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Abstract—Creating controllers for quadrupedal robot loco-
motion on platforms that exhibit dynamic behaviors, which
are herein termed as dynamic platforms, poses a challenging
problem because of the complexity of the associated hybrid,
time-varying robot dynamics. Towards tackling this challenge,
this study focuses on controller design for quadrupedal robot
locomotion on dynamic rigid platforms, which are floating-base
platforms with a rigid surface. The main contribution of the
study is the derivation of a control approach that realizes stable
quadrupedal robot locomotion on dynamic rigid platforms of
known motions through the provable stabilization of the hybrid,
time-varying robot control system. The control approach is
synthesized based on the formulation of the robot model as a
hybrid, time-varying system and the analysis of the closed-loop
control system through the construction of multiple Lyapunov
functions. Simulation and experimental results confirm the
effectiveness of the proposed control approach in guaranteeing
the stability and robustness of quadrupedal robot walking on
dynamic rigid platforms.

I. INTRODUCTION

Quadrupedal robots have the potential to assist human
operators in critical real-world applications such as emer-
gency response and disaster relief [1]], [[2]. These applications
may demand the capabilities of a quadrupedal robot in
reliably traversing platforms that exhibit dynamic behaviors.
Real-world examples of dynamic platforms include unstable
buildings on disaster sites, vessels, and aircraft.

Controller design for quadrupedal robot locomotion on
dynamic platforms poses a challenging problem due to the
high complexity of the associated robot dynamics. Walking
robot dynamics are inherently hybrid involving complex
discrete behaviors [3]-[5]] (i.e., uncontrolled sudden jumps
in a robot’s joint velocities when the swing foot strikes the
platform surface). Furthermore, the dynamics may become
time-varying when the robot moves on dynamic platforms.

A. Related Work

Previous research on control design for legged robot
locomotion has been mainly focused on static platforms,
including flat and uneven terrains [6]—[12]. However, these
approaches cannot reliably sustain stable legged locomotion
on dynamic platforms, as demonstrated by the simulation
results in this paper, because such approaches do not explic-
itly account for the motion of the stance feet induced by the
movement of the platform surface.
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Control design for legged locomotion on dynamic plat-
forms is an active research topic. Recently, locomotion
on granular terrains, such as sand and gravels, has been
increasingly intensively studied [13], [14]]. Granular terrains
are considered as dynamic platforms because the contact
surface between a robot’s stance foot and the terrain is
subject to constant, and often significant, movements. Based
on the previous modeling result, control approaches have
been derived to enable impulsive robot hopping on granular
terrains [15]]. A stability criterion for planar bipedal robot
walking on a granular terrain has been developed based on a
general model of the leg-terrain interaction force [[16], which
can be used to guide the controller design for locomotion
stabilization on granular terrains.

Besides granular terrains, floating-base platforms with a
rigid surface, which are referred to as dynamic rigid plat-
forms in this study, form another class of dynamic platforms
that commonly exist in real-world environments, such as
airplanes, vessels, and ground vehicles. Recently, control
design for legged locomotion over dynamic rigid platforms
has been increasingly researched [17]], [18]. However, these
control approaches only address the robot’s continuous-
phase dynamics but not the discrete foot-landing behaviors.
The resulting model discrepancy may deteriorate the control
performance, particularly when the landing impacts are
significant during dynamic walking [/7].

In addition to the hybrid nature, robot dynamics associated
with locomotion over dynamic rigid platforms are also time-
varying, due to the time-varying movement of the foot-
platform contact points induced by the platform motion. To
date, control design that explicitly addresses such hybrid,
time-varying behaviors remains unsolved and underexplored.

Motivated by the current research needs, the objective of
this study is to derive a control approach that provably real-
izes stable quadrupedal robot locomotion on dynamic rigid
platforms by explicitly addressing the associated hybrid,
time-varying robot dynamics. We have previously introduced
a model-based controller design for hybrid systems with
state-triggered jumps that include legged robots walking
on static platforms [19], [20]. The controller explicitly
addresses the robot’s hybrid dynamics associated with static-
terrain walking. Yet, the previous control approach is not
directly applicable to legged locomotion on a dynamic plat-
form, because it does not consider the time-varying global
movement of the platform-robot contact points induced by
the platform motion.



B. Contributions

The main contribution of this study is the derivation of a
control approach that provably achieves stable quadrupedal
robot locomotion on dynamic rigid platforms by explic-
itly addressing the associated hybrid, time-varying walking
dynamics. As the initial step of our ongoing research on
dynamic-platform locomotion, this study focuses on tackling
the controller design challenge and assumes that the platform
motion has been sensed or estimated.

The specific contributions of this study include:

a) Formulating the model of a quadrupedal robot that
walks on a dynamic rigid surface as a hybrid, time-
varying system with state-triggered jumps.

b) Extending our previous model-based control approach
for static-terrain walking with the proposed system
model to provably stabilize the hybrid, time-varying
control system for realizing stable locomotion on dy-
namic rigid platforms.

¢) Demonstrating through simulations that control laws
synthesized for static-terrain walking may not guarantee
stable locomotion on dynamic platforms.

d) Validating the effectiveness of the proposed control
approach in guaranteeing the stability and robust-
ness of locomotion on dynamic rigid platforms, both
through simulations and experimentally on a physical
quadrupedal robot.

The results of this study have not been previously re-
ported. This paper is structured as follows. Section [[I] intro-
duces the proposed full-order modeling of the hybrid, time-
varying dynamics of a quadrupedal robot that walks on a
dynamic platform, which serves as a basis of the proposed
controller design. In Section a continuous control law is
proposed to provably stabilize the closed-loop control system
during continuous phases. The proposed Lyapunov-based
stability analysis of the overall hybrid, time-varying system
is introduced in Section Section [V] presents the proposed
model-based trajectory generation method. Simulation and
experimental validation results are reported in Section
Discussions are given in Section

II. HYBRID TIME-VARYING WALKING DYNAMICS

This section introduces the modeling of the hybrid, time-
varying dynamics of a quadrupedal robot that walks on a
dynamic rigid platform. The model serves as a basis of the
proposed controller design.

Quadrupedal robot walking naturally involves hybrid dy-
namic behaviors. A complete quadrupedal walking cycle can
be decomposed into four continuous phases connected by
four discrete events, as illustrated in Fig. [I] When the swing
leg moves in the air, the robot dynamics are continuous.
When the swing leg strikes the walking surface, a foot-
landing impact occurs and causes a sudden jump in the
robot’s joint velocities [7], which is sometimes referred to
as a state-triggered jump.

~

~

s

e

Phase 1: front left

Phase 2: rear right

\_ leg swings Y, \_ leg swings Y,

(Q
Phase 4: rear left Phase 3: front right
\_ leg swings Y, \_ leg swings )

~

A

Fig. 1. Illustration of a complete quadrupedal walking cycle. Swing and
stance legs are marked with arrows and circles, respectively.

Let q be the generalized coordinates of the robot, which
is defined as:

a:=[pl, YL, a1, @2, v @n] €0, (1)
where pj, := [x5,Vp,25]" is the vector of a robot’s floating-
base position with respect to the world coordinate frame,
Y, := [0p, 05, Wp)! is the vector of the floating-base roll,
pitch, and yaw angles with respect to the world coordinate
frame, [q1 q2 .. qn]T is the vector of the robot’s joint
angles, and Q C R"*® is the configuration space of the robot.

Let u € U C R™ be a vector of the robot’s joint torques,
where U is the set of admissible joint torques.

The degree of underactuation (DOU) of a walking
quadrupedal robot can be computed as [21]:

DOU =n+6 — (ny —ne) —m, 2)

where n.; is the number of all holonomic constraints and n;
is the number of internal constraints.

During three-dimensional (3-D) quadrupedal walking,
ne =9 and n.; = 3. Suppose that all of the robot’s joints are
independently actuated. Then, DOU = 0. Thus, the robot is
fully actuated, and all of its degrees of freedom (DOFs) can
be directly commanded. The DOF can be calculated as:

DOF =n+46 —ng. €))

The class of dynamic platforms considered in this study
are dynamic platforms with a rigid surface, such as vessels,
airplanes, and ground vehicles. As platform dynamics may
be unknown or difficult to estimate during real-world robot
operations, the motion of a platform instead of its dynamics
is considered in the derivation of the robot’s dynamic model.
Modeling of the robot dynamics during a continuous
phase and under a foot-landing impact is introduced next
along with a mathematical definition of the impact event.

A. Continuous-Phase Dynamics

During a continuous phase of quadrupedal robot walking,
three of the four legs contact the platform surface at their
far ends (i.e., stance feet). Let p.(q) € R"™ be the position
vector of the three stance feet in the world coordinate frame.



When the stance feet do not slip on the platform surface, the
associated holonomic constraints can be expressed as:

ch+jcq:Ap(t)a (4)

where J.(q) := %‘;"‘ (q). Note that the expressions of J. dur-

ing different continuous phases within a complete walking
cycle are different because the stance feet are different. The
variable A, € R is the vector of the platform accelerations
at the contact points, which is explicitly time-dependent
when the platform is dynamic.

With Lagrange’s method, the continuous-phase dynamics
of a quadrupedal robot that walks on a dynamic platform
can be obtained as:

M(q)id+C(q,q) :=Bu+JF,, (5)

where M(q) : Q — R0X("+6) s the inertia matrix,
C(q,q) : TQ — RO0*1 represents the sum of Coriolis,
centrifugal, and gravitational terms, B € R(OH6)xm ¢ the
actuator selection matrix, and F, € R" is the generalized
external force induced by the contact between the robot’s
stance feet and the platform surface. Here, 7 Q is the tangent
space of Q.
From Egs. (@) and (), F. can be obtained as:

Fo=—JM IO IM ' Bu—-C)+J.q—A,)). (6)
Substituting Eq. (6) into Eq. (5) yields:

M(q)i+C(7,q,q) = B(q)u, (7

where C:=C —JI(JM D) 1JMIC-J.q+A,())

and B:=B—JI(J M 1J)~"1(J.M~'B). Note that C is
explicitly time-dependent during dynamic-platform walking

because A, is explicitly time-dependent.

B. Switching Surface

When a swing foot strikes the platform surface, an impact
occurs causing sudden jumps in the generalized velocities q.
Thus, the foot-landing event connects a discrete impact and
a continuous phase, which can be mathematically defined as
the following switching surface S:

Sy(t,q,q) :={(r,q,q) R x TQ: dy,(r,q) =0,
dSW([7q’q) < 0}7

where dy, : RT x Q@ — R can be chosen as the shortest
distance between the swing foot and the platform surface.

(®)

C. Discrete Impact Dynamics

Upon a swing-foot landing event, an impact occurs be-
tween the foot and the platform surface. Due to the in-
stantaneous nature of the impact, the value of q remains
continuous under an impact. However, the value of ¢ jumps.

Under an impulsive impact, the continuous dynamics in
Eq. () and the holonomic constraint in Eq. (@) become:

M(q* —q7) =J78F. and J.q" =V}, 9)

where x~ and " represent the values of * right before and
after the impact, respectively, 0F, is the impulsive impact

force, and V,, is the vector of the platform velocities at the
three contact points. The value of V, also jumps because
the platform velocities at the new foot-contact points right
after the impact are not necessarily the same as the platform
velocities at the previous foot-contact points right before the

impact.
Rearranging the above equation gives:
. ~1 .
q"| _[M(q) -J(a)] [M@d (10)
5FC JZ“ (q> Oncl XNy V;'?_ ’

where 0y, xn, 1S @ ng X ne zero matrix. Equation (10) can
then be used to obtain the jump in the generalized velocities
as:

4" :=R(t,q)q . (11)

where R : Rt x Q — R(110)x(716) Note that the expression
of R is explicitly time-dependent because R contains the
explicitly time-dependent function V. Also, the expressions
of R during different continuous phases within a complete
walking cycle are different because the expressions of the
corresponding Jacobian matrices J. are different.

The model derived in this section clearly shows that the
dynamics of a robot that walks on a dynamic platform are
hybrid, time-varying, and involve state-triggered jumps that
cannot be directly controlled due to their infinitesimally short
periods of duration.

III. MODEL-BASED FEEDBACK CONTROL DURING
CONTINUOUS PHASES

This section introduces a continuous-phase control law
that provably stabilizes continuous-phase quadrupedal walk-
ing over dynamic rigid platforms. To guarantee that the con-
trol law also provably stabilizes the overall hybrid walking
process, a Lyapunov-based stability analysis is performed as
explained in Section

A. Continuous Model-based Control

In this study, stable walking over dynamic platforms is
achieved through the provable stabilization of the hybrid,
time-varying control system.

Let h(q) and hy(z,q) be the control variables and their
reference trajectories, respectively. Suppose that all of the
robot’s joints are independently actuated, i.e., m = n, and that
h,(,q) is smooth in # within each continuous domain. Then,
by Eq. (@), the robot is fully actuated. Thus, the number of
control variables can be chosen as the same as the robot’s
DOF. From Eq. (3), we have h € R"+6~ ",

The trajectory tracking error can be defined as:

&n(t,q) :=h(q) —hy(t,q). (12)

The control objective is then: to drive ||&,]| to a bounded
small number at the steady state for the overall hybrid
closed-loop system.

Since the discrete impact dynamics cannot be directly con-
trolled due to their infinitesimally short periods of duration,
we choose to derive a continuous control law to directly
stabilize the continuous-phase dynamics.
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Fig. 2. A block diagram of the proposed continuous-phase control law.

The proposed continuous control law is derived based
on the full-order model of the continuous-phase walking
dynamics as derived in Section II-A. A block diagram of
the proposed control law is shown in Fig. [

To simplify the controller design, input-output lineariza-
tion [22] is utilized to transform the continuous-phase non-
linear dynamics into a linear system.

With the trajectory trackmg error €, chosen as the output

function y, we have y = q+ ah and § = 7(38,1q)q+
2
%‘Z’Q+%. From Egq. ., we have 4 = M~ (Bu—C).

Substituting the expression of ¢ into the expression of ¥,
- - 2
we have § = (88’1 qQq+ a'”‘M (Bu—C)+ %.

Thus, by choosmg a contlnuous control law as

0 —1b d d 02
= (GEM ') (GEMT I C— (2 a)a— 53t +v), (13)

where (-)* denotes the pseudoinverse of a matrix (-), we
obtain the linearized output function dynamics as y = v.
Define v as a proportional-derivative (PD) control law:

v=-K,y-Kgy, (14)

where K, and K; are PD gains. Then, the closed-loop
dynamics during continuous phases are y = —K,y — Ky.

By properly assigning values for the PD gains, the
proposed input-output linearizing control law can provably
guarantee the stability of the closed-loop control system
during continuous phases.

However, due to the presence of the uncontrolled impact
dynamics, the proposed control law cannot automatically
guarantee the provable stabilization of the overall hybrid,
time-varying walking dynamics. To derive sufficient condi-
tions under which the proposed control law can provably
solve the stabilization problem, the stability of the closed-
loop system is analyzed in Section

Before introducing the stability analysis, we first introduce
the construction of impact invariance that can be used to
satisfy a necessary condition for asymptotic stabilization.

B. Impact Invariance Construction

If y* =0and y© =0 hold when y~ =0 and y~ = 0 under
an impact, then y and y are called “impact invariant” [7].
The impact invariance condition essentially requires that the
reference trajectory should respect the impact dynamics. It is
a necessary condition for achieving asymptotic stabilization
of hybrid systems with state-triggered jumps that include the
robot dynamics as derived in Section II.

To meet the impact invariance condition, we have pre-
viously derived a method of constructing impact invari-
ance [[19] for the design of trajectory tracking controllers for
legged locomotion on static platforms. The method translates
the condition into equality constraints and enforces the
constraints through trajectory generation. In this study, we
extend the previous method from the controller design for
legged locomotion on static platforms to dynamic platforms.

Consider a complete gait cycle of quadrupedal robot
walking. Let q = qy(¢) € R"*° be the solution to the equa-
tion h(q) —h,(¢,q) = 0. By definition, to meet the impact
invariance condition, the following equations should hold:

Qd(71;4)§ 15)
4a () = R(%i, (7)) da (T ,);
4a(Ty) = R(Tk4,94(7 4))a (T 4)-

Here, i € {1,2 3} and 0 < Tpo < T < T < T3 < Tide
The variables ’Ck o and Ty 4 are the initial and the final instants
of the complete Kt gait cycle (k € {1,2,3,...}). The variable
T (i € {1,2,3}) is the planned instant of a foot-landing
event between t = ’L’k and 1 =17,

Equation (T3) always holds due to the continuity of the
generalized coordinates q under an impact. Thus, to con-
struct impact invariance, only Eq. (I6) needs to be enforced
through trajectory generation as explained in Section V.

q(!(lel) Qd(fk l) Qd(Tk ())

(16)

IV. CLOSED-LOOP STABILITY ANALYSIS

This section presents the stability analysis of the closed-
loop hybrid, time-varying system under the proposed contin-
uous control law. The analysis result is a set of sufficient con-
ditions that the proposed controller should satisfy in order
to provably stabilize the hybrid closed-loop control system
for achieving stable walking on dynamic rigid platforms.

Define x := [y’ y7]7. Under the proposed continuous-
phase control law in Egs. and (T4), the closed-loop
output function dynamics can be compactly expressed as:

X = Ax, if (¢,x7) ¢ S(¢,x); (17)
x"=A(t,x), if (¢,x7) € 8(¢,x),

where A = 0 I 0 and I are zero and identit
T 1K, -K4|’ y

matrices with appropriate dimensions, and the expressions
of S and A can be obtained from the switching surface S,
in Eq. (8], the reset map R in Eq. (1)), and the trajectory
tracking error €, in Eq. (I2). For notational simplicity, one
continuous phase and the subsequent discrete jump of a
complete walking cycle are given in Eq. (I7).

The continuous-phase dynamics can be provably stabi-
lized by properly selecting the PD gains such that A is
Hurwitz. However, the instantaneous, uncontrolled impact
dynamics cannot be directly regulated. Hence, we will utilize
the construction of multiple Lyapunov functions [23]] to
derive sufficient conditions for the overall hybrid, time-
varying closed-loop system.

The proposed stability analysis is an extension of our pre-
vious work on trajectory tracking control of static-platform



locomotion [19]]. The previous analysis cannot be directly
performed on the hybrid, time-varying system in Eq.
because it does not consider the time dependence of the
system dynamics induced by the platform motion. To this
end, this study extends the previous analysis with the consid-
eration of platform motions as summarized in the following
assumption:

(A1) The platform acceleration at the foot-contact points,
A,(t), is differentiable in ¢ within a continuous phase.

The assumption (Al) is valid for real-world dynamic rigid
platforms such as vessels moving in regular waves [24].

Before explaining the proposed stability analysis, several
related variables and concepts are first introduced.

Let 7, and 7 be the planned and the actual k' impact tim-
ings, respectively. The variables ¢, and t,:r denote the time
instants right before and after the k”* impact, respectively.
For notational simplicity, (#,_,) and (z;" ) are denoted as
*|,_; and %[, respectively, for the rest of the paper.

A fictitious system is introduced and defined as X := AX
such that under the initial condition X(#y) = X, a solution of
the system is given by X(7;19,X¢), V ¢ > fy. Then, the solution
to the actual continuous-phase system between the (k— 1)
and the k™" impacts satisfies:

x(t) =x(r:00 x| ), Vi€ (-1, ). (18)

Theorem (Closed-Loop Stability Conditions): The closed-
loop control system in Eq. is locally asymptotically
stable if the following two conditions are met:

(C1) Reference trajectories are planned with the impact in-
variance condition met to respect the impact dynamics.
(C2) The PD gains are chosen such that A is Hurwitz and
that the state x converges to zero sufficiently fast during
continuous phases. ]

Proof: By the theory of multiple Lyapunov functions [23]],
a hybrid system is asymptotically stable if there exists a
Lyapunov function candidate and a positive number r such
that for all x|j € B,(0) := {x: |x|| < r}, the following
two conditions hold: 1) the Lyapunov function candidate
asymptotically decreases during each continuous phase and
2) its values at the initial instants of all continuous phases
form a strictly decreasing sequence.

We begin the stability analysis with continuous phases.

Suppose that the PD gains are chosen such that the
matrix A is Hurwitz. Then, there exists a Lyapunov function
candidate V(x) and positive numbers ¢y, ¢, and ¢3 such that

c1llx|* < V(x) < ca|x||* and V(x) < —e3flx|* (19
hold for all x during continuous phases [22]. Then,
Vif<e 2y ke{12,.). (0

Next, the evolution of the Lyapunov function candidate
V across a state-triggered jump is analyzed. By the triangle
inequality principle, the norm of the state x right after the

k" impact can be approximated as:
(%[ 1= 1A X[ <I|AGx[) — Al x]) |
+ AT X)) — AT, 0)| + IIA(T&(BII-

By the condition (C1), we have A(7,0) =0.

Under the assumption (Al), the platform velocity at the
foot-contact points, V,(t), is continuously differentiable in
t. Then, Eq. (TT)) and the definition of x indicate that A(z,x)
is locally continuously differentiable in ¢ and x. Thus, there
exist Lipschitz constants, La, and Ly, and a positive number
ra such that for any x| € B, (0), we have:

1A X1 ) = AT X[ < Lol — ol (22)
1A X[ ) = Al 0) ]| < Lo [1X[c |- (23)

Since the continuous-phase dynamics of the hybrid system
in Eq. is defined by a function (i.e., Ax) that is
continuously differentiable in x, there exists a Lipschitz
constant L, and a positive number r; such that the difference

between the actual and the planned k" impact timings can
be approximated as [25]:

o = Tell < Lel[R (e X[ )l (24)
for all x|§ € B, (0).
Combining Eqgs. (22) and (24) yields
1Atk ) = Al X[ < La, Lell% (2t %[ )- (25)
From Egs. ZI)-(23), we have
1% < L Lel[R(a 6 20 )l La 13l (26)

for any xj € B(0), where r:=min(ra,r).
From Egs. and (20), we have

Il < /2 =0 @)

&)< /2 B L es)

From Eqs. (26)-28), we have [x|;| < \/g(LA[L,—i-
Lpe 5T m O g

By the condition (C2), the PD gains can be assigned to
allow a sufficiently high convergence rate. Then, suppose
By,
that the PD gains are chosen such that e 22 S
holds for some positive number €. Then, for any x| € B,(0),
we have [|x||| < ofx|; || with

c —%A‘Ek
0=,/ E(LA[L, —‘r—LAX(l +8))€ €2

and A1 := 1, —t;_;. Therefore, V| <QV|k 5 Q= 82,‘:2.
It the PD gains are chosen such that A is Hurwitz and

that 62;17 <1 holds (ie., Q < 1), then V|, V||, V|7 ...

form a strictly decreasing sequence. By the definition of

o, if the continuous-phase convergence rate g can be

chosen sufficiently large, then ¢ < % holds (i.e., CZC‘I’Z <1

is satisfied). Then, by the stability theory based on the
construction of multiple Lyapunov functions, the closed-




loop hybrid system is locally asymptotically stable for any
x|g € B(0). |

V. REFERENCE TRAJECTORY GENERATION

This section explains the proposed trajectory generation
method for planning the desired quadrupedal walking mo-
tions on dynamic rigid platforms.

A. Formulation of a Model-based Optimization Problem

In this study, the problem of trajectory generation is
formulated as an optimization problem. The solution of the
optimization problem is the reference trajectories, hy, which
represent kinematically and dynamically feasible walking
motions over dynamic rigid platforms.

The formulation of the optimization problem begins with
properly defining h;. Without loss of generality, h, is
defined based on walking pattern encoding [7]. A walking
pattern represents the relative evolution of configuration-
based variables with respect to a phase variable that presents
how far or how long a robot has walked within a gait
cycle. Let 6 be the phase variable. Let 6% and 6~ be
the planned values of 6 at the beginning and the end of a
complete gait cycle, respectively. Then, the normalized phase
variable s is defined as s(0) := 99,__6‘;. The desired walking
pattern of the control variable h can be encoded by s(0)
as h(q) —hy(s(8)) = 0. The N""-order Bézier curves can
be used to define hy as hy(s) := YV, ai%si(l —s)N=i.
Here, a; € R"™0~7« are the coefficients of the Bézier curves,
and are in turn used as optimization variables.

The cost function of the optimization problem can be
chosen as the energy consumed during walking [7].

Necessary constraints are considered to ensure that the
optimized reference trajectories would correspond to kine-
matically and dynamically feasible quadrupedal locomotion
over dynamic rigid platforms. These constraints include:
1) switching surfaces as derived in Section II-B; 2) the
impact invariance condition derived in Section III-B; 3) joint
position and velocity limits; 4) joint torque limits with the
torque from Eq. (13)); 5) platform-contact constraints (e.g.,
unilateral constraints and friction-cone constraints) with the
contact force from Eq. (6); and 6) desired gait features (e.g.,
the desired duration of gait cycle).

Both continuous-phase and discrete dynamics are con-
tained in the constraints. The continuous-phase dynamics
in Eq. (3) are contained in the joint torque limits and the
platform-contact constraints. The discrete impact dynamics
in Eq. (TI)) are contained in the impact invariance condition.

The platform motions (e.g., V, and A,) are also contained
in the constraints because the platform motion directly
affects the contact force between the robot and the platform,
the occurrence of a swing-foot landing event, and the impact
dynamics, as explained in Section

B. Optimization Set-up

The optimization is set up as a nonlinear programming
(NLP) problem. The software tool used to solve the NLP is

hip-pitch angle
-4 - <

‘ d knee-pitch angle

[}

Fig. 3. A Laikago quadrupedal robot (developed by Unitree) used for
experimental validation. Each leg of the robot has three actuated joints,
which are hip-roll, hip-pitch, and knee-pitch joints.

hip-roll angle

MATLAB’s fmincon command. As the focus of this study
is on controller design, the planning is solved offline.

The control variables h are chosen as the the base pose
(i.e., position and orientation) and swing-foot position; that
is. h(q) := [p] (0). 7] (0).p%,(@)]"

In general, the phase variable 6 can be defined based on
either generalized coordinates q [[7], [20] or time ¢ [[19].

In this study, 0 is defined as time-dependent; i.e., 6(¢) :=
t — T, ke{1,2,..} during the k" walking cycle (i.e.,
t € (tx,t+1])- Thus, O represents the current instant relative
to the planned initial instant of the k’* walking cycle. With
the phase variable chosen as time-based, the reference trajec-
tories hy become functions of ¢ alone, i.e., hy(¢,q) =hy(7).

VI. SIMULATIONS AND EXPERIMENTS

This section presents the validation results obtained
through simulations and experiments.

A. Simulation and Experimental Set-up

In this study, MATLAB simulations are used to validate
the theoretical control law derived in Section[[Ill Simulations
on PyBullet, which is a 3-D realistic robot simulator [26],
are conducted to gain preliminary insight into the controller
implementation on hardware. Experiments on a physical
quadrupedal robot (see Fig. are used to evaluate the
effectiveness of the proposed control approach as well.

The dynamic rigid platform used for validation is:

(P1) A platform with a whole-body pitching motion and a
surface translating motion (Nominal pitching amplitude
= £5°. Nominal pitching frequency = 0.5 Hz).

In experiments, the platform (P1) is chosen as a pitching

treadmill with translating belts on the surface.

To validate the proposed control approach during walking
motions with different gait characteristics, three sets of ref-
erence trajectories are used in simulations and experiments.
They are generated using the optimization-based planning
method in Section |V| The gait characteristics are:

(G1) Step length = 10 cm. Maximum swing-foot height
6 cm. (Treadmill belt speed = 5 cm/s).

(G2) Step length = 16 cm. Maximum swing-foot height
6 cm. (Treadmill belt speed = 8 cm/s).

(G3) Step length = 16 cm. Maximum swing-foot height
9 cm. (Treadmill belt speed = 8 cm/s).

For simplicity, the optimization enforces the exact corre-

spondence between the duration of the reference gait cycle



Fig. 4. PyBullet simulation and experimental set-up for assessing the
performance of the proposed control strategy. (D: treadmill. Q): Laikago
robot and its walking direction. ®: rotating axis of the treadmill. @:
moving direction of the treadmill belt.

and one period of the platform pitching motion. Due to the
space limitation, these reference trajectories are displayed in
Figs. 4-6 in the supplementary file.

As it is assumed that the platform motion is known (i.e.,
sensed or estimated) in the theoretical controller design, we
added perturbations to the platform motion for assessing the
robustness of the proposed control approach under uncer-
tainties. Two sets of perturbations are implemented with the
platform (P1), including:

(U1) Uncertainties in the pitching amplitude.
(U2) Uncertainties in the belt speed.

More details on the set-ups of MATLAB and PyBullet

simulations as well as experiments are given next.
MATLAB Simulation Set-up: The robot model de-
rived in Section II is used to simulate the closed-
loop system under the control law in Egs. (13) and
(T4). The PD gains for gait (Gl) are chosen as
K, = diag(100,36,110,100,36,110,36,64,110) and K; =
diag(20,12,21,20,12,21,12,16,21), yielding closed-loop
poles with negative real parts between -10.5 and -6. The
PD gains for the uncertainty case (U1) are chosen the same
as gait (G1). Due to the space limitation, the PD gains for
other cases are included in the supplementary file.
PyBullet Simulation Set-up: A 3-D realistic robot model
that closely emulates the physical and geometric properties
of the physical quadrupedal robot is used in the simulation,
as shown in Fig. @ The “PD” control gains are set as 1.0 and
0.25, respectively. Note that these values may not reflect the
true PD gains implemented in PyBullet due to the intrinsic
gain multipliers used in the simulator.
Experimental Set-up: The experimental set-up consists of
a quadrupedal robot and a treadmill, as shown in Fig.
The “PD gains” of the joint-level controllers are set as 5.5
and 0.2, respectively. Similar to PyBullet, these values may
not reflect the true PD gains implemented on the physical
robot’s joint motors due to the intrinsic gain multipliers of
the hardware. These PD gains in MATLAB, PyBullet, and
experiments are tuned to produce similar continuous-phase
convergence rates.

The treadmill used in the experiment is a split-belt Motek
M-gait treadmill [27], which is capable of performing pre-
programmed sinusoidal pitching motions. Its dimension is:
2.3 m (length) by 1.82 m (width) by 0.5 m (height). Its total

7k | Compute

o) =1t—1y
IR
Reference Compute joint position reference
trajectory > q,(t) via inverse kinematics
generation | ha(-) h(q()) — h(0(1) = 0
1 a0
Platform motion — — —
at the desired new Individual-joint position
contact points controller

Fig. 5. A flow chart of the controller implementation procedure used in
PyBullet simulations and hardware experiments.

mass is 750 kg. Each of its two belts is powered by a 4.5
kW servo motor. During experiments, the motion of the two
belts is always synchronized.

The physical robot used for experimental validation is a
quadrupedal Laikago robot developed by Unitree [28]] (see
Fig. . Its dimension is 0.56 m (length) by 0.35 m (width)
by 0.6 m (height). Its total mass is 25 kg, and each leg
weighs 2.9 kg. Each leg has three independently actuated
joints, i.e., hip-roll, hip-pitch, and knee-pitch joints, with a
power density of 0.80 kW/kg and a torque limit of 20 Nm,
55 Nm, and 55 Nm, respectively. These torque limits are
incorporated into the robot models used for the controller
implementation in MATLAB and PyBullet simulations.

B. Controller Implementation in PyBullet and Experiments

In PyBullet simulations and experiments, the proposed
control law in Eqgs. (I3) and (14), which is a torque com-
mand, is implemented as an individual-joint PD controller,
which is preferred in robot walking experiments in the pres-
ence of model uncertainties [7|]. Accordingly, the original
reference trajectories h; are converted into joint-position
reference trajectories q (), which are then sent to the robot’s
individual-joint controllers, as illustrated in Fig. E}

C. Validation Results with a Periodically Pitching Rigid
Platform

Validation results obtained from MATLAB, PyBullet, and
experiments with the reference gait (G1) and the platform
(P1) are displayed in Fig. [6] The joint trajectory tracking
results in Fig. [6] (a) demonstrates the reliable tracking perfor-
mance of the proposed control approach across simulations
and experiments. The base roll and pitch trajectories in Fig. [6]
(b) show that the robot maintains a relatively steady base
pose, indicating stable walking on the pitching platform.

Joint torque profiles in Fig. [f] (c) overall show relatively
consistent trends between simulations and experiments. Note
that the hip-pitch torque profile obtained through experi-
ments shows peaks of -10 Nm near 2 sec and 4 sec, whereas
MATLAB and PyBullet results do not exhibit such jumps
near those time instants. This might be caused by the impact
modeling discrepancies between the physical robot and the
simulated robots. During the experiment, the rear-left leg of
the physical robot slightly rebounds near those time instants
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Fig. 6.  Trajectory tracking results with gait (G1): (a) joint position

trajectories, (b) base roll and pitch trajectories, and (c) joint torque profiles
of the rear-left leg.

right after the rear-right leg strikes the platform surface.
However, such rebounding behavior is not captured by the
dynamic model as derived in Section

The validation results obtained with the gaits (G2) and
(G3) demonstrate similar effectiveness of the proposed con-
trol approach. Due to the space limitation, these results are
displayed in Figs. 1 and 2 in the supplementary file.

D. Validation Results on Robustness

To assess the robustness of the proposed control approach
under uncertainties such as sensor noise and estimation er-
rors, perturbations in the platform motions are implemented
in both simulations and experiments.

With the uncertainties (U1), up to 20 % uncertainties,
which approximately correspond to a variation of 4 cm in the
stance-foot height, are added to the nominal pitching ampli-
tude of the platform. Figure [7| displays the walking control
results obtained from MATLAB, PyBullet, and experiments
with the reference gait (G1) and under the uncertainties (U1).
The results match relatively closely with those obtained
without the uncertainties (U1) in Fig. [6] which demonstrates
the robustness of the proposed controller in mitigating a
relatively moderate level of uncertainties.

With the uncertainties (U2), up to £20 % uncertainties,
which approximately correspond to a variation of 8 cm in
the stance-foot height over 10 gait cycles, are added to the
belt speed of the treadmill. The robot’s motion was shaky
during experiments, but the robot was able to sustain motion
for over twenty steps, which indicates that the inherent
robustness of the proposed control approach is able to tackle
the implemented uncertainties in the treadmill belt speed.
Due to the space limitation, these results are displayed in
Fig. 3 in the supplementary file.

E. Comparative Simulations of a Static-Platform Controller

A controller designed for static-platform locomotion is
simulated to demonstrate the necessity of explicitly ac-
counting for the time-varying robot dynamics induced by

(a) Joint trajectories tracking
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Fig. 7. Trajectory tracking results with gait (G1) under uncertainties (U1):
(a) joint position trajectories, (b) base roll and pitch trajectories, and (c)
joint torque profiles of the rear-left leg.
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Fig. 8. Comparative simulation results of the robot’s base pose trajectories
under a controller designed for static platforms, obtained during (a) walking
on a static platform and (b) walking on the dynamic platform (P1).

platform movement through controller design. The controller
is chosen as our previous control approach for static-platform
locomotion [19]], which does not account for the time-
varying robot dynamics induced by platform movement. The
“PD” gains for PyBullet simulations are set as 1.0 and 0.25,
respectively.

Figure [§] (a) shows the robot’s base pose trajectories
during static-terrain walking in PyBullet, which indicates
a relatively steady base pose and thus demonstrates stable
walking motions on the static terrain. However, the controller
fails to sustain stable walking when the robot walks on a
pitching platform (i.e., the platform (P1)), as revealed by
the irregular base motion in the two trials in Fig. |§| (b).

VII. DISCUSSION

This study has derived a model-based control approach
that achieves stable quadrupedal locomotion over dynamic
rigid platforms by explicitly addressing the associated hy-
brid, time-varying robot dynamics. Thanks to the inherent
robustness of feedback control, the controller demonstrates



robustness under moderate levels of platform motion uncer-
tainties, which indicates that the proposed control could be
effective even in the presence of uncertainties caused by plat-
form motion estimation. Despite the impressive estimation
accuracy achieved by recent studies on static-platform legged
locomotion [29]], [30], state estimation for dynamic-platform
locomotion remains an open question. To this end, we
will investigate state estimator design for dynamic-platform
locomotion and integrate the estimator with the proposed
control approach in our future work.

To enhance the robustness of the proposed control ap-
proach for real-world robot applications, we will extend the
construction of multiple Lyapunov functions to synthesize
robust control laws for hybrid, time-varying systems that
include quadrupedal robots traversing dynamic rigid plat-
forms. Uncertainties that we plan to address include model
discrepancies, state estimation errors, and disturbances.

To enable robot locomotion over dynamic platforms with
complex, nonperiodic motions, online motion planning tech-
niques will be demanded in addition to a reliable con-
trol approach. Online motion planning for legged robots
is a challenging problem because of the associated high
computational burden. To reduce the computation burden,
we will explore the possibility of using a reduced-order
robot model instead of a full-order one in online motion
planning. This approach is potentially promising because
a physical quadrupedal robot typically has a heavy trunk
and lightweight legs and thus may be relatively accurately
described by a reduced-order model.

VIII. CONCLUSION

In this paper, we have introduced a control approach that
realizes stable quadrupedal robot locomotion on dynamic
rigid platforms by provably stabilizing the associated hybrid,
time-varying control system. The model of a quadrupedal
robot that walks on a dynamic rigid platform was formulated
as a hybrid, time-varying system consisting of continuous
phases and state-triggered jumps. A continuous control law
was derived to provably stabilize the system during the
continuous phases. Lyapunov-based stability analysis was
performed to derive sufficient conditions that can be used to
directly guide the controller design for provably stabilizing
the overall hybrid, time-varying control system. MATLAB
and PyBullet simulations, as well as experiments on a
physical quadrupedal robot and a pitching treadmill, were
performed to validate the proposed control approach. The
validation results demonstrated the effectiveness of the pro-
posed approach in realizing stable quadrupedal locomotion
on dynamic rigid platforms even in the presence of moderate
levels of uncertainties.
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