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Abstract: Stabilizing legged robot locomotion on a dynamic rigid surface (DRS) (i.e., rigid surface that
moves in the inertial frame) is a complex planning and control problem. The complexity arises due to
the hybrid nonlinear walking dynamics subject to explicitly time-varying holonomic constraints caused
by the surface movement. The first main contribution of this study is the extension of the capture point
from walking on a static surface to locomotion on a DRS as well as the use of the resulting capture
point for online motion planning. The second main contribution is a quadratic-programming (QP) based
feedback controller design that explicitly considers the DRS movement. The stability and robustness of
the proposed planning and control method are validated through simulations of a quadrupedal robot
walking on a DRS with a rocking motion. The simulation results also demonstrate the improved
walking performance compared with our previous approach based on offline planning and input-output
linearizing control that does not explicitly guarantee the feasibility of ground contact constraints.
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1. INTRODUCTION

Legged robots, mimicking nature’s design of terrestrial ani-
mals, have many potential advantages compared to wheeled
or tracked robots in traversing unstructured terrains. Various
planning and control methods have been created and success-
fully implemented to enable stable and robust locomotion on
stationary surfaces (Kuindersma et al., 2016; Hutter et al., 2016;
Bledt et al., 2018). Yet, sustaining legged locomotion on a non-
stationary surface has not been fully addressed. The objective
of this study is to derive a planning and control approach that
stabilizes locomotion on a dynamic rigid surface (DRS) by
explicitly addressing the time-varying surface movement and
the feasibility of ground contact forces. A key element of the
proposed approach is an online footstep planner that considers
the surface motion through the extension of the concept of
capture point (Pratt et al., 2006; Koolen et al., 2012) from sta-
tionary to dynamic surfaces. Another key element is a quadratic
programming (QP) based control method that incorporates the
surface motion in its constraints. Related work is reviewed next.

1.1 Related work on Planning and Control of Legged Locomotion
on Rigid Stationary and Deformable Surfaces

Previous planner and controller designs for legged robot loco-
motion mainly focus on static (flat or uneven) platforms (e.g.,
pavement, stairs, and gravels) (Kajita et al., 2003; Chevallereau
et al., 2009; Gu et al., 2018; Gao and Gu, 2019; Barasuol et al.,
2013; Hutter et al., 2016; Gao and Gu, 2019). For example,
robust quadrupedal locomotion on stationary surfaces has been
experimentally demonstrated on various physical robots (Hutter
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et al., 2016; Bledt et al., 2018; Lee et al., 2020). Yet, these
controllers may not work well for locomotion on a deformable
surface or a DRS because they do not explicitly account for
perturbations to the robot motion caused by the surface defor-
mation or movement.

One of the pioneering efforts in addressing locomotion on
deformable surfaces (e.g., sand and snow) is the modeling of
the dynamic interaction between the robot’s legs and granular
terrains (e.g., sands) (Li et al., 2013). Based on this model,
Xiong et al. (Xiong et al., 2017) have developed a stability
region criterion for granular terrain walking to guide controller
design. Recently, a learning-based controller has been derived
and experimentally demonstrated to realize robust locomotion
on highly unstructured, deformable terrains (Lee et al., 2020).
However, it is unclear how effective these methods would be
for sustaining locomotion on a DRS.

1.2 Related Work on Planning and Control of Legged Locomotion
on a DRS

Stabilizing legged locomotion on a DRS is fundamentally chal-
lenging due to the high complexity of the associated robot
dynamics. First, the robot dynamics are inherently hybrid in-
volving state-triggered discrete behaviors (e.g., foot touch-
downs) (Galeani et al., 2011). Second, without properly ad-
dressed, the time-varying perturbation at a foot-surface contact
point caused by the surface motion can destabilize the robot.

Recently, planning and control of DRS locomotion have been
drawing an increasing attention. For surfaces with a motion
affected by the locomotor (e.g., passive surfaces with relatively
small inertia), a reduced-order model based planning and con-
trol method for bipedal walking on different-sized balls has
been studied (Zheng and Yamane, 2011). A model predictive



control (MPC) method based on full-order dynamic modeling
has been introduced to stabilize locomotion on a moving ball
and to manipulate the ball over the ground (Yang et al., 2020).
Also, modeling and control of legged locomotion on a floating
island have been proposed based on an eight-legged rimless
wheel robot model (Asano, 2021). However, these methods
cannot be directly used to handle locomotion on a DRS whose
motion is not affected by the robot due to the differences in the
associated robot dynamics.

To address locomotion on a DRS whose motion is not affected
by the robot (e.g., vessels and aircraft), our previous work has
analyzed the effects of surface movement on a robot’s locomo-
tion stability based on the reduced-order spring-loaded inverted
pendulum (SLIP) robot model (Iqbal et al., 2021). Furthermore,
we have recently created and experimentally evaluated a prov-
ably stabilizing controller for enabling quadrupedal locomotion
on such a DRS (Iqbal et al., 2020). Yet, this controller has
two major limitations towards effective implementation in a
real-world scenario. First, the planning algorithm is offline and
cannot be used for online motion generation due to the heavy
computational load caused by its underlying full-order model.
Second, the control does not explicitly account for the feasi-
bility of ground-contact constraints during the actual walking
process.

1.3 Related Work on Capture Point

A capture point is defined as the point that an inverted pendu-
lum model needs to instantaneously extend its leg in order to
come to a complete stop within the new step (Pratt et al., 2006).
Based on the capture point, Capturability has been introduced
to describe a robot’s ability to come to a complete stop given
its current state and has been widely used as a measure of
locomotion stability (i.e., the ability not to fall over) (Koolen
et al., 2012). Due to its computational efficiency, the concept
of capture point has been used to plan footsteps for legged
locomotion on static surfaces (Englsberger et al., 2011; Pratt
et al., 2012). It has also been proven effective in planning and
control of legged locomotion on uneven terrains (Morisawa
et al., 2012; Caron et al., 2019) as well as disturbance rejec-
tion (Pratt et al., 2012; Joe and Oh, 2018). However, to the best
of our knowledge, the capture point has not been extended to
solve the footstep planning problem of a robot walking on a
DRS.

1.4 Related Work on QP-based Locomotion Planning and
Control

Due to its capability of incorporating feasibility constraints
and its low computational load suitable for real-time imple-
mentation, QP-based motion planning and control design have
been extensively studied for legged locomotion (Focchi et al.,
2017; Carpentier et al., 2017; Bledt et al., 2018). Hardware
experiments under QP-based controllers that utilize reduced-
order robot model have shown robust performance in moving
over high-slope terrains (Focchi et al., 2017) and unstructured
terrains (Bledt et al., 2018). Recently, a QP-based controller
utilizing a full-order robot model has shown effectiveness in
robustly tracking desired trajectories (Hamed et al., 2020). Still,
these controllers do not explicitly consider the time-varying
surface motion during DRS locomotion, which may deteriorate
locomotion performance and even cause instability.

1.5 Contributions

This paper aims to derive a planning and control approach that
enables stable and robust quadrupedal walking on a DRS by
extending our previous work (Iqbal et al., 2020) and solving
its two major limitations, which are: a) lack of feasibility guar-
antees in the controller design and b) the heavy computational
load of motion planning that prevents real-time planning.

The main contributions of this paper include:

a) Extending the concept of capture point to DRS locomo-
tion by explicitly considering the surface movement, and
designing a real-time footstep planner based on the ex-
tended capture point.

b) Formulating a QP-based controller that ensures the fea-
sibility of ground contact forces and explicitly incorpo-
rates the surface motion in a time-varying holonomic con-
straint.

c) Validating the stability and robustness of the proposed ap-
proach through simulations of quadrupedal robot walking
on a DRS with a periodic, rocking motion.

d) Providing comparative simulation results to demonstrate
the improved robustness of the proposed method over our
previous work.

2. HYBRID FULL-ORDER ROBOT MODEL

This section presents the full-order model of a quadrupedal
robot that walks on a DRS, which captures the complete dy-
namic behaviors of all degrees of freedom (DOFs) of the robot.
The model is used as a basis for the proposed QP-based con-
troller design.

A walking robot’s dynamics are hybrid because walking natu-
rally involves continuous-time motion (e.g., foot swinging) and
discrete events (e.g., foot touchdowns). A complete cycle of
quadrupedal walking is illustrated in Fig. 1, which consists of
four continuous phases connected by four instantaneous foot
touchdown events. During locomotion on a DRS, the robot’s
dynamics are also affected the time-varying movement of the
surface, which is modeled as a time-varying holonomic con-
straint in this study. The hybrid, time-varying robot dynamics
are explained next.

2.1 Continuous-Phase Dynamics

Let q be the generalized coordinates of a robot, which consists
of the robot’s base pose (i.e., position and orientation) and joint
angles and is defined as:

q :=
[
pT

b , γγγ
T
b , q1, q2, ..., qn

]T
, (1)

where the vectors pb and γγγb are the base position and orienta-
tion in the world frame, respectively, the vector [q1 q2 ... qn]

T

is the joint angles, and Q ⊂ Rn+6 is the robot’s configuration
space. Let u ∈U ⊂ Rm be the robot’s joint torques with U the
admissible set of joint torques.

Using Lagrange’s method, continuous-phase robot dynamics
can be obtained as:

M(q)q̈+C(q, q̇) := Bu+JT
f (q)F f , (2)

where M(q) :Q→ R(n+6)×(n+6) is the inertia matrix, C(q, q̇) :
T Q → R(n+6) represents the sum of centrifugal, Coriolis, and
gravitational terms with T Q the tangent space of Q, and B ∈
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Fig. 1. A complete cycle of quadrupedal walking (Iqbal et al.,
2020).

R(n+6)×m is the actuator selection matrix. The matrix J f (q) is
the contact Jacobian whose expression varies during different
phases because of different feet in support (see Fig. 1). The
vector F f (q) ∈ Rnct represents the external force acting at
the support feet. During three-dimensional (3-D) quadrupedal
walking without slip, three of the four legs are in secured
contact with the surface, and therefore nct = 9.

During robot walking on a DRS whose motion is not affected
by the robot, the effects of the surface motion on the robot dy-
namics can be modeled as a time-varying holonomic constraint.

Let rp(t) ∈ Rnct be the positions of the surface at the support-
foot locations. Note that for a DRS, the surface positions and
motions at the foot-contact points (i.e., rp(t) and its derivatives)
are explicitly time-varying. Let r f (q) ∈ Rnct be the positions
of the support feet. Then, the contact Jacobian matrix, by
definition, is expressed as J f (q) := ∂r f

∂q (q).

When there is no relative motion between support feet and the
surface, the time-varying holonomic constraint is given by:

J f (q)q̈+ J̇ f ((q), q̇)q̇ = r̈p(t). (3)

2.2 Switching Surface

When a swing foot strikes the walking surface, it becomes a
new stance foot while another foot begins to swing in the air
and acts as the new swing foot. S := {(q, q̇,r f , ṙ f ) ∈ T Q×
Rnct ×Rnct : φ(q,r f ) = 0, φ̇(q, q̇,r f , ṙ f )< 0}, where the scalar
function φ is the distance between the swing foot and the
surface.

3. CAPTURE-POINT BASED ONLINE MOTION
PLANNING

This section introduces the extension of the capture point from
stationary to DRS walking, as well as the proposed online
planning method based on the extended capture point. The
desired trajectories produced by the planner will be tracked by
the proposed QP-based control as introduced in Sec. 4.

3.1 Capture Point on a DRS

The concept of capture point for a static surface has been
extensively studied (Pratt et al., 2006; Koolen et al., 2012). In

Fig. 2. Illustration of the 3-D LIPM model on a DRS. The
model is constrained to maintain constant height z0 be-
tween the CoM and the point S on the DRS.

this work, we extend the capture point to a DRS based on a
reduced-order locomotor model, that is, a 2-D linear inverted
pendulum model (LIPM) with a point mass atop a massless leg
(see Fig. 2). The position of the point mass coincides with its
center of mass (CoM).

Let rwc = (xwc, xwc, zwc) and rws = (xws, xws, zws) be the
absolute positions of the CoM and the leg’s far end (i.e., point
S) in the world frame, respectively.

rsc = (xsc, xsc, zsc) = rwc− rws. (4)

The equation of motion of the LIPM is expressed as:

ẍwc =
fa

m
sinθ

xsc

r
, ÿwc =

fa

m
sinθ

ysc

r
and (5)

z̈wc =
fa

m
cosθ −g, (6)

where m is the mass of the LIPM, θ is the angle of the
leg relative to the vertical axis, g is the magnitude of the
gravitational acceleration, and r is the projected length of rsc
on the XwYw-plane. The scalar variable fa is the norm of the
axial force applied on the point mass by the massless rod.

It is assumed in this study that the vertical distance zsc between
the CoM and point S is constant during walking (see Fig. 2);
that is, zsc = z0 with z0 a positive number. This assumption is
analogous to the simplifying assumption of the LIPM model on
a stationary surface that the point-mass height over the surface
is constant (Pratt et al., 2006).

Under the assumption that zsc is constant, żwc = żws and z̈wc =
z̈ws. Then, from (6), the expression of fa in (3.1) becomes fa =

m (z̈ws+g)
cosθ

. Accordingly, the equation of motion of the LIPM on
the horizontal plane is now given by:

ẍwc = (z̈ws +g)
xsc

z0
and ÿwc = (z̈ws +g)

ysc

z0
, (7)

From (4), we obtain ẍwc = ẍws + ẍsc and ÿwc = ÿws + ÿsc. Then,
using these relations in (7) yields:

ẍsc−
(z̈ws +g)

z0
xsc = ẍws, and ÿsc−

(z̈ws +g)
z0

ysc = ÿws, (8)

Equation (8) is a linear, non-homogeneous 2nd-order ordinary
differential equation in xsc and ysc, respectively.
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For the case where the acceleration of point S along the Xw
and Yw-directions is sufficiently small (i.e., ẍws and ÿws are
negligible), then the forcing terms ẍws and ÿws in (8) can be
approximated as zero. Then, the ODE becomes homogeneous:

ẍsc−
(z̈ws +g)

z0
xsc = 0 and ÿsc−

(z̈ws +g)
z0

ysc = 0. (9)

Analogous to the derivation of the capture point on a stationary
surface (Pratt et al., 2006), define the apparent stiffness of the
LIPM as ka :=− (z̈ws+g)

z0
. Then, we reduce the LIPM’s equation

to a spring-mass system with unit mass; that is, ẍsc + kaxsc = 0
and ÿsc+kaysc = 0. The orbital energy of this system associated
with x and y-components of motion are given as:

Ex =
1
2
(ẋ2

sc + kax2
sc) and Ey =

1
2
(ẏ2

sc + kay2
sc), (10)

These energy terms predict whether the point mass will move
over the support point S (i.e., Ex + Ey > 0), stop at S (i.e.,
Ex+Ey = 0), or reverse the direction of motion before reaching
S (i.e., Ex +Ey < 0).

At the equilibrium (i.e., Ex = 0 and Ey = 0) of the system in (9),
the two eigenvectors are:

ẋsc =±

√
(z̈ws +g)

z0
xsc and ẏsc =±

√
(z̈ws +g)

z0
ysc. (11)

The stable eigenvector corresponds to the case when xsc and
ẋsc (and ysc and ẏsc) have opposite signs, which lead to the
following Xw- and Yw-coordinates of the instantaneous capture
point of the 3-D LIPM on a DRS:

xcap :=
√

z0

(z̈ws +g)
ẋsc and ycap :=

√
z0

(z̈ws +g)
ẏsc. (12)

The Zw-coordinate of the instantaneous capture point lies on
the DRS. For a horizontal, flat DRS with a constant horizontal
velocity but a varying vertical velocity (e.g., elevators), the z-
coordinate of the capture point will be zero, i.e., zcap = 0.

The capture point (xcap,ycap,zcap) is the position of the CoM
with respect to a new support point S. Note that this equation
will no longer be valid when the term (z̈wp+g) is negative (i.e.,
the robot loses contact with the DRS).

Analogous to the capture point on a stationary surface, if the
LIPM instantaneously places the far end of its leg (point S) at
(xcap,ycap,zcap), it will come to a complete stop relative to the
new support point within the immediate successive step.

The expression of the horizontal coordinates of the capture
point in (12) explicitly considers the surface motion that was
not incorporated in the previous derivations of the capture
point on a stationary surface (Pratt et al., 2006; Caron et al.,
2019). Note that when z̈ws = 0, i.e., the surface is stationary or
moving with a constant speed in both the horizontal and vertical
directions, the proposed capture point on a DRS in (12) reduces
exactly to the capture point on a stationary surface.

3.2 Capture-Point based Online Foot-Step Planning

The objective of the proposed footstep planner is to generate a
robot’s desired foot placement for maintaining a certain desired
walking motion instead of making the robot to stop. To this
end, the capture point (xcap,ycap,zcap) is further extended to
determine the desired footsteps that help sustain the planned

robot movement. For simplicity, the desired motion is specified
by a constant base velocity vd = (vdx,vdy,0) relative to point S.

We choose to design the desired foot placement (x̃step, ỹstep, z̃step)
as the difference between the capture point associated with the
current relative CoM velocity ṙsc and a fictitious capture point
corresponding to the desired velocity vd (Bledt et al., 2018)
multiplied by a positive gain Kstep:

x̃step := Kstep

√
z0

(z̈ws +g)
(ẋsc− vdx),

ỹstep :=Kstep

√
z0

(z̈ws +g)
(ẏsc− vdy), and z̃step := 0.

(13)

The gain can be used to tune how much the difference in the
current and desired CoM velocities affects the desired footstep
location, thus allowing us to consider practical hardware limi-
tations (e.g., finite step duration and limited leg length) in foot
placement planning. For the presented results, we choose Kstep
to be 1.

To ensure that the robot moves with vdx in the Xw-direction,
Raibert’s heuristic T

2 vd (Bledt et al., 2018) is used along
with the instantaneous capture point in (13) to plan the Xw-
coordinate of the desired foot placement:

xstep = xhip +
T
2

vdx + x̃step, (14)

where xhip is the Xw-coordinate of the swing hip joint and T is
the desired duration of a complete gait cycle.

Similarly, the y-coordinate of the desired foot placement in the
world frame is given as:

ystep = yhip +
T
2

vdy + ỹstep, (15)

The z-coordinate of the desired foot placement on a horizontal
flat DRS is zstep = z̃step = 0. Then, the desired footstep location
in the world is: [xstep ystep zstep]

T
.

3.3 Whole-Body Trajectory Generation

This subsection explains the method we adopt to generate the
whole-body reference position trajectories.

It is assumed in the planner (and controller) designs that the
surface pose and motion are accurately estimated and predicted
in real-time. This assumption is reasonable because real-world,
man-made platforms such as aircraft and ships are typically
equipped with motion monitoring systems that estimate the
surface’s body motion. The design of such a predictor is not
the focus of this study.

The number of reference position trajectories to be planned
depends on the robot’s DOFs. The robot used in the simula-
tion validation is the Laikago quadrupedal robot with twelve
revolute joints (i.e., n = m = 12) (Unitree, 2019). The robot has
nine DOFs during walking (Iqbal et al., 2020) where three legs
are in full, static contact with the surface. Thus, nine reference
position trajectories will be planned.

We choose the inputs to the proposed reference trajectory gen-
erator as: i) the desired gait duration T , ii) maximum swing-foot
height, iii) the desired walking speed, and iv) the current and
predicted surface pose and motion. The nine desired trajectories
hd(t) produced by the trajectory generator are: i) the robot’s
base pose trajectories and ii) swing foot position trajectories.
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As various existing methods can be used to design the needed
whole-body trajectory generator (Pratt et al., 2012; Caron et al.,
2019), we will only highlight how the proposed generator
respects the surface motion and desired footsteps. To ensure the
robot’s desired base pose conforms to the DRS movement, the
base pose trajectories are planned online based on the desired
walking velocity vd as well as the surface pose and motion.
To guarantee that the desired swing foot trajectories respect the
desired foot placement, they are generated through a smooth
interpolation from the actual initial location of a footstep to the
desired foot placement (Westervelt et al., 2007).

4. INSTANTANEOUS QP-BASED CONTROLLER DESIGN

This section introduces the proposed QP-based controller de-
sign that provably tracks the desired walking motions hd(t) on
a DRS and guarantees the feasibility for ground contact forces.
The QP-based controller is synthesized based on full-order
dynamics of a quadruped walking on a DRS, and explicitly
addresses the surface movement through the formulation of the
holonomic and the friction cone constraints.

Both QP and MPC can be used to formulate a controller
with feasibility guarantees. We choose to use QP because its
computational load is low enough for the typical real-time
controller implementation rate (e.g., 500 Hz or higher) even
when the QP is formulated based upon a full-order robot model.
In contrast, an MPC synthesized based on a full-order model
typically computes its output at a much lower rate, e.g., 30Hz.

The key steps to the proposed QP formulation include the
selection of optimization variables and the design of the cost
function and constraints, which are explained next.

Optimization variables. As the control objective is to achieve
reliable trajectory tracking with the ground contact constraints
respected, we define the optimization variables x as the control
input u and ground contact force F f , i.e., x = [uT ,FT

c ]
T .

Cost function. The quadratic cost function to be minimized
is set as xT Qx + (x̃− x)T W(x̃− x) with x̃ the values of the
optimization variables at the previous optimization step. The
weighting matrix Q is a symmetric, positive definite matrix
with an appropriate dimension. The minimization of xT Qx is to
minimize the joint torques The other weighting matrix, W, is a
symmetric, positive definite matrix that can be used to penalize
sharp variations in some of the optimization variables.

Equality time-varying holonomic constraints: To ensure that
the support feet do not move relative to the surface, we con-
sider the time-varying holonomic contraint in (3) that explicitly
contains the surface movement.

From the continuous-phase dynamics in (2), we have

q̈ := M−1(Bu+JT
f F f −C). (16)

Plugging it in the holonomic constraint in (3) gives: J f M−1(Bu+
JT

f F f −C)+ J̇ f q̇ = r̈p(t), which, upon rearrangement, gives:

Aeq1x = beq1, (17)

where Aeq1 := [J f M−1B, J f M−1JT
f ] and beq1 := J f M−1C−

J̇ f q̇+ r̈p(t).

Equality constraints based on input-output linearizing con-
trol: To realize accurate tracking of the desired base and swing-
foot trajectories hd(t), the controller takes the form of an input-

output (I-O) linearizing control law (Iqbal et al., 2020) with the
output function defined as the tracking error. We choose I-O
linearization to form the control law because I-O linearization
transforms the nonlinear continuous-phase robot dynamics into
a linear one, thus simplifying the controller design.

Let h denote the variables of interest (i.e., base pose and
swing foot position). Then, the output function representing the
tracking error is given by:

y := h(q)−hd(t) (18)

Then, ẏ = ∂h
∂q q̇− ḣd and ÿ = ∂

∂q (
∂h
∂q q̇)q̇ + ∂h

∂q q̈− ḧd . Define

Jh := ∂h
∂q , and then J̇h = ∂

∂q (
∂h
∂q q̇). we get the output function

dynamics as ÿ = Jhq̈+ J̇hq̇− ḧd .

To stabilize the output function dynamics, we utilizes a
proportional-derivative (PD) feedback term as:

ÿ =−Kpy−Kd ẏ =: v, (19)
which, combined with the expression of q̈ in (16), yields:

JhM−1(Bu+JT
c Fc−C)+ J̇hq̇+ ḧd(t) = v, (20)

which can be compactly written as:
Aeq2x = beq2, (21)

where Aeq2 := [JhcM−1B, JhM−1JT
f ] and beq2 := JhcM−1C−

J̇hq̇− ḧd(t)+v.

Note that (19) and (20) can be easily rearranged into the
expression of the input-output linearizing control law u.

Inequality ground-contact constraints and joint torque lim-
its. To secure contacts between the robot’s support feet and
the surface, the QP incorporates the following friction cone
(i.e., no foot slipping) and unilateral (i.e., no feet penetrating
the surface) constraints F f ∈ Fgc, where Fgc is the set of
ground-contact forces satisfying the friction cone and unilat-
eral constraints. Also, the solution to the QP must satisfy the
joint torque limits; i.e., the control input u must be within the
admissible torque set, u ∈U .

QP-based control law. With the cost function and constraints
designed, the proposed QP can be compactly expressed as:

min
x

xT Qx+(xp−x)T W(xp−x)

subject to Aeq1x = beq1,

Aeq2x = beq2,

F f ∈ Fgc, u ∈ U.

(22)

Stability property. As proven in our previous study (Iqbal
et al., 2020), an input-output linearizing controller with form
(19) and (20) can guarantee the (local) asymptotic stability of
the desired trajectory hd(t) for the hybrid, time-varying walking
process, if the PD gains are chosen to render a sufficiently fast
error convergence rate during continuous phases.

5. SIMULATIONS

This section presents MATLAB simulation results that validate
the effectiveness of the proposed planning and control method
during unperturbed (Case 1) and perturbed (Case 2) walking.

5.1 Simulation setup

Robot. The robot model used for the simulation validation is
a Laikago quadruped developed by Unitree (Unitree, 2019). Its
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Fig. 3. System setup that the simulator emulates. The treadmill
1© has a split belt 4© that moves at a constant speed of

8cm/s while the treadmill undergoes a sinusoidal rocking
motion about the horizontal axis 3©. The quadruped is a
Laikago robot 2©.

total mass is 25 kg, and each leg weighs 2.9 kg. Every leg has
three independently actuated joints (i.e., hip-roll, hip-pitch, and
knee-pitch), with torque limits of 20 Nm, 55 Nm, and 55 Nm,
respectively. The overall length, width, and height of the robot
are 0.56m, 0.35m, and 0.60m, respectively.

Surface. The simulated DRS is an actuated platform (see
Fig. 3) simultaneously experiencing: a) a whole-body sinu-
soidal pitching motion, with a amplitude of ±5◦ and a pitching
frequency of 0.5 Hz, and b) a constant surface translating mo-
tion. This DRS reasonably satisfies the assumption underlying
the proposed capture point extension, because the horizontal
velocity of the surface is approximately constant due to the
small pitching amplitude. The surface acceleration in the ver-
tical direction is still relatively significant for the validation of
the proposed method.

QP-based controller. The PD gains are Kp = 120I9 and Kd =
22I9, where In is an n×n identity matrix. The weighting matri-
ces in the cost function are set as: Q = blockdiag(1000I12, I9,)
and W = blockdiag(10−1I12, 10−4I9,). The torque bounds are
set based on the robot’s hardware limits. In the unilateral con-
straint, the lower bound of the normal ground reaction force at
a support foot is set as 1 N. In the friction cone constraint, the
friction coefficient is chosen as 0.5.

Planner. The inputs to the planner are: a) desired gait cycle T =
2s, b) maximum swing foot height 15 cm, c) desired walking
speed 8 cm/s, and d) the surface movement as explained earlier.

5.2 Results

Case 1 (unperturbed walking). Figure 4 shows the simulation
results of robot walking on the DRS without perturbations
under the proposed planning and control method. As shown
in Fig. 4 (c), the base height is relatively constant, and the
base orientation mildly varies, indicating that the proposed
method can sustain stable walking on the DRS in the absence
of perturbations. Also, Figs. 4 (a) and (b) show that the joint
torques are within the limits and the ground contact constraints
are satisfied.

Case 2 (perturbed walking). Figures 5 and 6 display the sim-
ulation results of robot walking on the DRS under sinusoidal
perturbation forces applied at the center of the robot’s base. The
magnitude of the external force is:

Fp(t) =
{

30sin(2πt) N if 2s≤ t ≤ 4s
0 N otherwise

(23)

Fig. 4. Simulation results obtained from unperturbed walking
(Case 1): (a) joint torques, (b) ground reaction forces, and
(c) base trajectories

Fig. 5. Simulation results obtained from Case 2 with lateral
perturbations: (a) joint torques, (b) ground reaction forces,
and (c) base trajectories.

Two types of perturbations are simulated: (1) perturbation ap-
plied in the lateral Yw-direction (Fig. 5) and (2) perturbation
applied in the forward walking Xw-direction (Fig. 6).
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Fig. 6. Simulation results obtained from Case 2 with forward
perturbations: (a) joint torques, (b) ground reaction forces,
and (c) base trajectories.

Fig. 7. Comparative simulation results on the satisfaction of the
friction cone constraint: (a) our previous offline planning
and I-O linearizing control for DRS walking (Iqbal et al.,
2020) and (b) the proposed online planning and QP-
based control. The friction coefficient of the robot-surface
contact is set to be 0.5 in both simulations.

For the lateral perturbation case (see Fig. 5), the robot’s base
trajectories are notably perturbed between 2 sec and 4 sec, as
shown in subplot (c). In particular, the lateral base position
trajectory is significantly displaced with a peak deviation of
0.12 m. Similar trends are observed in Fig. 6 (c) for the
forward perturbation case. Yet, the proposed planning and
controller method is able to sustain stable walking during the
perturbations, as well as to drive the actual based trajectories
to converge back to the desired motion after the perturbation is
over. Also, the joint torque and ground contact constraints are
respected throughout the walking process, as demonstrated in
subplots (a) and (b) in Figs. 5 and 6.

Case 3 (comparative results). Figure 7 shows the simulation
results of our previous offline planning and I-O linearizing
control (Iqbal et al., 2020) under unperturbed walking. Al-
though this controller explicitly addresses the surface motion,
it relies on offline planning and does not explicitly guarantee
the feasibility of ground contact forces. The unilateral ground
contact constraint is indeed respected by the controller during
simulated walking. Yet, as shown in Fig. 7 (a), the friction cone
constraint is violated at the front right and rear right feet. In
contrast, the proposed online planning and QP-based control
approach is able to respect all ground contact constraints during
the unperturbed walking (subplot (a) of Fig. 7), as well as
during perturbations (subplots (b) in Figs. 5 and 6).

6. CONCLUSION

In this paper, we have introduced an online planner and QP-
based controller design that sustains stable quadrupedal walk-
ing on a DRS (e.g., elevators and ships) by explicitly consider-
ing the surface motion and guarantees the feasibility of ground
contact constraints. The key element of the online planner is a
real-time footstep generator synthesized based on the extension
of the concept of capture point from stationary surfaces to a
DRS. The capture point was derived based on a 3-D LIPM
model walking on a DRS that undergoes a constant horizon-
tal velocity and a varying vertical motion. The controller was
formulated as a QP based on full-order robot modeling that
captures the support foot movement caused by the surface
motion as time-varying holonomic constraints. The QP also
incorporates other common, necessary constraints (e.g., ground
contact constraints) to ensure the feasibility of the real-time
controller implementation. The effectiveness of the proposed
approach in walking stabilization and disturbance rejection was
demonstrated via MATLAB simulations of 3-D quadrupedal
walking over a DRS. In our future work, we will validate this
approach on a physical quadrupedal robot walking on a real-
world nonstationary surface, and extend the approach to ensure
locomotion stability and robustness in the presence of uncertain
surface movement.
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Hirzinger, G. (2011). Bipedal walking control based on
capture point dynamics. In Proc. of IEEE/RSJ International
Conference on Intelligent Robots and Systems, 4420–4427.

Focchi, M., Del Prete, A., Havoutis, I., Featherstone, R., Cald-
well, D.G., and Semini, C. (2017). High-slope terrain loco-
motion for torque-controlled quadruped robots. Autonomous
Robots, 41(1), 259–272.

Galeani, S., Menini, L., and Potini, A. (2011). Robust trajectory
tracking for a class of hybrid systems: An internal model
principle approach. IEEE Transaction on Automatic Control,
57(2), 344–359.

Gao, Y. and Gu, Y. (2019). Global-position tracking control
of a fully actuated nao bipedal walking robot. In Proc. of
American Control Conference, 4596–4601.

Gao, Y. and Gu, Y. (2019). Global-position tracking control
of multi-domain planar bipedal robotic walking. In Proc. of
ASME Dynamic Systems and Control Conference.

Gu, Y., Yao, B., and Lee, C.S.G. (2018). Exponential stabi-
lization of fully actuated planar bipedal robotic walking with
global position tracking capabilities. Journal of Dynamic
Systems, Measurement, and Control, 140(5).

Hamed, K.A., Kim, J., and Pandala, A. (2020). Quadrupedal
locomotion via event-based predictive control and QP-based
virtual constraints. IEEE Robotics and Automation Letters,
5(3), 4463–4470.

Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C.D.,
Tsounis, V., Hwangbo, J., Bodie, K., Fankhauser, P., Bloesch,
M., et al. (2016). ANYmal-a highly mobile and dynamic
quadrupedal robot. In Proc. of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 38–
44.

Iqbal, A., Gao, Y., and Gu, Y. (2020). Provably stabilizing
controllers for quadrupedal robot locomotion on dynamic
rigid platforms. IEEE/ASME Transaction on Mechatronics,
25(4), 2035–2044.

Iqbal, A., Mao, Z., and Gu, Y. (2021). Modeling, analysis, and
control of slip running on dynamic platforms. ASME Letters
in Dynamic Systems and Control, 1(2).

Joe, H.M. and Oh, J.H. (2018). Balance recovery through
model predictive control based on capture point dynamics
for biped walking robot. Robotics and Autonomous Systems,
105, 1–10.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K.,
Yokoi, K., and Hirukawa, H. (2003). Biped walking pattern
generation by using preview control of zero-moment point.
In Proc. of IEEE International Conference on Robotics and
Automation, volume 2, 1620–1626.

Koolen, T., De Boer, T., Rebula, J., Goswami, A., and Pratt, J.
(2012). Capturability-based analysis and control of legged
locomotion, Part 1: theory and application to three simple
gait models. The International Journal of Robotics Research,
31(9), 1094–1113.

Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H.,
Permenter, F., Koolen, T., Marion, P., and Tedrake, R. (2016).
Optimization-based locomotion planning, estimation, and
control design for the Atlas humanoid robot. Autonomous
robots, 40(3), 429–455.

Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hutter, M.
(2020). Learning quadrupedal locomotion over challenging
terrain. Science robotics, 5(47).

Li, C., Zhang, T., and Goldman, D.I. (2013). A terradynamics
of legged locomotion on granular media. Science, 339(6126),

1408–1412.
Morisawa, M., Kajita, S., Kanehiro, F., Kaneko, K., Miura, K.,

and Yokoi, K. (2012). Balance control based on capture point
error compensation for biped walking on uneven terrain. In
Proc. of IEEE-RAS International Conference on Humanoid
Robots (Humanoids 2012), 734–740.

Pratt, J., Carff, J., Drakunov, S., and Goswami, A. (2006).
Capture point: A step toward humanoid push recovery. In
Proc. of IEEE-RAS International Conference on Humanoid
Robots, 200–207.

Pratt, J., Koolen, T., De Boer, T., Rebula, J., Cotton, S., Carff,
J., Johnson, M., and Neuhaus, P. (2012). Capturability-based
analysis and control of legged locomotion, part 2: Applica-
tion to M2V2, a lower-body humanoid. The international
journal of robotics research, 31(10), 1117–1133.

Unitree, R. (2019). Laikago. http://www.unitree.cc/product/.
Accessed: 2019-11-28.

Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H.,
and Morris, B. (2007). Feedback control of dynamic bipedal
robot locomotion, volume 28. CRC press.

Xiong, X., Ames, A.D., and Goldman, D.I. (2017). A stabil-
ity region criterion for flat-footed bipedal walking on de-
formable granular terrain. In Proc. of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 4552–
4559.

Yang, C., Zhang, B., Zeng, J., Agrawal, A., and Sreenath, K.
(2020). Dynamic legged manipulation of a ball through
multi-contact optimization. In Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 7513–
7520. doi:10.1109/IROS45743.2020.9341218.

Zheng, Y. and Yamane, K. (2011). Ball walker: A case study of
humanoid robot locomotion in non-stationary environments.
In Proc. of IEEE International Conference on Robotics and
Automation, 2021–2028.

8


