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ABSTRACT
The complex dynamic behaviors of legged locomotion on

stationary terrain have been extensively analyzed using a sim-
plified dynamic model called the Spring-Loaded Inverted Pen-
dulum (SLIP) model. However, legged locomotion on dynamic
platforms has not been thoroughly investigated even by using a
simplified dynamic model such as SLIP. In this paper, we present
the modeling, analysis, and control of a SLIP model running on
dynamic platforms. Three types of dynamic platforms are consid-
ered: a) a sinusoidally excited rigid-body platform; b) a spring-
supported rigid-body platform; and c) an Euler-Bernoulli beam.
These platforms capture some important domains of real-world
locomotion terrain (e.g., harmonically excited platforms, sus-
pended floors, and bridges). The interaction force model and the
equations of motion of the SLIP-platform systems are derived.
Numerical simulations of SLIP running on the three types of dy-
namic platforms reveal that the platform movement can destabi-
lize the SLIP even when the initial conditions of the SLIP motion
are within the domain of attraction of its motion on flat, station-
ary platforms. A simple control strategy that can sustain the for-
ward motion of a SLIP on dynamic platforms is then synthesized.
The effectiveness of the proposed control strategy in sustaining
SLIP motion on dynamic platforms is validated through simula-
tions.

∗Address all correspondence to this author.

INTRODUCTION
The potential capabilities of legged robots in exploring un-

structured environments due to their discrete footholds have
motivated extensive research on legged robotic locomotion.
Since legged animal locomotion is remarkably agile and energy-
efficient, researchers have proposed many simplified dynamic
models called “templates” [1] to understand their underlying
principles so as to inform the design and control of legged robots.
A point mass at the top of a massless spring introduced by Blick-
han captures important details of legged bouncing locomotion
dynamics [2, 3]. This Spring-Loaded Inverted Pendulum (SLIP)
model forms an essential model for explaining and analyzing
legged locomotion dynamics [4, 5]. Since its first introduction,
the SLIP model has been extensively analyzed for understanding
the stability, periodicity, and energy efficiency of legged locomo-
tion [6–9].

Legged locomotion involves the physical interaction be-
tween a locomotor and the locomotion platform. The motion
of SLIP over a rigid, stationary platform has been extensively
studied [10–14]. Schmitt and Holmes used the SLIP model to
describe passive stabilization for insect running on a horizon-
tal plane [10, 15, 16]. SLIP motion on uneven platforms and
strategies to sustain the motion have been studied by many re-
searchers [13, 14, 17, 18]. However, analysis and control of a
SLIP model on dynamic platforms have not been thoroughly in-
vestigated. Spence et al. experimentally investigated the motion
of insects running on elastic surfaces [19]. Moritz et al. [20] em-
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pirically analyzed human hopping on soft, elastic surfaces.
When a SLIP model interacts with a dynamic platform, the

platform motion affects the SLIP motion through the reaction
force at the contacting point. Thus, it is necessary to model the
platform and SLIP dynamics in order to understand their inter-
action. The analysis of the dynamic models could be used to
inform controller designs that sustain legged locomotion on dy-
namic platforms.

This paper is structured as follows. Dynamic modeling of
SLIP-platform coupled systems is introduced in Section 1. In
Section 2, simulation results of the derived dynamic models are
presented. The proposed control strategy for sustaining forward
motion of a SLIP on dynamic platforms is discussed in Section
3.

1 DYNAMIC MODELING OF SLIP-PLATFORM COU-
PLED SYSTEMS
In this section, we will derive the dynamic models of SLIP-

platform coupled systems. These models will serve as a basis for
the analysis and control of SLIP motion on dynamic platforms in
this study.

1.1 The SLIP Model
The SLIP model is the simplest model that captures the es-

sential dynamic behaviors of legged locomotion [1,3]. It consists
of a point mass at the top of a massless spring leg.

A complete gait cycle of a SLIP model consists of a flight
phase and a stance phase connected by a takeoff and a touch-
down. During a flight phase, the SLIP has no contact with the
ground, and it moves like a projectile under the action of gravity.
At a touchdown event, the flight phase of the SLIP ends, and the
stance phase begins. During a stance phase, the SLIP interacts
with the locomotion platform with the spring leg compressed in
the first half of the stance phase and decompressed in the remain-
ing half. During this process, the direction of the SLIP’s verti-
cal velocity is reversed from downward to upward. At a takeoff
event, the stance phase ends, and the flight phase begins. The
SLIP may have stable forward motion if it is released with spe-
cific initial conditions and if the angle of attack reset policy is
applied [6]. The angle of attack β (see Fig. 1) of a SLIP model
is the angle that the leg makes with the x-axis at a touchdown.

The modeling assumptions of the SLIP are listed as follows:

(A1) The spring leg is massless and can be adjusted to a desired
orientation during a flight phase [6].

(A2) The entire body mass is concentrated at the hip [6].
(A3) The contact point between the SLIP and the platform does

not slip, and the SLIP is confined to move in the sagittal
plane [6].

(A4) The leg is sufficiently stiff in the lateral direction to sustain
the bending moment caused by the hip torque [21].

The motion of the SLIP-platform system is decoupled during a
flight phase and is coupled during a stance phase. Flight-phase
dynamics of the SLIP can be expressed as:

d2xs(t)
dt2 = 0, (1)

d2ys(t)
dt2 =−g, (2)

where xs and ys represent the x- and y- positions of the SLIP cen-
ter of mass, respectively, and g is the gravitational acceleration.
The stance-phase dynamics of the SLIP is given by:

d2xs(t)
dt2 =

−Fx(t)
ms

, (3)

d2ys(t)
dt2 =−g+

−Fy(t)
ms

, (4)

where the expressions of Fx and Fy will be given in Eqs. (9) and
(10), respectively, and ms is the mass of the SLIP.

1.2 The Platform Models
Walking or running requires locomotors to interact with a

platform for generating the reaction force needed to sustain lo-
comotion. The platform can be flat or irregular, and static or
dynamic. The platform types and dynamics are expected to af-
fect the locomotion performance. For example, Alexandra et al.
has shown that walking or running on uneven terrain requires sig-
nificantly more energy than that on even terrain [22, 23], which
then affects the gait of a locomotor [24, 25]. In this paper, these
interactions will be analyzed based on the dynamic models of
three different classes of dynamic platforms and their interaction
with the SLIP model. Dynamic models of these platforms are
introduced next.

To represent harmonically excited rigid platforms, a plat-
form model with the following sinusoidal displacement profile
is considered (see Fig.1 (a)):

yp(t) = y0sinωt, (5)

where yp is the transverse displacement of the platform, and y0
and ω are the amplitude and frequency of the transverse motion,
respectively.

To represent suspended locomotion platforms, a platform
supported on linear, vertical springs is considered (see Fig. 1 (b)).
The equations of motion for such platforms are given by:

d2yp(t)
dt2 +ω

2
n yp(t) =

Fy(t)
mp

, (6)
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FIGURE 1. Models of dynamic platforms: a) a sinusoidally excited rigid platform; b) a platform of mass (mp) supported on spring of stiffness (kp);
and c) a simply supported Euler-Bernoulli beam with elastic modulus (E), moment of inertia (I), length (L), cross sectional area (A) and density (ρ). A
SLIP model with mass (ms) and leg stiffness (ks) moves over these platforms. βi is the angle of attack at the ith touch down, and φi represents the angle
swung by leg during the ith stance phase.

where yp is the platform transverse displacement, mp is the plat-
form mass, kp is the spring stiffness, Fy is the vertical component
of the interaction force acting on the platform, whose expression
is given in Eq. (10), and ωn is the platform natural frequency
given by ωn =

√
kp/mp.

To represent compliant platforms with spatially varying
stiffness such as bridges, an Euler-Bernoulli (EB) beam [26] is
considered (see Fig. 1 (c)). The dynamics of an EB beam with
structural damping ignored can be described by the following
4th-order partial differential equation:

∂ 2

∂x2 (EI
∂ 2yp(x, t)

∂x2 )+ρA
∂ 2yp(x, t)

∂ t2 = Fy(t)δ (x− xs,i), (7)

where yp is the beam transverse displacement, xs,i is the x-
coordinate of the ith touchdown point on the beam, ρ , A, and
E are the beam density, cross-sectional area, and elastic mod-
ulus, respectively, I is the second moment of area of the beam
cross-section about the axis passing through the centroid of the

cross-section and normal to the loading direction, and δ (x−xs,i)
is the Dirac-delta function defined as:

δ (x− xs,i) =

{
1, if x = xs,i.

0, otherwise.
(8)

1.3 Interaction Force Model
SLIP locomotion on a dynamic platform involves coupled

SLIP-platform dynamics during stance phases. The interaction
force between the SLIP and the platform during a stance phase
depends on the states of both the SLIP and the platform. The
horizontal and vertical interaction forces can be respectively ex-
pressed as:

Fx(t) = ks(xs(t)− xp)(1−
l0

l(t)
), (9)
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FIGURE 2. SLIP center of mass motion over a flat, rigid-stationary platform (ms = 80 kg, ks = 15 kN/m, β = 67◦, and vn = 4 m/s). (a): The SLIP
starts at the stable fixed point; (b) and (c): The initial conditions of the SLIP are within the domain of attraction. (d), (e) and (f): The angle of attack of
the SLIP is changed near the stable fixed point. These plots indicate that the domain of attraction is so narrow that even a small variation ±1 from the
nominal angle of attack destabilizes the SLIP.

and

Fy(t) = ks(ys(t)− yp(t))(1−
l0

l(t)
), (10)

where xs and ys are the x- and y- coordinates of the SLIP center
of mass, respectively, xp and yp are the x- and y- coordinates of
the touchdown point on the platform, respectively, l0 and l are
the free and compressed length of spring, respectively, and ks is
the spring-leg stiffness. During a flight phase, the two dynamical
systems are decoupled, and there is no interaction force between
them.

2 NUMERICAL SIMULATION OF SLIP-PLATFORM
SYSTEMS WITHOUT ACTIVE SLIP CONTROL
To illustrate the significant effects of the dynamic properties

and movement of a dynamic platform on the SLIP motion, this
section presents the results of numerical simulations of the SLIP
running on three general types of dynamic platforms without any
active control imposed on the SLIP. The simulation results reveal
that without active control a SLIP is not able to sustain forward
motion across dynamic platforms in most cases.

2.1 Comparative Simulations: SLIP Running on a
Rigid, Stationary Platform

For comparison, stable periodic SLIP running over a regu-
lar platform that is rigid and stationary is first simulated. The
method of planning such a stable motion on regular platforms
can be found in [5, 11, 13, 14, 18, 21, 27, 28].

The stable fixed point [6] of a SLIP model is a point in the
state space that maps to itself through the Poincare return map
and is also stable. The domain of attraction is the region near the
stable fixed point, starting within which any state will eventually
converge to the stable fixed point. The stable fixed point of the
SLIP model considered in this study is calculated for regular-
terrain motion, which corresponds to a touchdown speed at vn =
4 m/s, an uncompressed leg length of l0 = 1 m, and an angle of
attack at β = 67◦. The value of the fixed point is calculated as
α = 8.1◦, which is the angle of the SLIP velocity at touchdown
with respect to the x- axis. The domain of attraction is calculated
to be between α = −15◦ and α = 18◦. In the simulations, the
initial conditions of the SLIP motion are chosen to be near the
calculated stable fixed point.

Simulation results under different initial conditions of the
SLIP motion are shown in Fig. 2. The plots show that even a
small variation (within ±1◦) in the angle of attack can result in
unstable SLIP motion, which indicates that without active control
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the motion of SLIP is very sensitive to the changes in the angle
of attack even when the platform is regular. In the following
subsections, SLIP running on different dynamic platforms are
simulated under no active control. In these simulation, the initial
conditions of the SLIP model are at the fixed point calculated in
this subsection.

2.2 SLIP Running on a Platform with a Sinusoidal Mo-
tion

A platform with a sinusoidal motion (see Fig. 1 (a)) can be
used to represent a class of real-world dynamic platforms that
are externally harmonically excited with a fixed displacement
profile (e.g., a harmonically excited floor). A distinct feature of
this class of dynamic platforms is that their motions are not af-
fected by the interaction with the locomotors as shown in Eq. (5).
However, the platform motion can add or reduce the total en-
ergy of the SLIP through their stance-phase interactions, which
can destabilize the SLIP motion. Therefore, although the SLIP
starts at the stable fixed point calculated in Section 2.1, it may
not sustain forward motion due to the destabilizing effects of
SLIP-platform interaction on the SLIP motion as illustrated by
the simulation results in Figs. 3 (a), (b), and (c). When the plat-
form motion frequency is chosen to be less than 1/5 of the SLIP
nominal stride frequency f0, the effects of platform motion on
the SLIP motion is minimal, and the SLIP can maintain forward
motion for multiple steps as shown in Fig. 3 (a). As the platform
motion frequency to be greater than 1/5 of the SLIP nominal
stride frequency f0, the SLIP motion becomes significantly af-
fected by its interaction with the platform and eventually fails to
sustain forward motion as shown in Figs. 3 (b) and (c).

2.3 SLIP Running on a Rigid Platform Supported on
Springs

A rigid platform supported on vertical springs (see Fig. 1
(b)) can be used to represent a wide range of real-world compli-
ant locomotion platforms, such as rubber tracks [29], leaf lit-
ters [19], and soft elastic surface [20]. Simulation results of
SLIP running on a rigid platform with a constant mass supported
on springs reveal drastically different SLIP-platform interactions
under different stiffnesses of the supporting spring.

Figure 3 (d) shows the simulation results of SLIP running on
a stiff platform with a natural frequency greater than 5 times of
the SLIP’s nominal stride frequency f0. In this case, the energy
exchange between the SLIP and the platform is minimal due to
two main factors: a) during a stance phase, the interaction force
varies smoothly from zero (at touchdown) to a maximum value
(at mid-stance) and then to zero (at take-off); and b) the duration
of the SLIP’s stance phase equals several displacement cycles of
the stiff platform. Since the energy transferred from the SLIP
to the platform during a stance phase depends on the work done
by the interaction force on the platform, the above two factors

result in minimal energy exchange between the SLIP and a stiff
platform. Due to the minimal energy loss, the SLIP tends to
preserve its motion similar to that on a rigid, stationary platform,
which is confirmed by the similarity between Fig. 2 (a) and Fig. 3
(d).

Figure 3 (e) shows the simulation results of SLIP running on
a platform with a natural frequency between 1/5 to 5 times of the
SLIP’s nominal stride frequency f0. The amount of energy ex-
change depends on the state of the platform at touchdown. If the
work done by interaction force on the platform is positive, then
the SLIP loses a portion of its energy. If the work is negative,
then the platform transfers some energy to the SLIP. If the work
done by the interaction force on the platform is zero, then there
is no energy exchange.

Figure 3 (f) shows the simulation results of SLIP running
on a platform supported on soft springs with a natural frequency
less than 1/5 of the SLIP’s nominal stride frequency. In this
case, the SLIP takes many steps within one cycle of platform
oscillation. The SLIP keeps losing energy when the platform
moves downward and absorbs a portion of the lost energy back
after the platform begins to move upward. If the SLIP cannot
recover the lost kinetic energy, it will eventually fall down.

The simulation results of SLIP motion on a platform sup-
ported on springs indicate that the dynamic properties of the plat-
form indeed affect the SLIP motion. The effects on the SLIP mo-
tion depend on the platform natural frequency, which is a func-
tion of the platform mass and stiffness.

2.4 SLIP Running on an Euler-Bernoulli Beam
An Euler-Bernoulli (EB) beam (see Fig. 1 (c)) represents

a class of locomotion platforms with spatially varying stiffness.
For example, bridges can be mathematically modeled as EB
beams [30, 31]. A distinctive feature of an EB beam is that
its bending stiffness and transverse displacement profile are spa-
tially varying. For example, an EB beam is relatively stiff near
the supporting ends and relatively soft at the mid-span. In con-
trast, a platform supported on springs, which is studied in Section
2.2, has spatially uniform stiffness and displacement profile.

A SLIP-beam coupled system is simulated by numerically
solving the SLIP-beam coupled dynamics. As explained in Sec-
tion 1.2, the stance-phase dynamics of the coupled SLIP-beam
system includes: a) the 2nd-order ordinary differential equation
in Eq. (4) describing the SLIP dynamics; and b) the 4th-order
partial differential equation in Eq. (7) describing the beam dy-
namics. During a flight phase, the SLIP motion is only affected
by gravity, and the beam undergoes free vibration.

To assess the effects of beam compliance on the SLIP
motion, a group of EB beams with a relatively wide range
of fundamental frequencies (ω0) are simulated. This range
is chosen based on the frequency range for different types of
bridges [32–35]. This frequency range is chosen as 0.3 Hz <
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FIGURE 3. SLIP center of mass motion over dynamic platforms (ms = 80 kg, ks = 15 kN/m, β = 67◦, and vn = 4 m/s). a), b), and c): SLIP motion
over a sinusoidally excited platform with an amplitude of y0 = 0.1 m and a platform frequency (ω/(2π)) of 0.3 Hz, 1 Hz, and 3 Hz, respectively. d),
e), and f): SLIP motion over a platform (mp = 1000 kg) supported on springs with a natural frequency ( fn) of 10 Hz, 1 Hz, and 0.3 Hz, respectively.

ω0 < 10 Hz to include soft (0.3 Hz < ω0 < 1 Hz), moderate (1
Hz < ω0 < 5 Hz), and stiff (5 Hz < ω0 < 10 Hz) beams. The
reason for this choice of the frequency range is twofold: a) it
covers the significant range of frequencies for the SLIP-platform
interaction; and b) it covers the significant range of structural fre-
quencies of short-span and long bridges. Simulation results are
presented in Fig. 4.

Figure 4 (a) shows SLIP running on a soft beam (ω0 = 0.3
Hz). Similar to SLIP running on a rigid platform supported on
soft springs as shown in Fig. 3 (f), the SLIP is not able to exert
sufficient pushing force against the beam for taking off from the
beam and initiating a significant flight phase. Instead, the SLIP
follows the beam’s transverse displacement profile till it even-
tually loses its entire kinetic energy in displacing the beam and
fails to sustain forward motion.

Figure 4 (b) shows SLIP running on a moderately soft beam
(ω0 = 1 Hz). Similar to SLIP motion on a moderately soft spring
supported platforms as shown in Fig. 3 (e), the SLIP fails to move
forward once the touchdown point on the beam start moving up-
ward.

Figures 4 (c) and (d) show SLIP running on relatively stiff
beams whose fundamental frequencies are 3 Hz and 5 Hz, re-
spectively. When traveling on the beam with a fundamental fre-

quency of 3 Hz, the SLIP sustains seven steps before it fails due
to the large beam vibration speed caused by the large displace-
ment at the mid-span as illustrated in Fig. 4 (c). In contrast, the
SLIP is able to cross the beam with a fundamental frequency of
5 Hz, but its gait shows a significant change at the mid-span due
to the large vibration speed of the beam as shown in Fig. 4 (d).

The simulation results of SLIP running on EB beams show
how the SLIP model interacts with beams of different fundamen-
tal frequencies. It also highlights the spatially varying dynamic
interactions between the SLIP and the beams. In all the presented
cases, it is observed that the motion of a SLIP on dynamic plat-
forms is significantly affected by the platform dynamics and that
controllers will be required for sustaining forward motion.

3 CONTROLLER DESIGN FOR SUSTAINING FOR-
WARD MOTION OF A SLIP ON DYNAMIC PLAT-
FORMS
As discussed in Section 2, maintaining sustained forward

motion of a SLIP on a dynamic platform is even more difficult
than that on a rigid, stationary platform due to the effects of
platform movement, as demonstrated by the simulation results
shown in Figs. 3 and 4. The platform movement perturbs the
SLIP motion and the stance-phase symmetry, which may lead to
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FIGURE 4. SLIP center of mass motion over a simply supported Euler-Bernoulli beam (L = 15 m, E = 210 GPA, and ρA = 67 kg/m). (a): ω0 = 0.3
Hz. (b): ω0 = 1 Hz. (c): ω0 = 3 Hz. (d) ω0 = 5 Hz. ω0 is the fundamental frequency of the beam. At higher ω0 (i.e., ω0 > 10 Hz), the beam behaves
like a stationary platform. At lower ω0, the beam and the SLIP move together, and the passive SLIP is not able to generate enough reaction force to
take off from the beam.

a fall. In this section, we design a simple controller that stabilizes
the SLIP motion on a dynamic platform by iteratively tuning the
angle of attack.

Angle of attack adjustment controller: This control action is
designed to iteratively make the stance-phase motion near sym-
metric about the line normal to the platform at the contact point
between the SLIP and the platform. For the considered dynamic
platforms, the angle swung by the SLIP leg during successive
near symmetric stance-phases motion does not change drasti-
cally when the point mass moves with a near constant horizontal
speed. The near constant horizontal speed is attained due: a) the
symmetric stance-phase motion ensures that the SLIP horizontal
velocity is same at a touchdown and takeoff, and b) during the
flight-phase, the horizontal speed is unperturbed. An estimate
of the angle swung (φi) by the leg (see Fig. 1) is used for deter-
mining the angle of attack (βi+1) for the next stance phase so as
to make the stance-phase motion near symmetric as explained in
the following algorithm.

Algorithm: Let βi and φi respectively denote the angle of attack

and the angle swung by the leg in the current stance phase as
illustrated in Fig. 1. If φi 6= π−2βi, then the angle of attack βi+1
for the next stance phase is given by:

βi+1 = (π−φi)/2. (11)

This algorithm is simulated for SLIP motion on stationary and
dynamic platforms with various initial conditions. If the SLIP
moves forward after the first step, then this algorithm makes the
stance phase motion near symmetric. For stationary platform,
symmetry within±0.1◦ is achieved after five steps. This strategy
achieves a near symmetric stance-phase motion without dissipat-
ing energy from the SLIP controller as compared to the enforced
stance-phase symmetry concept introduced by Piovan et al. [12].
The designed controller is simple, intuitive, and robust with only
minimal control effort. Ideally, it does not add additional energy
to the system due to the massless spring assumption (A1).
Controller performance: We implemented the designed con-
troller for SLIP motion over the considered dynamic platforms
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as described in Section 1.2. The motions of Section 2, Figs. 3
(b), 3 (e), and 4 (b) are simulated under the proposed controller,
and the resulting motions are shown in Figs. 5 (a), (b), and (c),
respectively. Simulation results confirm the efficacy of the de-
signed controller in sustaining SLIP motion for a wide range of
dynamic platforms.

FIGURE 5. SLIP center of mass motion over dynamic platforms af-
ter implementing the control strategy in simulation. a): a sinusoidally
excited platform (y0 = 0.08 m at 1 Hz). b): a platform supported on
springs (mp = 1000 kg and fn = 1 Hz). c): an EB beam with fundamen-
tal frequency 1 Hz. In all these cases, the SLIP is able to sustain forward
motion.

CONCLUSION
This paper studies the effects of platform dynamics on the

locomotion performance of a SLIP model running on dynamic
platforms. Three representative groups of dynamic platforms
were considered, including: a) a sinusoidally excited rigid plat-
form, b) a spring-supported platform, and c) a simply supported
EB beam. Numerical simulation results of the SLIP-platform
coupled systems revealed that the physical interaction between

a SLIP and a dynamic platform can deteriorate the SLIP move-
ment performance and even cause its instability in most cases.
To overcome the challenge of sustaining forward SLIP motion
on dynamic platforms, we proposed a simple and intuitive con-
troller. Simulation results confirmed the validity of the proposed
controller for maintaining SLIP motion on the considered dy-
namic platforms. In our future work, we will extend the proposed
controller design to stabilize SLIP motion on general dynamic
platforms.
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