus, all
the signals in the closed-loop system remain UUB.

(ii) To prove the second part, we first consider the Lya-
punov function for the dynamics of χf in (13), i.e., Vf (χf ) =
χT
f Pfχf . Following a similar line of (16), V̇f is derived as:

V̇f ≤− µ5

ϖ
∥χf∥2 + 2µ7 ∥χf∥ ∥u∥

+ 2µ6 ∥χf∥ (κ2 ∥e∥+ κ2 ∥xd∥+ κ3 ∥χf∥)

≤− (
µ5

2ϖ
− 2µ6κ3) ∥χf∥2 +

2ϖ

µ5
δ̄21 ,

(19)



where δ̄1 represents the upper bound of µ6κ2 ∥e∥ +
2µ6κ4 ∥xd∥ + µ7 ∥u∥ (following the fact that the signals e,
xd and u are bounded). Then, defining ϖ2 := µ5

4µ6κ3
and

ϖ∗ = min(ϖ1, ϖ2), if ϖ ∈ (0, ϖ∗], the inequality (19) can
be derived as:

V̇f ≤ −(
µ5

2µ6ϖ
− 2κ3)Vf +

2ϖ

µ5
δ̄21 , (20)

where Vf = χT
f Pfχf ≤ µ6 ∥χf∥2 with µ6 = σ̄(Pf ). Denote

ρ2 = µ5

2µ6
− 2ϖκ3, the inequality (20) yields:

0 ≤ Vf ≤ Vf (0)e
− ρ2

ϖ t +
2ϖ2

µ5ρ2
δ̄21 . (21)

Denoting µ8 = σ(Pf ), we have:

∥χf∥ ≤
√

µ6

µ8
∥χf (0)∥ e−

ρ2
2ϖ t +ϖδ̄1

√
2

µ5µ8ρ2
:= χ∗

f .

(22)
This verifies that the fast state χf will exponentially converge
to a small neighborhood of the origin. The size of such a
neighborhood (represented by ϖδ̄1

√
2

µ5µ8ρ2
) can be made

arbitrarily small can be made arbitrarily large by appropri-
ately selecting the parameter ϖ in a sufficiently small value.

Further consider the Lyapunov function for the dynamics
of e in (13), i.e., Ve(e) = eTPse. Following a similar line
of (15)–(17), the derivative of Ve can be obtained as:

V̇e ≤− µ1 ∥e∥2 + 2µ3κ1 ∥e∥ ∥χf∥+ 2µ9 ∥e∥ ∥xd∥

+ 2µ2 ∥e∥ ∥ϵ∥+ 2µ2 ∥e∥
∥∥∥W̃TS(xs)

∥∥∥
≤− µ1

2
∥e∥2 + 8(µ3κ1)

2

µ1
χ∗2
f +

8µ2
9

µ1
∥xdm∥2

+
8µ2

2

µ1
∥ϵ∗∥2 + 8µ2

2

µ1
W̃ ∗2S2

M

≤− µ1

2
∥e∥2 + 8δ̄2

µ1
≤ − µ1

2µ3
Ve +

8δ̄2
µ1

(23)

with χ∗
f defined in (22), δ̄2 := (µ3κ1)

2χ∗2
f + µ2

9 ∥xdm∥2 +
µ2
2 ∥ϵ∗∥

2
+ µ2

2W̃
∗2S2

M and µ3 = σ̄(Ps). This leads to:

0 ≤ Ve(t) < Ve(0)e
− µ1

2µ3
t +

16µ3δ̄2
µ2
1

. (24)

Based on this, denoting µ4 = σ(Ps), we have:

∥e∥ ≤
√

µ3

µ4
∥e(0)∥ e−

µ1
4µ3

t +
4

µ1

√
µ3δ̄2
µ4

. (25)

This verifies that the tracking error e will converge exponen-
tially to a small vicinity around the origin within a finite time.
The size of such a neighborhood is represented by 4

µ1

√
µ3δ̄2
µ4

,
which can be made arbitrarily small by appropriately select-
ing the control gain matrix Qs = PsQ̂sPs such that the
associated parameter µ1 = σ(Qs) is sufficiently large.

Consequently, from (22) and (25), it is verified that both
the state χf and the tracking error e will exponentially
converge to a small neighborhood around the origin. Based
on this, for the output tracking error ey = y − yd, from (2),
(4), (22) and (25), we have: ey = Cse + Cfχf will also

(a)

(b)
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Fig. 1: System responses: (a) system state x(z, t); (b) NN
weight Ŵ ; and (c) control signal u = [u1, u2, u3]

T .

exponentially converge to a small neighborhood around the
origin. This ends the proof.

IV. SIMULATION STUDIES

To demonstrate effectiveness of the proposed control
scheme, we consider the control problem of the temperature
profile of a catalytic rod [12], [13]. The mathematical model
which describes the spatio-temporal evolution of the rod
temperature can be represented in the form of (1), i.e.,
a1

∂x
∂z + a2

∂2x
∂z2 + f(x) + kub(z)u(t) = ∂2x

∂z2 + βT (e
− γ

1+x −
e−γ) + βu(b(z)u(t)− x), subject to the Dirichlet boundary
conditions and initial condition: x(0, t) = 0, x(π, t) = 0,
and x(z, 0) = 0.1 sin(z), in which x(z, t) denotes the rod
temperature; u(t) ∈ R3 is the manipulated input; b(z) =
[h(z)−h(z− π

3 ), h(z−
π
3 )−h(z− 2π

3 ), h(z− 2π
3 )−h(z−π)]

is control distribution function with h(·) being a Heaviside
function; c(z) = h(z − π

2 ) − h(z − π); βT = 50 denotes a
heat of reaction, γ = 4 denotes an activation energy, βu = 2
denotes a heat transfer coefficient.

The eigenvalue problem for the spatial differential operator
of the process (1): Ax = ∂2x

∂z2 , x ∈ D(A) := {x ∈
H |x(0, t) = 0, x(π, t) = 0} can be solved analytically and
its solution is of the form: λj = −j2, ϕj(z) =

√
2
π sin(jz)

(j = 1, 2, · · · ,∞). We consider the first m = 3 eigenvalues
as the dominant ones. As a result, we can obtain a 3-D ODE



system in the form of (3), with As = diag(−1,−4,−9),
Bs =

√
2
π [1, 2, 1;

3
2 , 0,−

3
2 ;

4
3 ,−

4
3 ,

4
3 ], Cs =

√
2
π [1;−1; 1

3 ]

and fsi(xs, 0) = −βuxsi + βT

∫ π

0
ϕi(z)(e

− γ

1+
∑3

i=1
xsi

ϕi(z) −
e−γ)dz (i = 1, 2, 3). The reference model is given in the
form of (4) with Ad = diag(−2,−2,−2), and rd(t) =
[0.3 sin(2t+ π

2 ); 0.3 sin(2t+ π); 0.3 sin(2t+ 3π
2 )].
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Fig. 2: State tracking performance of system (3) to reference
model (4) using controller (8): xs1 → xd1 .
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Fig. 3: Output tracking performance of y in system (1) to yd
in reference model (4).

Based on the system (3) and the reference model (4), the
adaptive NN controller can be designed according to (8).
Specifically, the RBF NNs ŴTS(xs) are constructed in a
regular lattice, with nodes Nn = 8 × 8 × 8, the centers
evenly spaced on [−0.3, 0.3]× [−0.3, 0.3]× [−0.3, 0.3] and
the widths ηi = 0.05 (i = 1, 2, · · · , 2197). The design
parameters are obtained by solving (12) as Ps = 1, K =
[0.6262, 1.2524, 0.9414; 1.2543, 0.0019,−0.9428; 0.6281,
−1.2505, 0.9357], which leads to Qs = diag(10, 10, 10),
Γ = 0.5 and γ = 0.005, respectively. The initial conditions
are set as xd(0) = [0, 0, 0]T and Ŵ (0) = 0. With such a
system setup, considering the system (1) and the reference
model (4), the control performance of the designed controller
(8) are plotted in Figs. 1–3. Specifically, Fig. 1 implies that
all signals in the closed-loop system, including the system
state x(z, t), the NN weight Ŵ and the control signal u,
are stable. Fig. 2 illustrates accurate tracking performance
of the state xs1 of (3) to reference signal xd1

of (4); similar
results are obtained for xs2 and xs3 , thus associated plots
are omitted here. Accurate tracking performance of output y
in (1) to reference signal yd in (4) is achieved in Fig. 3.

V. CONCLUSIONS

In this paper, an adaptive RBF NN-based reference-
tracking control scheme has been proposed for parabolic

PDE systems with uncertain nonlinear dynamics. Specifi-
cally, the Galerkin method was first employed to derive a
reduced-order ODE system to capture the dominant dynam-
ics of the PDE system. Based on this, an adaptive tracking
control scheme can be designed by employing the singular
perturbation theory and Lyapunov stability theory. With this
controller implemented on the original PDE system, it has
been also verified rigorously that the system output can be
guaranteed to track a prescribed reference trajectory with
desired system stability and tracking accuracy.
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