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I. INTRODUCTION1

This document supplements the results presented in2

our paper titled “HT-LIP Model based Robust Control of3

Quadrupedal Robot Locomotion under Unknown Vertical4

Ground Motion”.5

A. Notations6

The following notations are used in this supplementary7

document. The notation | . | represents the absolute value8

function of a real scalar. For real vectors and matrices, the9

component-wise absolute value function is also represented10

by | . |, with abuse of notation. The 2-norm of a vector is11

denoted by ∥ . ∥. The infinity norm of a vector is denoted12

by ∥ . ∥∞. For a matrix A, the infinity norm is defined as13

∥A∥∞ = maxi
(
∑ j |Ai j|

)
, where Ai j is the element of A at14

the intersection of the ith row and jth column. For brevity,15

the following notations from the main manuscript are used:16

⋆|−n := ⋆(τ−n ) and ⋆|+n := ⋆(τ+n ), where τ−n and τ+n are the17

time instants just before and after the switching time τn.18

B. Abbreviations19

This supplementary file uses the following abbreviations:20

Abbreviation Description
CoM Center of mass.
DRS Dynamic rigid surface.
DOF Degree of freedom.
LIP Linear inverted pendulum.
HT-LIP Hybrid time-varying LIP.
QP Quadratic program.
S2S Step-to-step.

21

II. PROOFS OF THEOREM 1 AND 322

This section presents the full proofs of Theorems 1 and 323

in Sec. III (“HT-LIP based Footstep Planning”) of the main24

paper.25
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A. Proof of Theorem 1 26

This subsection provides the full proof of Theorem 1 27

based on the Lyapunov stability analysis on the origin of 28

the closed-loop error dynamics. 29

1) Closed-loop error dynamics: Based on the HT-LIP 30

model in (3) and the proposed discrete footstep control law 31

in (5) of the main paper, the hybrid model of the closed-loop 32

error system can be readily obtained as: 33{
ė = ααα(t)e if t ̸= τ−n ,

e|+n = (I+βββK)e|−n if t = τ−n ,
(1)

where n ∈ N. Recall that e is the tracking error state of the 34

HT-LIP model and defined as e := [e, ė]T with e the differ- 35

ence between the actual CoM position and the desired one. 36

Also, recall that ααα(t) :=
[

0 1
f (t) 0

]
with f (t) := z̈s(t)+g

z0
, I is 37

an identity matrix with a proper dimension, βββ := [−1, 0]T , 38

and K is the feedback footstep control gain. 39

The S2S dynamics of the closed-loop error system are 40

given in (6) of the main paper and listed below for the 41

convenience of reference: 42

e|−n+1 = Ad,ne|−n . (2)

Recall that Ad,n is the state-transition matrix of the S2S error 43

system. 44

2) Lyapunov function candidate V : We consider a Lya- 45

punov function candidate defined as V (e) := 1
2∥e∥2. Accord- 46

ing to the existing stability theory [1] of general discrete- 47

time systems that include the S2S error dynamics in (2), 48

the error dynamics are asymptotically stable if: (i) V (e) 49

satisfies the positive definiteness and boundedness conditions 50

mentioned in [1] and (ii) V (e|−n ) strictly decreases as n 51

increases. It can be readily proven that condition (i) is met 52

for the selected Lyapunov function candidate V . The rest 53

of this subsection shows that V meets condition (ii) if the 54

stability condition in Theorem 1 holds. 55

3) Boundedness of error state norm: To prove Theorem 56

1, we first establish the boundedness of the norm of the error 57

state at the (n+1)th switching instant, i.e.,
∥∥∥e|−n+1

∥∥∥, in terms 58

of
∥∥∥e|−n

∥∥∥, as summarized in Lemma 1 later. 59

To introduce Lemma 1, we utilize a supreme model of 60

the HT-LIP, which is introduced in Sec. III-B1 of the main 61

paper and revisited here for convenience of reference. The 62

supreme model of the continuous-time portion of the hybrid 63



error system, i.e., ė = ααα(t)e, is given by:64

ë = f ne, (3)

where e is the solution of (3), and the positive, constant65

parameter f n is defined as f n ≥ sup f (t) on t ∈ (τn,τn+1].66

Recall that ΦΦΦ( f n;τ
−
n+1,τ

+
n ) represents the state-transition67

matrix of the supremum time-invariant model in (3) on t ∈68

(τ+n ,τ−n+1]. Also, recall ΦΦΦ( f n;τ
−
n+1,τ

+
n ) = ΦΦΦ( f n;∆τn+1,0),69

where ∆τn is defined as the duration of the nth continuous70

phase and ∆τn := τn+1 − τn.71

Lemma 1 (Boundedness of error state norm): Consider72

assumptions (A1) and (A2) given in the main paper and73

the S2S error dynamics in (2). Recall ad,n := ∥Ad,n∥∞ :=74

∥ΦΦΦ( f n;∆τn,0)(I+βββK)∥∞. Then, for all n∈N, the following75

inequality holds76 ∥∥∥e|−n+1

∥∥∥≤ ad,n

∥∥∥e|−n
∥∥∥. (4)

77

Proof: We prove Lemma 1 by first establishing the bounds78

on the error state e during t ∈ [τ+n ,τ−n+1] based on the time-79

varying error dynamics model ë = f (t)e (i.e., ė = ααα(t)e).80

Since this error model is time-varying, we consider its time-81

invariant supremum system given in (3) to establish the82

needed error bound.83

Note that f (t) is positive for all t ∈ R+. Then, according84

to the results of the Strong Comparison Theorem in Sec. 285

of [2], the solutions e and e satisfy the following inequality86

for all t ∈ (τn,τn+1]87

|e(t)| ≤ |e(t)| (5)

when they share the same initial condition of e(τ+n ) = e(τ+n ).88

By using (5) and the state-transition matrix89

ΦΦΦ( f n;τ
−
n+1,τ

+
n ), the error state e|−n+1 is bounded as:90 ∣∣∣e|−n+1

∣∣∣≤ ∣∣∣ΦΦΦ( f n;τ
−
n+1,τ

+
n )e|+n

∣∣∣. (6)

Next, we apply the discrete switching map in (1) to the91

equation above and obtain:92 ∣∣∣e|−n+1

∣∣∣≤ ∣∣∣ΦΦΦ( f n;∆τn+1,0)(I+βββK)e|−n
∣∣∣. (7)

Recall that the state-transition matrix of the complete93

hybrid supreme model is given by:94

Ad,n := ΦΦΦ( f n;∆τn,0)(I+βββK). (8)

With the state-transition matrix defined as in (8), we can95

rewrite the right-hand side of the inequality in (7) as:96 ∣∣∣e|−n+1

∣∣∣≤ |Ad,ne|−n |. (9)

Given the sub-multiplicative property of |Ad,ne|−n |, (9)97

becomes:98 ∣∣∣e|−n+1

∣∣∣≤ ∣∣∣Ad,n

∣∣∣∣∣∣e|−n ∣∣∣. (10)

Adding an induced matrix norm ∥.∥ to both sides of (10)99

and using the properties of ∥.∥, we get: 100∥∥∥e|−n+1

∥∥∥≤
∥∥∥(|Ad,n||e|−n |)

∥∥∥≤
∥∥∥Ad,n

∥∥∥
∞

∥∥∥e|−n
∥∥∥

= ad,n

∥∥∥e|−n
∥∥∥, (11)

which completes the proof. ■ 101

4) Proof of Theorem 1: Based on Lemma 1, the proof of 102

Theorem 1 is given as follows: 103

Proof : Using (4) in Lemma 1, we analyze an upper bound 104

of the change in the Lyapunov function ∆V (e|−n ) across two 105

adjacent foot landings as: 106

∆V (e|−n ) :=V (e|−n+1)−V (e|−n ) =
1
2

∥∥∥e|−n+1

∥∥∥2
− 1

2

∥∥∥e|−n
∥∥∥2

≤ 1
2

a2
d,n

∥∥∥e|−n
∥∥∥2

− 1
2

∥∥∥e|−n
∥∥∥2

=: −σn

∥∥∥e|−n
∥∥∥2
,

(12)
where σn is defined as σn := 1

2 (1 − a2
d,n). If the positive 107

variable ad,n satisfies ad,n < 1 for all n ∈ N, then −σn < 108

0 holds on n ∈ N. Accordingly, the Lyapunov function V 109

satisfies all the sufficient stability conditions described in 110

Sec. II-A2. This completes the proof. ■ 111

B. Proof of Theorem 3 112

Proof: Minimizing the cost function J(K) leads to the min- 113

imization of the variable ad,n while the physical feasibility 114

and asymptotic stability of the closed-loop HT-LIP system 115

are guaranteed by enforcing the constraint EKT < d. Hence, 116

the optimal solution to the QP problem corresponds to the 117

optimal convergence rate, feasibility, and stability. ■ 118

III. MIDDLE LAYER: FULL-ORDER MODEL BASED 119

TRAJECTORY GENERATION 120

This section explains the middle layer of the proposed 121

control framework introduced in Sec. III of the main 122

manuscript. 123

The essence of the proposed middle layer is the commonly 124

adopted trajectory interpolation based on the robot’s full- 125

order kinematics model [3]–[5]. Specifically, the middle 126

layer translates the desired CoM and footstep locations, 127

which are generated by the HT-LIP based footstep planner 128

(i.e., the higher layer), into the desired full-body trajectories 129

for all DOFs of the robot. This translation also respects 130

the model simplifying assumptions underlying the proposed 131

HT-LIP model. By enforcing both the desired trajectories 132

generated by the higher layer and the HT-LIP model assump- 133

tions, the middle layer can effectively reduce the discrepancy 134

between the HT-LIP model and the actual robot dynamics. 135

A. Control Variable Selection 136

As discussed in the main paper, a quadrupedal robot (e.g., 137

Unitree’s Go1 robot) during trotting is typically underactu- 138

ated with 13 DOFs and 12 independent actuators. Therefore, 139

a full-body controller can directly command twelve indepen- 140

dent position or orientation variables. 141

In this study, the full-order trajectories we choose to 142

directly control are the six-dimensional (6-D) base pose (i.e., 143
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Fig. 1. Ground-truth position trajectory of the point on the DRS around
which the robot performs the trotting gait during the unknown pitch
movement (HC1) of the DRS.

Fig. 2. Ground-truth position trajectory of the point on the DRS around
which the robot performs the trotting gait during the unknown pitch
movement (HC2) of the DRS.

position and orientation) and the 3-D positions of the two144

swing feet. Given that the CoM of a typical quadruped is145

close to its base/trunk center, the desired CoM trajectory146

produced by the higher layer is assigned as the desired147

base trajectory of the quadruped. Directly commanding the148

base position trajectories allows the indirect tracking of the149

desired CoM trajectories, and controlling the swing foot150

positions can ensure the robot reliably executes the desired151

foot-landing time instants.152

1) Base pose trajectory generation: The vector of153

the robot’s desired base trajectories is given as: hb,d =154

[xb,d ,yb,d ,zb,d ,φb,d ,θb,d ,ψb,d ]
T , where (xb,d , yb,d , zb,d) and155

(φb,d , θb,d , ψb,d) are the base position and orientation (i.e.,156

roll, pitch, and yaw angles) with respect to the world frame,157

respectively.158

The desired horizontal base trajectories xb,d and yb,d are159

provided by the higher-layer footstep planner. To respect160

assumption (A3) given in the main manuscript, the desired161

base height zb,d relative to the support point of the HT-LIP162

is designed to be equal to the constant z0; that is, zb,d = z0.163

The desired base yaw trajectory ψb,d is planned based on164

the user-specified yaw rate ωb,d . Additionally, for simplicity165

and without loss of generality, the desired base roll and pitch166

angles, φb,d and θb,d , are both set to zero for maintaining a167

steady trunk posture.168

2) Swing foot position trajectory generation: As men-169

tioned earlier, there are always two legs swinging in the air170

Fig. 3. Ground-truth position trajectory of the point on the DRS around
which the robot performs the trotting gait during the unknown pitch
movement (HC3) of the DRS.

Fig. 4. Ground-truth position trajectory of the point on the DRS around
which the robot performs the trotting gait during the unknown pitch
movement (HC5) of the DRS.

during quadrupedal trotting. The desired maximum height of 171

the two swing feet is set as a kinematically feasible value. 172

Meanwhile, the desired horizontal swing foot trajectories 173

are designed as Bézier curves [6] to agree with the desired 174

footstep length generated by the higher-layer footstep plan- 175

ner, the actual swing foot locations at the beginning of the 176

given continuous phase, and the desired continuous-phase 177

duration. 178

IV. FULL-ORDER MODEL BASED CLOSED-LOOP 179

STABILITY ANALYSIS 180

This section provides the closed-loop stability analysis for 181

the unactuated subsystem of the hybrid, time-varying, full- 182

order robot model under the proposed hierarchical control 183

framework. 184

As mentioned in Sec. III of the main manuscript, the 185

trotting quadruped of interest to this study is underactuated. 186

Since its degree of underactuation is one, its underactuated 187

dynamics are two-dimensional, which can be represented by 188

the dynamics of the forward CoM position and velocity (i.e., 189

X) associated with the full-order robot model. The actuated 190

dynamics of the full-order model correspond to the base 191

pose and the swing foot position trajectories that are directly 192

driven by the lower-layer controller. Note that for the actual 193

robot and its full-order model, the CoM and the base center 194
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Fig. 5. Desired and actual base trajectories under the hardware experiment
case (HC2). The small tracking errors indicate stable robot trotting.

Fig. 6. Torque profiles under the hardware experiment case (HC2), all of
which respect the robot’s individual actuator limit of 22.5 Nm.

of the robot do not coincide due to the nontrivial mass of195

the legs.196

Since the forward CoM position and velocity for the full-197

order model are not directly actuated, we need to explicitly198

analyze the stability of their dynamics. As mentioned earlier,199

the actual dynamics of the CoM forward position and veloc-200

ity X can be approximated by the proposed HT-LIP model201

given in (3) of the main manuscript. Although the proposed202

HT-LIP footstep control law provably ensures the asymptotic203

stability of the closed-loop HT-LIP model under unknown204

surface motions, the stability of the closed-loop dynamics of205

the CoM state X based on the actual full-order model still206

needs to be analyzed. This is due to the discrepancy between207

the HT-LIP model and the actual dynamics of the CoM state208

X.209

A. S2S Error System of Actual CoM Dynamics210

Based on the closed-loop error system dynamics of the211

HT-LIP model given in (2), the S2S error system of the212

actual CoM dynamics can be expressed as:213

e|−n+1 = Ad,ne|−n +dn, (13)

where n ∈ N. Here the vector dn represents the lumped214

discrepancy between the actual S2S dynamics of the CoM215

and the reduced-order HT-LIP model, including the ignored216

Fig. 7. Desired and actual base trajectories under the hardware experiment
case (HC3). The small tracking errors indicate stable robot trotting.

Fig. 8. Torque profiles under the hardware experiment case (HC3), all of
which respect the robot’s individual actuator limit of 22.5 Nm.

nonlinear term in the S2S dynamics and the difference 217

between the desired and actual footstep locations. 218

B. Stability Analysis 219

Similar to [7], we consider the boundedness of the model 220

discrepancy dn as: 221

∥dn∥< d ∀n ∈ N, (14)

where d is a positive constant. This boundedness assumption 222

is reasonable for hardware implementation when the desired 223

step duration is designed as finite (assumption (A2)) and the 224

initial tracking error is relatively small. We denote the set of 225

all possible values of dn satisfying (14) as D; that is, dn ∈D. 226

We use E to denote the minimum invariance set [8] such 227

that for all e|−n ∈ E and dn ∈ D, we have e|−n+1 ∈ E . Also, 228

recall that the asymptotic stability condition for the closed- 229

loop error system of the HT-LIP model is established in 230

Theorem 2 of the main manuscript. Consequently, the S2S 231

dynamics in (13) are locally stable [8], [9] if the asymptotic 232

stability condition for the HT-LIP model in Theorem 2 is 233

met and if the uncertainty boundedness condition in (14) 234

holds. 235

V. SUPPLEMENTARY HARDWARE EXPERIMENT RESULTS 236

This section reports the supplementary results of the 237

hardware validation experiments. 238
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Figures 1-4 show the general, aperiodic displacement239

profiles of a point on the DRS/treadmill near the footholds240

of the robot for cases (HC1)-(HC3) and (HC5), respectively.241

The base trajectory tracking plots corresponding to the242

DRS motions (HC2) and (HC3) are illustrated in Figs. 5243

and 7, respectively. The corresponding joint torque plots in244

Figs. 6 and 8 show that the torque trajectories are within the245

actuator limit of 22.5 Nm for each joint. Both the reliable246

base trajectory tracking and the consistent torque profiles247

confirm stable trotting under DRS motion cases (HC2) and248

(HC3).249
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