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Abstract— In this paper, we address the switching model
predictive control (sMPC) problem for a class of switched linear
systems with average dwell time (ADT) switching logics. A novel
state-feedback switching control synthesis scheme is proposed,
such that (i) the sMPC design, subject to ADT switching as
well as input and output constraints, can be characterized
as an optimization problem of the “worst-case” objective
function over infinite moving horizon; (ii) the associated optimal
switching control synthesis conditions can be fully formulated as
linear matrix inequalities (LMIs), which can be solved efficiently
via online convex optimization; and (iii) asymptotic stability
of the resulting switched closed-loop system can be proved
rigorously using multiple Lyapunov functions. A numerical
example has been used to demonstrate effectiveness of the
proposed approach.

I. INTRODUCTION

As an important class of hybrid systems, switched systems
are composed by a family of continuous-time subsystems
and a discrete-time switching logic governing the switching
behavior among them [1]. Switched systems can be used
to model a large variety of practical engineering systems,
such as automobile transmission systems, hybrid powertrain
systems, electrical converting circuits, digital control sys-
tems, and robotic manipulators, etc. The study of switched
systems has experienced a long history involving diverse
disciplines. In the controls community, control design of
switched systems is one of most thriving research topics over
the past decades, leading to fruitful interesting results that
can be found in the literature (see, e.g., [2], [3], [4], [5], [6],
[7], [8] and the references cited therein).

Among many different control problems for switched
systems, optimal switching control represents the most chal-
lenging one that has not been well addressed to date. This
is owing to the existence of the switching logics that have
to be taken into account for optimal switching control
designs, making many existing powerful tools tailored to
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traditional non-switched control systems not applicable to
switched systems. Existing methodologies for dealing with
the switching logics in switched control systems include
min/max switching [9], hysteresis switching [10], average
dwell time (ADT) switching [11], and their hybridizations
[12]. In particular, the ADT switching method has been
recognized very flexible in switched system analysis and
switching control synthesis [1], [13], [14]. This is because
of its unique property that allows the system to switch fast
if necessary and compensate it by switching slowly later
on for ensuring overall switching stability. Based on such
different switching logics, various optimal switching control
techniques have been developed in recent years. For exam-
ple, [5] proposed a novel scheme for synthesis of optimal
H∞ dynamic output-feedback control of switched linear
systems under the state-dependent min-switching framework
using piecewise Lyapunov functions. [6] developed a hybrid
switching impulsive controller structure to convexify optimal
H∞ switching output-feedback control synthesis under the
time-dependent ADT framework using multiple Lyapunov
functions. A new switching control logic that mixes the
ideas of state-dependent min-switching and time-dependent
ADT switching was proposed in [12], and the associated
optimal H∞ switching control synthesis conditions were
fully cast as LMIs that can be solved efficiently via convex
optimization. Moreover, a new concept of persistent dwell-
time switching extended from the idea of ADT switching was
further proposed in [7]. [15], [16] considered asynchronous
switching issues in stability analysis and optimal control
synthesis for switched systems using Lyapunov-like func-
tions. One common trait of all the above-mentioned works in
handling optimal switching control synthesis is that they all
rely on off-line optimization techniques using off-line system
information only (e.g., system model) but ignoring richer
online information (e.g., system state/output measurements).
Advantages of off-line optimization are noticeable, including
capability of handling complex optimization problems that
could demand very high computational power; and stability
guarantee of the resulting control systems. However, its
also suffers from critical drawbacks, including the lack of
adaptability to unexpected system variations (e.g., distur-
bance effects); and potential conservatism in optimal control
synthesis.

Model predictive control (MPC) [17] provides promising
techniques to overcome such drawbacks through online (in-
stead of off-line) optimization. The key idea of MPC is to
solve an online optimization problem at each step, so as to
compute an optimal control profile over finite/infinite horizon



of future time. At each sampling time step, through online
optimization a sequence of predicted control actions will be
calculated, but only the first action will be implemented. At
the next sampling time step, the optimization problem will
be solved again with new measurements, and the control
input will be updated accordingly. The problem of MPC
for traditional non-switched systems has been extensively
studied and has found wide applications in engineering
practices (such as industrial/chemical process controls [18],
[19], [20], [21]). However, research on MPC for switched
systems has gained limited success. Several seminal works
in the field are worth being mentioned. [22], [23] addressed
the so-called hybrid MPC problem for switched systems
with state-dependent switching logics. One limitation of the
approaches proposed therein is that they require switching
mode variations during the prediction horizon to be known
a priori for the MPC optimization at each step, which is not
always feasible in practice. This limitation was surmounted
in [24] for switched linear systems by considering a time-
dependent dwell time switching logic. The MPC problem for
switched nonlinear systems was also studied in [25] using an
ADT switching logic which is more flexible than the case
considered in [24]; however, this work was primarily focused
on system analysis, the control synthesis issue has yet to be
more adequately addressed.

In this paper, we seek to further push the development
of the field of MPC for switched systems by proposing a
new switching MPC synthesis scheme that would render
the associated online optimization problem convex (ensuring
that the MPC problem can be solved in a computationally
efficient manner) and the resulting switched closed-loop
system stable. Specifically, we consider an important class of
switched linear systems subject to ADT switching constraints
as well as input and output bounded constraints. A new state-
feedback switching control synthesis scheme is proposed, the
novelties of which can be reflected in the follows aspects:
(i) The switching MPC design is characterized as an online
optimization problem of the “worst-case” objective function
over infinite moving horizon. (ii) The associated optimal
switching control synthesis conditions are fully formulated
as linear matrix inequalities (LMIs), which can be solved
efficiently via online convex optimization [26]. (iii) Asymp-
totic stability of the resulting switched closed-loop system is
rigorously proved using multiple Lyapunov functions. A nu-
merical example has been used to demonstrate effectiveness
of the proposed scheme.

The rest of this paper is organized as follows. The problem
is formulated in Section II. The main results proposed in
this paper are presented in Section III. Section IV illustrates
the proposed approach through numerical simulations. The
conclusions are drawn in Section V.

The notation used throughout this paper is standard. R
stands for the set of real numbers and R+ represents the
set of positive real numbers. Rn denotes n-dimensional real
vector set, and Rm×n is the set of real m×n matrices. The
transpose of a real matrix M is denoted by MT . A block
diagonal matrix with matrices X1, · · · , Xp on its diagonal

will be denoted by diag{X1, · · · , Xp}. Sn and Sn+ are used
to denote the set of real symmetric n×n matrices and positive
definite matrices, respectively. If M ∈ Sn, then M > 0
(M ≥ 0) indicates that M is positive definite (positive semi-
definite), and M < 0 (M ≤ 0) means negative definite
(negative semi-definite). For x ∈ Rn, the Euclidean norm
is ‖x‖ := (xTx)

1
2 . An infinite sequence x := {x1, x2, · · · }

with xi ∈ R, is said to be in `2 if
∑∞
i=1 x

T
i xi < ∞.

Furthermore, we use the symbol ? in LMIs to denote entries
that follow from symmetry. For two integers k1 < k2, we
denote I[k1, k2] = {k1, k1 + 1, · · · , k2}.

II. PROBLEM STATEMENT

Consider a discrete-time switched linear system, whose
dynamics can be described by

x(k + 1) = Aσx(k) +Bσu(k),

y(k) = Cσx(k) +Dσu(k),
(1)

where x ∈ Rn is the state, u ∈ Rnu is the control input,
and y ∈ Rny is the system output. σ is a piecewise constant
function of time, called the switching signal, which takes its
value in the finite set I[1, Np] with Np > 1 denoting the
number of subsystems. In this paper, we are interested in a
class of switching signals that satisfy an average dwell time
(ADT) constraint. Specifically, according to [11], a switching
signal σ is said to have average dwell time τa if there exist
numbers N0, τa > 0 such that

∀K ≥ k ≥ 0 : Nσ(K, k) ≤ N0 +
K − k
τa

,

where Nσ(K, k) is the number of switches occurring
in the time interval [k,K). For each σ ∈ I[1, Np],
(Aσ, Bσ, Cσ, Dσ) are constant matrices with compatible
dimensions. We assume that the pair (Aσ, Bσ) is stabilizable
for all σ ∈ I[1, N ].

Our objective is to synthesize a state-feedback controller
for the switched linear system (1) under the ADT switch-
ing logic, such that the switching model predictive con-
trol (sMPC) problem can be solved with computationally-
efficient synthesis conditions.

Similar to the traditional MPC problem (e.g., [19], [27]),
the sMPC problem under consideration consists of a step-
by-step optimization, where in each step new measurements
will be obtained and a pre-specified cost function depending
on the predicted future plant states will be minimized. More
specific, let x(k + i|k), y(k + i|k) and u(k + i|k) be the
predicted state, output, and control action, respectively, for
step k + i based on the measurement at step k. Particularly,
i = 0 implies that x(k|k) = x(k), y(k|k) = y(k), and
u(k|k) = u(k). The cost function to be minimized at step k
is specified as

J∞(k) :=

∞∑
i=0

{
xT (k + i|k)Qσ(k)x(k + i|k)

+ uT (k + i|k)Rσ(k)u(k + i|k)
}
,

(2)



where Qσ ∈ Sn (Qσ ≥ 0) and Rσ ∈ Snu (Rσ ≥ 0) for
all σ ∈ I[1, Np] are tunable parameters. Then, the sMPC
problem can be formally formulated as follows.

Definition 1: Given the switched linear plant (1) with an
ADT switching signal σ, and state measurement at sampling
time k as x(k), define the p-tuple of integers {h1, · · · , hp}
such that

∑p
ξ=1 hξ = nu and the q-tuple of integers

{m1, · · · ,mq} such that
∑q
ζ=1mζ = ny , and partition the

input and output conformably. The sMPC problem at step k
is feasible if the following constrained optimization problem:

min
u(k+i|k),i=0,1,···

J∞(k)

s.t. max
i≥0
‖uξ(k + i|k)‖ ≤ uξ,max, ∀ξ ∈ I[1, p]

max
i≥0
‖yζ(k + i|k)‖ ≤ yζ,max, ∀ζ ∈ I[1, q].

(3)

is solvable for all σ ∈ I[1, Np] satisfying the ADT switching
constraint.
Note that the sMPC problem considers constraints on both
system input and output in terms of component-wise peak
bounds and Euclidean norm bounds over infinite time hori-
zon, as well as the switching signals in terms of ADT.

III. MAIN RESULTS

In this section, to solve the above sMPC problem,
a state-feedback switching control strategy with a novel
computationally-efficient synthesis procedure based on the
LMI framework will be proposed, followed by rigorous
analysis on switching stability of the resulting switched
closed-loop system.

Specifically, we seek to synthesize a switching state-
feedback control law for (1) at each step k in the form of

u(k + i|k) = Fσ(k)x(k + i|k), (4)

which will minimize the cost function (2) for all i = 0, 1, · · · .
The resulting switched closed-loop system can be formulated
as

x(k + i+ 1|k) = (Aσ +BσFσ)x(k + i|k),
y(k + i|k) = (Cσ +DσFσ)x(k + i|k).

(5)

With (5), we have the following theorem to summarize the
associated LMI synthesis conditions.

Theorem 1: Consider the switched linear system consist-
ing of the plant (1) and the controller (4). Given constant
scalars uξ,max (ξ ∈ I[1, p]), yζ,max (ζ ∈ I[1, q]), and µ ≥ 1,
0 < α < 1, if there exist matrices Xσ ∈ Sn+, Yσ ∈ Rnu×n,

and a positive scalar γ > 0, such that
(1− α)Xσ(k) ? ? ?

Aσ(k)Xσ(k) +Bσ(k)Yσ(k) Xσ(k) ? ?

Q
1/2
σ(k)Xσ(k) 0 γ ?

R
1/2
σ(k)Yσ(k) 0 0 γ

 > 0, (6)

[
1 ?

x(k) Xσ(k)

]
≥ 0, (7)[

u2ξ,maxI ?

Y Tσ(k),ξ Xσ(k)

]
≥ 0, (8)[

y2ζ,maxXσ(k) ?

Cσ(k),ζXσ(k) +Dσ(k),ζYσ(k) I

]
≥ 0, (9)

[
µVσ(k−1)(x(k − 1)) ?

x(k) Xσ(k)

]
≥ 0,

only when switch
occurs at time k,

i.e., σ(k − 1) 6= σ(k).
(10)

where Vσ(k−1)(x(k − 1)) = xT (k − 1)X−1σ(k−1)x(k − 1),
the rows of Yσ , and the rows of Cσ , Dσ are partitioned
conformably to the p-tuple and q-tuple, respectively. Then
the sMPC problem as defined in Definition 1 is solvable
by a stabilizing switching state-feedback controller (4) with
Fσ = YσX

−1
σ for any switching signal σ satisfying the ADT

τa > τ∗a = − ln(µ)
ln(1−α) .

Proof: Consider the switched closed-loop system (5)
with ADT switching, we follow the ideas from [28] to
define a switching Lyapunov function as Vσ(x) := xTX−1σ x.
Then, from condition (6), we can obtain the following by
congruence transformation with matrix diag{X−1σ(k), I, I, I}
and in light of Fσ = YσX

−1
σ :

(1− α)X−1σ(k) ? ? ?

Aσ(k) +Bσ(k)Fσ(k) Xσ(k) ? ?

Q
1/2
σ(k) 0 γ ?

R
1/2
σ(k)Fσ(k) 0 0 γ

 > 0.

By Schur complement, we can further obtain

(1− α)X−1σ(k) −
1

γ
(Qσ(k) + FTσ(k)Rσ(k)Fσ(k))

− (Aσ(k) +Bσ(k)Fσ(k))
TX−1σ(k)

× (Aσ(k) +Bσ(k)Fσ(k)) > 0.

(11)

Pre-multiplying xT (k + i|k) and post-multiplying its trans-
pose on both sides of the above equation, and using the facts
that Qσ(k), Rσ(k) ≥ 0, it yields

(1− α)xT (k + i|k)X−1σ x(k + i|k)
> xT (k + i+ 1|k)Xσx(k + i+ 1|k), ∀i ≥ 0.

(12)

Since 0 < α < 1, the above inequality implies that when
no switching occurs at time step k, the synthesized sequence
{xT (k+ i|k)X−1σ x(k+ i|k)}∞i=0 is exponentially decreasing.
We further examine the case when switching occurs at
time step k by examining condition (10), which by Schur
complement yields

µxT (k − 1)X−1σ(k−1)x(k − 1) ≥ xT (k)X−1σ(k)x(k). (13)



Conditions (12) and (13) can be rewritten as follows in terms
of the Lyapunov function, respectively.

Vσ(x(k + i+ 1|k))− Vσ(x(k + i|k)) < −αVσ(x(k + i|k)),

Vσ(k) ≤ µVσ(k−1),
when switch occurs at k,

i.e., σ(k) 6= σ(k − 1)
(14)

According to [28], [29], condition (14) indicates that the
sequence {xT (k+ i|k)X−1σ x(k+ i|k)}∞i=0 is asymptotically
decreasing to 0 for any switching signal σ satisfying the ADT
constraint τa > τ∗a = − ln(µ)

ln(1−α) , thus the switched system is
asymptotically stabilized.

We further examine the sMPC performance. Multiplying
(11) from the left by xT (k+ i|k) and its transpose from the
right side, we can get

1

γ
(xT (k + i|k)Qσx(k + i|k) + uT (k + i|k)Rσu(k + i|k))

< (1− α)Vσ(x(k + i|k))− Vσ(x(k + i+ 1|k))
< Vσ(x(k + i|k))− Vσ(x(k + i+ 1|k)),

(15)

Summing the above results from i = 0 to i =∞, we have

J∞(k) =

∞∑
i=0

{
xT (k + i|k)Qσx(k + i|k)

+ uT (k + i|k)Rσu(k + i|k)
}

< γVσ(x(k))− Vσ(x(k +∞|k))
≤ γVσ(x(k))
≤ γ,

(16)

where the last inequality can be obtained from condi-
tion (7) which through Schur complement yields 1 −
xT (k)X−1σ x(k) = 1− Vσ(x(k)) ≥ 0.

By congruence transformation, condition (9) is equivalent
to [

y2ζ,maxX
−1
σ ?

Cσ,ζ +Dσ,ζFσ I

]
≥ 0.

Then, for each partitioned output, we have

y2ζ,maxX
−1
σ − (Cσ,ζ +Dσ,ζFσ)

T (Cσ,ζ +Dσ,ζFσ) ≥ 0,

which together with condition (7) indicates that for any i ≥
0,

‖yζ(k + i|k)‖2 = ‖(Cσ,ζ +Dσ,ζFσ)x(k + i|k)‖2 ≤ y2ζ,max.

Similarly for each partitioned input, we have

max
i≥0
‖uξ(k + i|k)‖2 = max

i≥0
‖Yσ,ξX−1σ x(k + i|k)‖2

≤ max
vTX−1

σ v≤1
‖Yσ,ξX−1σ v‖2

≤ λmax(Yσ,ξX−1σ Y Tσ,ξ)

≤ u2ξ,max,

where λmax(M) denotes the largest eigenvalue of M , the
last inequality is obtained under condition (8). This ends the
proof.

Remark 1: Note that condition (10) needs to be included
in online sMPC synthesis only when the system is experi-
encing a switching. As seen from the proof, this condition
allows the associated Lyapunov function to be discontinuous
and exhibit certain jumps (with an upper limit) at each
switching time instant while still ensuring switching stability
under the ADT constraint, the idea of which is inherited
from the traditional ADT switching stability theory [1].
Solving such a condition online requires to not only measure
the instantaneous plant state information but also memorize
one-step-past state information for calculating the value of
Vσ(k−1)(x(k − 1)).

Remark 2: From the above proof and the definition of (2),
the sMPC performance requirement (3) can be optimized by
solving the following LMI optimization problem:

min
Xσ,Yσ

γ

s.t. (6)–(10).
(17)

Theorem 1 provides a set of LMI conditions that enable
online synthesis of the switching state-feedback controller
in a computationally-efficient way, and also ensure switching
stability if the same state-feedback controller is implemented
after step k. Since the optimization problem will be solved
for each time step, the stability of the overall switched
closed-loop system over the entire horizon needs to be further
examined. To this end, the following theorem is further
established.

Theorem 2: The feasible switching state-feedback control
law provided by Theorem 1 stabilizes the switched linear
system (1) asymptotically for any switching signal satisfying
the ADT τa > τ∗a = − ln(µ)

ln(1−α) .
Proof: For clarity of presentation, the optimal solution

of LMI conditions (6)–(10) at time step k will be denoted
by Xσ,k, Yσ,k, etc. Then, we consider the same switching
Lyapunov function as defined in the proof of Theorem 1 for
the switched closed-loop system (5). From conditions (6) and
(7), we can obtain

xT (k + 1|k)X−1σ,kx(k + 1|k) < (1− α)xT (k)X−1σ,kx(k) ≤ 1.

(18)

This indicates that when no switching occurs, the optimal
solution synthesized at time step k is also a feasible solu-
tion of conditions (6)–(9) for all time steps afterwards. In
addition, because Xσ,k+1 is the optimal solution but Xσ,k is
only a feasible solution at step k + 1, it implies that

xT (k + 1)X−1σ,k+1x(k + 1) ≤ xT (k + 1)X−1σ,kx(k + 1),

which together with (18) yields

Vσ,k+1(x(k + 1)) < (1− α)Vσ,k(x(k)), (19)

for all k ≥ 0 when no switching occurs. When switching
occurs, say at time step k, the following results can be ob-
tained from condition (10) by following the same procedure
of deriving (13) in the proof of Theorem 1:

Vσ,k(x(k)) ≤ µVσ,k−1(x(k − 1)). (20)



Thus, according to [28], [29], (19) and (20) guarantee that
Vσ(k)(x(k)) is exponentially converging to zero for any
switching signal σ satisfying the ADT constraint τa > τ∗a =

− ln(µ)
ln(1−α) , and in turns limk→∞ x(k) = 0 given that Xσ is

positive definite.

IV. EXAMPLE

In this section, a numerical example will be used to
illustrate the design procedure and control performance of the
proposed sMPC approach. Consider a discrete-time switched
linear system in the form of (1) with the system matrices
given by

Aσ =

[
1 0.2σ

−0.1σ −σ

]
, Bσ =

[
0
σ

]
,

Cσ =
[
1 0

]
, Dσ = 0, σ = 1, 2.

We assume that the switched system is subject to the
following input and output constraints:

‖u(k)‖ ≤ 1, ‖y(k)‖ ≤ 2.5.

For online LMI-based sMPC synthesis, we select the ADT
coefficients µ = 2 and α = 0.05, which leads to τ∗a =

− ln(µ)
ln(1−α) = 13.5134. With initial conditions x(0) =

[−2, 2.5], we implement the proposed sMPC law to obtain
the system responses as plotted in Fig. 1. Specifically, it is
shown in Fig. 1(a) that the overall switched system is indeed
stabilized with both states converging to zero asymptotically
despite the existence of switching behaviors. This is guar-
anteed by the fact that the switching signal (as shown in
Fig. 1(c)) satisfies the ADT constraint, i.e., τ∗a <

150
10 = 15

where 10 is the number of switches occurred in total over
the operation time [0, 150]. The control input signal shown
in Fig. 1(b) also meets the bounded constraint. Fig. 1(d)
shows the real-time profile of γ obtained via online LMI-
based optimization.

V. CONCLUSIONS

In this paper, a new switching state-feedback control
scheme has been proposed to address the problem of model
predictive control (MPC) for an important class of switched
linear systems with average dwell time (ADT). With this
scheme, the MPC design considering both input and output
constraints was formulated as an online constrained opti-
mization problem, and the associated control synthesis condi-
tions were derived and fully cast as linear matrix inequalities,
which can be solved efficiently online via convex optimiza-
tion. Rigorous analysis has been conducted to demonstrate
stability of the overall switching control system. A numerical
example has also been used to show effectiveness of the
proposed theoretical results.
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