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HT-LIP Model based Robust Control of Quadrupedal Robot
Locomotion under Unknown Vertical Ground Motion

Amir Iqbal, Sushant Veer, Christopher Niezrecki, and Yan Gu

Abstract—This paper presents a hierarchical control frame-1

work that enables robust quadrupedal locomotion on a dy-2

namic rigid surface (DRS) with general and unknown vertical3

motions. The key novelty of the framework lies in its higher4

layer, which is a discrete-time, provably stabilizing footstep5

controller. The basis of the footstep controller is a new hybrid,6

time-varying, linear inverted pendulum (HT-LIP) model that7

is low-dimensional and accurately captures the essential robot8

dynamics during DRS locomotion. A new set of sufficient9

stability conditions are then derived to directly guide the10

controller design for ensuring the asymptotic stability of the11

HT-LIP model under general, unknown, vertical DRS motions.12

Further, the footstep controller is cast as a computationally13

efficient quadratic program that incorporates the proposed HT-14

LIP model and stability conditions. The middle layer takes15

the desired footstep locations generated by the higher layer16

as input to produce kinematically feasible full-body reference17

trajectories, which are then accurately tracked by a lower-18

layer torque controller. Hardware experiments on a Unitree19

Go1 quadrupedal robot confirm the robustness of the proposed20

framework under various unknown, aperiodic, vertical DRS21

motions and uncertainties (e.g., slippery and uneven surfaces,22

solid and liquid loads, and sudden pushes).23

Index Terms—Legged robotics, dynamic platform, reduced-24

order model, footstep control.25

I. INTRODUCTION26

Due to the prevalence of uncertainties in real-world en-27

vironments, robustness is a crucial performance measure28

of legged robot control. Various control approaches [1]–29

[4] have achieved remarkably robust locomotion in a wide30

variety of unstructured, static environments (e.g., sand,31

grass, hiking trails, and creeks). Yet, since the previous32

approaches typically assume a static ground, they may not be33

effective for a dynamic rigid surface (DRS), which is a rigid34

surface moving in the inertial frame and can persistently35

and continuously perturb the robot movement. This paper36

introduces a reduced-order model based control framework37

that achieves robust quadrupedal trotting on a DRS with a38

general and unknown vertical motion.39

A. Related Work40

1) Related work on DRS locomotion control: Recently,41

there has been a growing interest in addressing the problem42

of DRS locomotion control [5]–[10]. Henze et al. [5] have43

proposed a passivity-based controller based on a full-order44

robot model for humanoid balancing on a rigid rocker45
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board. Englsberger et al. [6] have proposed a walking gait 46

generator for humanoid walking on a rigid surface with 47

a constant linear velocity. However, these studies do not 48

address surfaces with notable, varying accelerations. 49

Researchers have also explored locomotion control for 50

floating-base, rigid platforms with inertia comparable to 51

the robot, including rolling rigid balls [7], [9] and floating 52

islands [10]. Still, the robot control problem for rigidly 53

actuated or heavyweight DRSes (e.g., trains, vessels, and 54

airplanes), whose dynamics are barely affected by the phys- 55

ical robot-surface interaction, remains under-explored. Our 56

previous legged robot controllers for DRS locomotion [8], 57

[11]–[14] have focused on such surfaces. Yet, since they 58

assume a periodic (and even sinusoidal) surface motion 59

whose entire time profile is accurately known ahead of time, 60

they cannot address unknown or aperiodic DRS motions. 61

2) Related work on reduced-order models: Reduced- 62

order models describe the robot’s essential dynamics. By 63

considering the relatively simple reduced-order models in- 64

stead of the complex full-order models, motion generators 65

can more efficiently plan desired trajectories, enabling quick 66

reaction to disturbances for robust locomotion. 67

One widely used reduced-order model is the linear in- 68

verted pendulum (LIP) model [15]. Thanks to its linearity, 69

low dimensionality, and analytical tractability, the LIP has 70

served as a basis for the closed-form analysis, online motion 71

generation, and real-time control of bipedal [15]–[17] and 72

quadrupedal [18] locomotion on static surfaces. The clas- 73

sical LIP describes a legged robot as a point mass, which 74

corresponds to the robot’s center of mass (CoM), atop a 75

massless leg, with the point foot located at the robot’s center 76

of pressure (CoP) [15], [19], [20]. 77

The classical LIP model has been expanded to capture 78

the hybrid dynamics of legged locomotion on a stationary 79

surface [21]–[24], which include continuous leg-swinging 80

dynamics and discrete foot-switching behaviors. Using the 81

theory of linear, hybrid, time-invariant systems, the asymp- 82

totic stability condition for the hybrid LIP (H-LIP) model un- 83

der a discrete-time footstep controller has been constructed 84

to enable robust locomotion under external pushes [21], [22]. 85

Yet, the model and stability condition may not be valid under 86

a significant DRS motion since they assume a static ground. 87

Although our recent study on quadrupedal walking has 88

analytically extended the continuous-time LIP model [15] 89

from static to dynamic surfaces [11], [12], the modeling and 90

analysis do not consider hybrid robot dynamics. 91

B. Contributions 92

This paper introduces a reduced-order model based con- 93

trol approach that achieves robust quadrupedal trotting on 94



Fig. 1. Snapshots of experiments. All experiments are under the unknown and aperiodic vertical surface motion zs(t) as shown in (a) and (b). The robot
also experiences additional unknown disturbances, which include: (c) sudden pushes that result in (d) an irregular robot posture just after a push; (e) rocky
surface with a peak height of 10 cm; (f) smooth glass surface; (g) solid load (36% of the robot’s mass); and (h) liquid load (32% of the robot’s mass).

rigidly actuated or heavyweight DRSes with aperiodic and95

unknown vertical motions (e.g., ships and airplanes). Some96

of the analytical results reported in this paper have been97

previously presented in [25], which are the derivation of98

the proposed HT-LIP model and the preliminary stability99

analysis of the HT-LIP. This study makes the following new,100

substantial contributions: (a) generalization of the stability101

condition in [25] to enlarge the solution space for controller102

design under unknown DRS motions; (b) formulation of103

a robust footstep controller as a computationally efficient104

quadratic program that enforces stability conditions even105

under unknown, vertical motions; (c) derivation of a hi-106

erarchical control approach that incorporates the proposed107

quadratic program; (d) stability analysis for the full-order108

model under the proposed control approach; and (e) exper-109

imental validation under various uncertainties (Fig. 1).110

II. STABILIZATION OF A HYBRID TIME-VARYING LIP111

This section introduces a reduced-order model that cap-112

tures the essential hybrid robot dynamics associated with113

quadrupedal trotting on a DRS with a general vertical114

motion, along with its stabilizing control law.115

A. Open-Loop Reduced-Order Model116

To derive the proposed reduced-order model, we extend117

the classical H-LIP model [21] from static surfaces to DRSes118

by combining the H-LIP and our previous continuous-119

phase time-varying LIP model [12] derived for DRSes. The120

resulting model, as illustrated in Fig. 2, is a hybrid, time-121

varying LIP model, which we call “HT-LIP”.122

1) Model assumptions: The proposed model derivation123

considers the following simplifying assumptions:124

(A1) The absolute vertical acceleration of the DRS is125

bounded and is locally Lipschitz in time.126

(A2) The desired duration of the continuous phase during127

the HT-LIP stepping is bounded for all walking steps.128

(A3) The CoM maintains a constant height above the CoP129

(i.e., the support point S in Fig. 2).130

Assumption (A1) holds for common real-world dynamic131

platforms since their acceleration is continuous and bounded132

and does not change abruptly [26]. Assumption (A2) is133

reasonable as it ensures a finite duration for each continuous134

phase of the HT-LIP and prevents Zeno behavior [27]. 135

Assumption (A3) helps avoid kinematic singularity induced 136

by an overly stretched knee joint, and ensures the linearity 137

of an inverted pendulum model [15] as explained later. 138

2) Continuous phases: Under assumption (A3), the 139

continuous-phase dynamics of a 3-D inverted pendulum 140

model along the x- and y-axes of the world frame are linear 141

and share the same form, as explained in our previous work 142

on continuous-time LIP modeling for DRSes [25]. Without 143

loss of generality and for brevity, the subsequent analysis 144

considers the HT-LIP model in the x-direction (see Fig. 2). 145

We use z̈s(t), g, and z0 to respectively denote the vertical 146

acceleration of the support point S, the magnitude of grav- 147

itational acceleration, and the CoM height above S. Here, 148

the time argument t is kept in the notation of the surface 149

acceleration z̈s(t) to highlight its explicit time dependence. 150

Denoting the horizontal CoM position relative to point S 151

as x, we express the continuous-phase equation of motion for 152

the HT-LIP in the x-direction as the following continuous- 153

time, time-varying, linear, homogeneous system: 154

ẍ =
z̈s(t)+g

z0
x. (1)

3) Discrete foot switching: Besides continuous dynamics, 155

the proposed HT-LIP also considers the discrete foot-landing 156

event when the stance and support feet switch roles. We use 157

τn to denote the nth switching instant with n ∈N. Further, we 158

denote the time instant just before and after the nth switching 159

instant as τ−n and τ+n , respectively. For notational brevity, we 160

introduce ⋆|−n := ⋆(τ−n ) and ⋆|+n := ⋆(τ+n ). 161

At the switching timing, the location of the support point 162

S on the DRS is reset, resulting in an sudden jump in the 163

relative CoM position x. As illustrated in Fig. 2, the relative 164

CoM position just after the switching, x|+n , is given by: 165

x|+n = x|−n −ux,d , (2)

where ux,d is the new support-foot position relative to the 166

previous one in the x-direction. 167

The CoM velocity stays continuous at the switching 168

instant, that is, ẋ|+n = ẋ|−n , because the angular momentum of 169

the CoM about the contact point S is conserved and the CoM 170

height remains constant above S within continuous phases 171

(i.e., assumption (A3)) [22]. 172
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Fig. 2. An illustration of the proposed HT-LIP model in the sagittal plane.
The model describes the time-varying dynamics of the point mass (located
at the CoM) under the vertical DRS displacement zs(t). It also captures the
hybrid nature of legged locomotion, including both the continuous foot-
swinging phase and the discrete foot-switching behavior.

Combining the continuous dynamics in (1) and the dis-173

crete jump in (2) yields the proposed HT-LIP model as:174 {
Ẋ = ααα(t)X if t ̸= τ−n ,

X(τ+n ) = X(τ−n )+βββux,d if t = τ−n ,
(3)

where X := [x, ẋ]T and βββ := [−1, 0]T . The matrix ααα(t) is175

defined as ααα(t) :=
[

0 1
f (t) 0

]
with f (t) := z̈s(t)+g

z0
. Similar to176

zs(t), we keep the time argument t in the notation of f (t)177

and ααα(t) to highlight their explicit time dependence.178

4) Open-loop step-to-step (S2S) model: The S2S model179

of the HT-LIP compactly describes the hybrid evolution of180

the HT-LIP during a gait cycle, which is used to construct181

the proposed stability conditions of the HT-LIP later.182

Integrating the continuous dynamics and iterating the183

discrete jump map based on (3) yields the S2S model as:184

185
X|−n+1 = ΦΦΦ( f (t);τ

−
n+1,τ

+
n )(X|−n +βββux,d), (4)

where ΦΦΦ( f (t);τ
−
n+1,τ

+
n ) :=

∫ τ
−
n+1

τ+
n

exp
(
ααα(t)

)
dt is the state-186

transition matrix of the nth continuous phase from τ+n to187

τ
−
n+1. Here exp(·) is a matrix exponential function.188

B. Discrete Footstep Control for HT-LIP189

While the continuous-time portion of the HT-LIP model190

is unstable [11] and uncontrolled as indicated by (3), the191

discrete-time footstep behavior is directly commanded by192

the foot displacement ux,d . Thus, we design a discrete-time193

footstep control law based on the HT-LIP model that aims to194

asymptotically stabilize the desired state trajectory, denoted195

as Xr(t); i.e., to drive the state trajectory X(t) to track the196

desired trajectory Xr(t) as time goes to infinity.197

The tracking error is defined as e :=X−Xr =: [e, ė]T , where198

xr and ẋr are the elements of Xr, i.e., Xr = [xr, ẋr]
T .199

By incorporating the error e, the discrete HT-LIP stepping200

controller ux,d at the switching instant τ−n is designed as:201

ux,d = ux,r +Ke|−n . (5)

Here ux,r := xr|−n −xr|+n is the desired foot-landing position of202

the desired trajectory Xr(t), and K := [k1, k2] is the feedback203

gain to be designed later for asymptotic stabilization of Xr(t).204

From the feedback control law (5) and the open-loop S2S205

dynamics (4), the closed-loop S2S error dynamics become:206

e|−n+1 = Ad,ne|−n , (6)

where Ad,n is the S2S error state-transition matrix and is207

defined as Ad,n := ΦΦΦ( f (t);τ
−
n+1,τ

+
n )(I+βββK) with I an identity208

matrix with an appropriate dimension.209

III. HT-LIP BASED FOOTSTEP PLANNING 210

This section presents the overall structure and higher-layer 211

footstep planner of the proposed hierarchical control frame- 212

work. The framework aims to achieve robust quadrupedal 213

trotting on a DRS with an unknown vertical motion. 214

One effective way to achieve robust locomotion is to plan 215

the physically feasible footstep locations in real-time [21], 216

[22]. However, realizing online footstep planning is substan- 217

tially challenging due to the complex robot dynamics, which 218

are hybrid, nonlinear, time-varying, and high-dimensional. 219

Another challenge in achieving robust locomotion is the 220

underactuation associated with quadrupedal trotting. With 221

13 DoFs and 12 independently actuated joints, a typical 222

quadrupedal robot (e.g., Unitree’s Go1) has one degree 223

of underactuation during trotting and accordingly two- 224

dimensional unactuated dynamics. Ensuring robust locomo- 225

tion under underactuation is complex because (a) while the 226

directly actuated portion of the actual robot dynamics can 227

be well regulated, the unactuated subsystem may not be 228

directly altered by joint torque commands [22] and (b) as 229

indicated in our prior analysis [12], the unactuated system 230

during continuous phases is inherently unstable under real- 231

world DRS motions (e.g., ship motions in sea waves). 232

To achieve robust locomotion, the proposed control frame- 233

work employs a classical hierarchical structure [21], [22] and 234

contains three layers. The key novelty of the framework lies 235

in its higher-layer footstep planner, which is presented in this 236

section. The middle layer and the stability analysis of the 237

complete closed-loop unactuated subsystem are respectively 238

given in Secs. III and IV of the supplementary file. Details 239

of the lower layer are omitted since the existing torque 240

controller [1] is adopted. 241

A. Framework Structure 242

1) Higher-layer footstep planning: To reject uncertainties 243

for ensuring robust locomotion, the proposed higher layer 244

efficiently generates the desired, physically feasible footstep 245

locations and CoM position trajectories in real-time. 246

To guarantee the planner’s feasibility, we use the proposed 247

HT-LIP model to approximate the robot dynamics in the 248

higher-layer planning. The HT-LIP model is reasonably 249

accurate because today’s legged robots typically have heavy 250

trunks and lightweight limbs, thus closely emulating an 251

inverted pendulum [12]. Meanwhile, thanks to its linearity 252

and low dimension, using the HT-LIP model can also ensure 253

planning efficiency for real-time motion generation. 254

Further, to ensure the stability of the hybrid, time-varying, 255

nonlinear, and underactuated robot dynamics, we construct 256

the higher-layer planner as a real-time footstep controller 257

of the HT-LIP, which indirectly stabilizes the unactuated 258

dynamics by provably stabilizing the HT-LIP. This footstep 259

controller is the key novelty of the higher-layer planner, and 260

is introduced in subsections B and C. 261

2) Middle-layer full-body trajectory generation: Based 262

on the robot’s full-order kinematics model, the middle layer 263

efficiently translates the output from the higher layer (i.e., 264

the desired footstep location and CoM trajectories) into the 265
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Fig. 3. Illustration of the proposed hierarchical control framework. The higher layer generates the desired footstep locations. The middle layer employs a
full-order kinematics model to plan physically feasible full-body trajectories. The lower-layer controller tracks the desired full-body trajectories.

desired full-body trajectories. The translation also agrees266

with assumptions (A1)-(A3) underlying the HT-LIP model,267

further reducing the discrepancy between the actual robot268

dynamics and the model for planning feasibility.269

3) Lower-layer full-body control: Considering its high270

performance in ensuring gait feasibility and motion tracking271

accuracy, the lower layer adopts the existing controller [1]272

that outputs the joint torque to track the desired full-body273

trajectories based on a single rigid body model. Both the274

middle and lower layers approximate the robot’s CoM at275

the base/trunk center.276

B. Stability Condition under Unknown DRS Motions277

The design of the proposed higher-layer footstep planner278

begins with the construction of the asymptotic stability con-279

dition of the HT-LIP model under unknown DRS motions.280

1) Supreme model of HT-LIP: The proposed asymptotic281

stability condition is built on a supreme model of the S2S282

error dynamics in (6), which is derived next.283

By definition, the function f (t) is both positive and284

bounded for t ∈R+ and locally Lipschitz under the assump-285

tion (A1). We use f n to represent any positive constant pa-286

rameter no less than the supremum of f (t) over t ∈ (τn,τn+1]287

(i.e., f n should satisfy f n ≥ sup f (t) on t ∈ (τn,τn+1].288

Since the continuous-phase error system is ë = f (t)e, we289

define its supreme model as:290

ë = f ne, (7)

where e is the solution of this model. Because the supremum291

model is linear and time-invariant, its state-transition ma-292

trix, denoted as ΦΦΦ, satisfies ΦΦΦ( f n;τ
−
n+1,τ

+
n ) = ΦΦΦ( f n;∆τn+1,0),293

where ∆τn+1 := τ
−
n+1−τ+n denotes the duration of the nth con-294

tinuous phase. Accordingly, the S2S state-transition matrix295

of the supreme model is defined as296

Ad,n := ΦΦΦ( f n;∆τn+1,0)(I+βββK). (8)

2) Asymptotic stability condition on S2S dynamics: We297

first introduce the sufficient condition for the asymptotic298

stability of the closed-loop S2S error model in (6).299

Theorem 1 (Sufficient stability condition on S2S dynam-300

ics): Consider assumptions (A1) and (A2). Define301

ad,n := ∥Ad,n∥∞, (9)

where ∥⋆∥∞ is the infinity norm of the matrix ⋆. The closed-302

loop S2S error dynamics in (6) is globally asymptotically303

stable if the following inequality holds for all n ∈ N304

ad,n < 1. (10)

305
The proof is in Sec. II-A of the supplementary file. 306

3) Stability condition on footstep control: Based on The- 307

orem 1, the following theorem provides the sufficient condi- 308

tion under which the footstep controller in (5) asymptotically 309

stabilizes the HT-LIP model in (3). 310

Theorem 2 (Sufficient stability condition on footstep 311

control gain): Consider assumptions (A1) and (A2). The 312

feedback footstep controller gain K (i.e., k1 and k2) guar- 313

antees the asymptotic closed-loop stability of the desired 314

trajectory Xr(t) for the HT-LIP model if 315∣∣∣∣∣(1− k1)cosh(ξn)

∣∣∣∣∣+
∣∣∣∣∣ sinh(ξn)√

f n
− k2 cosh(ξn)

∣∣∣∣∣< 1 and∣∣∣∣∣(1− k1)

√
f n sinh(ξn)

∣∣∣∣∣+
∣∣∣∣∣cosh(ξn)− k2

√
f n sinh(ξn)

∣∣∣∣∣< 1

(11)

hold for any nth gait cycle (n ∈ N). Here, ξn := ∆τn

√
f n. 316

Proof: The rationale of the proof is to show if (11) is valid 317

for all n ∈N then the stability condition in Theorem 1 holds. 318

By definition, the state-transition matrix ΦΦΦ( f n;∆τn,0) for 319

the state-space representation of the time-invariant supre- 320

mum model in (7) is given as: 321

ΦΦΦ( f n;∆τn,0) = exp
([ 0 1

f n 0

]
∆τn

)
=:

[
ΦΦΦ11 ΦΦΦ12
ΦΦΦ21 ΦΦΦ22

]

=:

 cosh(ξn)
sinh(ξn)√

f n√
f n sinh(ξn) cosh(ξn)

 .

(12)

Using the expressions of the state-transition matrix in (12) 322

and those of βββ and K, we can express Ad,n as: 323

Ad,n =

[
(1− k1)ΦΦΦ11 ΦΦΦ12 − k2ΦΦΦ11
(1− k1)ΦΦΦ21 ΦΦΦ22 − k2ΦΦΦ21

]
. (13)

By definition, the infinity norm of Ad,n is: 324

∥Ad,n∥∞ := max(|ΦΦΦ11(1− k1)|+ |ΦΦΦ12 −ΦΦΦ11k2|,
|ΦΦΦ21(1− k1)|+ |ΦΦΦ22 −ΦΦΦ21k2|).

(14)

If the footstep controller satisfies (11), then |ΦΦΦ11(1−k1)|+ 325

|ΦΦΦ12−ΦΦΦ11k2|< 1 and |ΦΦΦ21(1−k1)|+ |ΦΦΦ22−ΦΦΦ21k2|< 1 hold for 326

any n ∈ N. Accordingly, ad,n = ∥Ad,n∥∞ < 1 holds on n ∈ N, 327

meeting the stability condition in Theorem 1. ■ 328

Remark 1 (Applicability of Theorems 1 and 2): The 329

stability conditions in Theorems 1 and 2 are valid for 330

variable continuous-phase duration and general (periodic 331

and aperiodic) vertical DRS motions. Also, applying these 332
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conditions does not require an accurate knowledge of the333

vertical DRS motion but an upper bound of its acceleration.334

C. Formulation of QP-based Footstep Control335

To ensure online footstep planning, we formulate a com-336

putationally efficient QP that calculates the controller gain337

K in real-time, maximizes the error convergence rate, and338

enforces feasibility and stability conditions of the HT-LIP.339

1) Ensuring real-time update of control gain: Because340

the stability condition in Theorem 2 relies on the values of341

the system parameter ξn that can vary across different gait342

cycles, it is necessary to update the control gain K at least343

once per gait cycle in order to meet the stability condition.344

The variance of ξn across different gait cycles is due to345

changes in the gait cycle duration ∆τn and the parameter f n.346

The varying value of ∆τn across gait cycles can be induced347

by users or a high-level path planner, while that of f n can348

be caused by the constantly changing DRS motion.349

For timely mitigation of uncertainties in real-world appli-350

cations, updating the planned footstep position every time351

step is necessary [22]. Although Theorem 2 ensures the352

system stability under the once-per-gait-cycle update of K353

and ξn instead of an update every time step, Theorem 2 can354

be readily extended to guarantee the stability even when355

K and ξn are updated every time step. This is essentially356

because the supremum system used to construct the stability357

conditions is time-invariant and accordingly its S2S state-358

transition matrix Ad,n enjoys the associative property in terms359

of time t within each continuous phase.360

2) Achieving fast convergence rate: Lemma 1 in Sec.361

II-A-3) of the supplementary file shows that for all n ∈ N362

we have
∥∥∥e|−n+1

∥∥∥≤ ad,n

∥∥∥e|−n
∥∥∥. Thus, minimizing ad,n ensures363

a fast convergence rate of the error e. Based on (14), this364

can be achieved by minimizing the sum of the squares of365

|ΦΦΦ11(1−k1)|+ |ΦΦΦ12−ΦΦΦ11k2| and |ΦΦΦ21(1−k1)|+ |ΦΦΦ22−ΦΦΦ21k2|),366

which is used as the cost function J(K):367

J(K) =
1
2

KSKT +Kc. (15)

Here S and c are respectively the Hessian matrix and gradient368

vector of the cost function J(K) and are defined as:369

S =

[
2(ΦΦΦ2

11 +ΦΦΦ
2
21) 0

0 2(ΦΦΦ2
11 +ΦΦΦ

2
21)

]
and

c = [−2(ΦΦΦ2
11 +ΦΦΦ

2
21), −2(ΦΦΦ11ΦΦΦ12 +ΦΦΦ21ΦΦΦ22)]

T .

(16)

3) Enforcing stability conditions: The asymptotic sta-370

bility condition of the HT-LIP model under the proposed371

footstep control law, given in (11), can be rewritten as:372 
−ΦΦΦ11 −ΦΦΦ11

ΦΦΦ11 ΦΦΦ11
−ΦΦΦ21 −ΦΦΦ21

ΦΦΦ21 ΦΦΦ21

K <


1−ΦΦΦ11 −ΦΦΦ12
1+ΦΦΦ11 +ΦΦΦ12
1−ΦΦΦ21 −ΦΦΦ22
1+ΦΦΦ21 +ΦΦΦ22

 . (17)

4) Satisfying kinematic limits and ground-contact con-373

straints: The physical feasibility of footstep planning is374

guaranteed by respecting (i) the kinematic bounds on the375

trotting step length and (ii) the friction cone and unilateral376

ground-contact constraints. The kinematic limit of the step377

length ux,d can be expressed as ux,d ∈ [umin, umax], where378

umax and umin are the maximum and minimum step lengths379

of the HT-LIP, respectively. Meanwhile, the step length 380

should be set to respect the friction cone and unilateral 381

constraints at the foot-surface contact points expressed as 382

ux,d ∈ [−2µz0,2µz0], where µ is the friction coefficient. 383

In summary, the stability condition and the feasibility 384

constraints can be compactly expressed as: 385

EKT < d (18)

with 386

E :=


e ė

−e −ė
−ΦΦΦ11 −ΦΦΦ11

ΦΦΦ11 ΦΦΦ11
−ΦΦΦ21 −ΦΦΦ21

ΦΦΦ21 ΦΦΦ21

 and d :=


lmax −ur,n
−lmin +ur,n

1−ΦΦΦ11 −ΦΦΦ12
1+ΦΦΦ11 +ΦΦΦ12
1−ΦΦΦ21 −ΦΦΦ22
1+ΦΦΦ21 +ΦΦΦ22

 , (19)

where the scalar, real constants lmax and lmin are defined as 387

lmax := max(umax, µz0) and lmin := min(umin, −µz0). 388

With the cost function and constraints designed, the pro- 389

posed QP that produces the footstep controller gain K is 390

given in the following theorem. 391

Theorem 3 (QP-based control gain optimization): The 392

control gain K that maximizes the convergence rate, guar- 393

antees stability, and ensures feasibility for an HT-LIP model 394

is given as a solution to the following QP problem: 395

min
K

J(K)

subject to EKT < d.
(20)

396

The proof is given in Sec. II-B of the supplementary file. 397

Remark 2 (Solution feasibility and optimality of the 398

proposed QP): Note that the cost function in (15) is convex. 399

Meanwhile, the feasibility and stability constraints of the 400

QP in (20) are non-conflicting if the feasible region for the 401

constraints EKT < d remains non-empty. Accordingly, the 402

solution feasibility and optimality for the QP problem in (20) 403

is guaranteed. In practice, the non-emptiness of the feasible 404

region can be numerically evaluated under the admissible 405

range of system parameters f n and ∆τn. 406

Remark 3 (Solving the QP in real-time): Solving the 407

proposed QP requires the knowledge of the upper bound 408

of f (t) during any nth gait cycle, as indicated by the stability 409

condition in Theorem 2. Since the needed upper bound 410

can be any upper bound of f (t) during any nth gait cycle, 411

we can solve the proposed QP, in principle, by using a 412

sufficiently large value of the upper bound f n that is valid 413

across any nth gait cycles. Yet, using such a bound might be 414

overly conservative, reducing locomotion robustness. Thus, 415

we choose to estimate the upper bound of the surface 416

acceleration in real-time and update f n at every time step. 417

The vertical surface acceleration z̈s can be roughly esti- 418

mated based on the readings of an on-board inertial mea- 419

surement unit (typically placed at the trunk) and the robot’s 420

forward kinematics. Using the rough estimate, we can then 421

obtain both an upper bound of the surface acceleration z̈s 422

and the values of f n, ad,n, and ΦΦΦ. 423

IV. EXPERIMENTS 424

This section presents hardware experiment results to 425

demonstrate the proposed control framework can stabilize 426

quadrupedal trotting on a DRS with an aperiodic and 427
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Fig. 4. Illustration of the experimental setup. 1⃝: Go1 quadruped (Unitree
Robotics). 2⃝: M-Gait treadmill (Motek Medical). 3⃝: direction of the
vertical DRS/treadmill motion zs(t) at point S. 4⃝: world frame attached
to the treadmill’s axis of pitching. The treadmill’s pitch angle at time t is
θs(t). Subplots (a) and (b) show the treadmill at its pitch angle limits.

TABLE I
DRS MOTIONS UNDER DIFFERENT HARDWARE EXPERIMENT CASES.

Cases DRS motion

(HC1) θs(t) = 4◦(sin3t + sin(t
√

0.5t +1)).
(HC2) θs(t) = 4◦(sin6t + sin(0.1t2)).

(HC3) θs(t) = 0.2◦t2 sin
(√

100t +1
)
· e−t/10.

(HC4) θs(t) = 4◦(sin3t + sin(t
√

t/2+1)) and

ys(t) =


0, if 0 s ≤ 83 s;
40sin(πt) mm, if 83 s < t ≤ 122 s;
65sin(πt) mm, if 122 s < t ≤ 160 s.

(HC5) θs(t) = 2.5◦(sin3t + sin(t
√

0.5t +1)).

unknown vertical motion even in the presence of various428

uncertainties. The experiment video is in a supplementary429

file and is also available at https://youtu.be/BMPU0BJQC64.430

A. Hardware Experiment Setup431

1) Treadmill: Our experiments use a Motek M-Gait432

treadmill to emulate a vertically moving DRS (Fig. 4).433

The treadmill can perform pre-programmed pitch and sway434

movements. It weighs 750 kg, measures 2.3 m × 1.82 m ×435

0.5 m, and is equipped with two belts (each powered by a436

4.5 kW servo motor). The robot is positioned approximately437

0.8 m from the treadmill’s pitching axis.438

2) Unknown vertical treadmill/DRS motions: The exper-439

iments utilize the treadmill’s pitch motion θs(t) to generate440

aperiodic, vertical DRS motions at the robot’s footholds (i.e.,441

near the treadmill’s far end). Table I summarizes the surface442

motions (HC1)-(HC5), which are unknown to the proposed443

control framework during experiments. Although the pitch444

angle θs(t) is small, it induces a significant maximum vertical445

acceleration z̈s(t) at the robot’s footholds (about 3.5 m/s2)446

with a minimal horizontal surface motion. Figures 1-4 in447

the supplementary file illustrate (HC1)-(HC3) and (HC5).448

3) Additional uncertainties: To validate the robustness449

of the proposed approach beyond unknown vertical DRS450

motions, we test additional unmodeled uncertainties (Fig. 1).451

To assess the robustness against unknown DRS sway,452

the surface motion (HC4) contains a sway displacement453

ys(t) (see Table I and Fig. 5), causing a peak horizontal454

acceleration of 2.6 m/s2 at the robot’s footholds.455

Besides surface sway, four other types of uncertainties456

are tested during (HC5) with maximum vertical and lateral457

accelerations respectively at 1.5 m/s2 and 0.5 m/s2. These458

uncertainties are: (i) uncertain friction coefficient of 0.3-0.4459

induced by a smooth glass surface while the framework460

considers a coefficient of 0.8; (ii) unknown solid (10 lbs)461

Fig. 5. Ground-truth position trajectory of the point on the treadmill/DRS
around which the robot performs the trotting gait during the unknown pitch
and sway movement (HC4) of the DRS. The shaded area highlights the
period during which the unknown DRS sway motion is active.

TABLE II
RANGES OF HT-LIP PARAMETERS USED IN EXPERIMENTS

Parameter Range

CoM height above the surface z0 (cm) [22, 26]
Step duration ∆τn (s) [0.15, 0.4]
Trotting speed (cm/s) [15, 25]

Nominal step length ux,r (cm) [0, 15]

and liquid (9 lbs) loads placed on the trunk, weighing 462

respectively 36% and 32% of the robot’s mass; (iii) uneven 463

(pebbled) surface with a maximum height of 10 cm; and (iv) 464

sudden pushes lasting less than 0.2 s per push and inducing 465

a robot heading error of 30◦ just after the push. 466

B. Control Framework Setup 467

The HT-LIP model parameters considered by the proposed 468

control framework are given in Table II. These parameters 469

are varied during experiments to demonstrate the control 470

framework can be implemented in real-time under different 471

trotting gait features. The framework explicitly considers 472

the vertical DRS acceleration z̈s(t) and assumes negligible 473

horizontal DRS motion, and only considers the estimated 474

instead of the true value of z̈s(t). With the estimation method 475

mentioned in Remark 3, the maximum absolute error of the 476

vertical DRS motion estimation is 1 m/s2. 477

C. Experimental Results 478

This subsection reports the experiment results under un- 479

known DRS motions and various other types of uncertainties. 480

1) Validation under unknown vertical surface motions: 481

As shown in Fig. 6, the actual height and orientation of the 482

robot’s base (i.e., trunk) relatively closely track the desired 483

base trajectories during the unknown and aperiodic vertical 484

surface motion (HC1), indicating a stable trotting gait under 485

the proposed control framework. Further, the joint torque 486

profile in Fig. 7 demonstrates a consistent torque pattern 487

that respects the actuator limit of 22.5 N/m for all joints. 488

From Figs. 5-8 in the supplementary file, results under 489

(HC2) and (HC3) also show accurate trajectory tracking and 490

consistent torque profiles, highlighting the effectiveness of 491

the framework in handling different vertical DRS motions. 492

2) Validation under various additional uncertainties: To 493

further assess robustness, we conduct hardware experiments 494

under uncertainty cases described in Sec. IV-A3. 495

The subplots (a) and (c) in Fig. 8 confirm that the robot’s 496

base height closely follows the desired value even under the 497

unknown DRS sway motion and reduced surface friction. 498

The subplot (b) shows a notable oscillatory deviation of 499
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Fig. 6. Desired and actual base trajectories under the hardware experiment
case (HC1). The small tracking errors indicate stable robot trotting.

Fig. 7. Torque profiles under the hardware experiment case (HC1), all of
which respect the robot’s individual actuator limit of 22.5 Nm.

the actual base height from the desired value due to the500

unevenness of the pebbled surface, indicating a moderate501

level of violation of the constant base height assumption502

(i.e. assumption (A3)). The subplot (d) shows the significant503

uncertain liquid load applied to the robot’s trunk causes a504

nearly constant base height tracking error of 2.5 cm. Still,505

both subplots (b) and (d) indicate stable locomotion despite506

uncertainties. The results under the unknown solid load are507

similar to subplot (d) and thus are omitted for brevity.508

Figure 9 displays the push recovery results during the509

unknown vertical and lateral DRS motion (HC4). The in-510

termittent spikes in the robot’s base height and orientation511

trajectories are induced by external pushes. As highlighted512

by the shaded areas in Fig. 9, the robot is able to recover513

within two seconds after each significant push, confirming514

the robustness of the proposed framework against external515

pushes during unknown DRS motions.516

D. Comparative Experiments517

To show the improved robustness of our proposed frame-518

work compared to existing controllers, we experimentally519

test the Go1 robot’s proprietary controller and a state-of-the-520

art baseline controller [1] during unknown vertical surface521

motion (HC5). The baseline control approach has the same522

lower-layer torque controller as the proposed framework,523

but its higher and middle layers assume a static ground524

as designed in [1]. Both the baseline and the proposed525

frameworks use the same filter introduced in [1] to estimate526

the robot’s absolute base pose and velocity in real-time.527

As illustrated by the lateral base position trajectory in Fig.528

10, the proposed framework realizes the lowest lateral drift529

among the three approaches during trotting in place. The530

relatively small lateral drift of the proposed framework is531

partly due to the explicit treatment of the unknown DRS532

motion in the higher-layer planner, which is missing in533

the baseline controller. Also, both our framework and the534

baseline approach correct the robot’s heading direction based535

on the estimated absolute base position and yaw angle.536

Fig. 8. Base height trajectories under various cases of uncertainties, all
during the unknown vertical DRS motion (HC5). These cases include (a)
unknown sway motion, (b) pebbled surface with an unknown height, (c)
surface with unknown reduced friction, and (d) unknown liquid load.

Fig. 9. Robustness to sudden pushes under the uncertain DRS motion
(HC4). The purple dashed lines highlight the push instants, while the
shaded regions show the transient push recovery phases. The proposed
control framework effectively drives the perturbed trajectories to a close
neighborhood of their desired values within 2 seconds.

In contrast, given the fast lateral position drift under the 537

proprietary controller, it is possible that the proprietary 538

controller does not compensate for the base position error. 539

The proposed approach exhibits a lateral drift of approxi- 540

mately 10 cm between t = 15 s and t = 30 s, mainly due to the 541

drift of the estimated absolute base position and yaw angle of 542

the robot [13]. To improve its path tracking accuracy, a more 543

accurate state estimator will be developed and used in our 544

future work. Note that this position drift is still notably lower 545

than the drift under the baseline controller, which is over 25 546

cm within 30 seconds of trotting. Also, under the proprietary 547

controller, the robot laterally drifts for approximately 40 cm 548

and hits the treadmill edge within the initial 15 seconds. 549

V. DISCUSSIONS 550

One key contribution of this study is the introduction of 551

the HT-LIP model for locomotion during general (periodic or 552

aperiodic) and vertical DRS motions. Similar to existing LIP 553

models for static surfaces [15], [19], [21], [23], the HT-LIP 554

model is linear. Yet, the model is also explicitly time-varying 555

due to the surface motion, distinguishing it from the time 556

invariance of those existing models. Meanwhile, since the 557

model is homogeneous, it is fundamentally different from the 558

LIP model for horizontally moving surfaces [14]. Further, 559

the HT-LIP is hybrid and is thus distinct from our previous 560

continuous-time LIP model for vertical DRS motions [12]. 561

Another key contribution is the construction of a discrete- 562

time footstep controller that provably stabilizes the HT- 563

LIP system under variable footstep duration and unknown 564

vertical DRS motions. The proposed stability condition for 565

the footstep controller explicitly treats the time dependence 566

of the HT-LIP model, which is fundamentally different from 567

the previous footstep controller [21] designed for static 568
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Fig. 10. Lateral-position drift comparison with the robot’s proprietary
controller and a state-of-the-art controller [1] during the DRS motion (HC5):
(a) lateral CoM position drift during a representative hardware experiment
of 30 s and (b) average lateral drift (mean ± one standard deviation) during
five experiment trials of 15 s. The proposed control approach achieves the
least amount of lateral drift among the three approaches compared.

terrain. Further, the proposed controller only consider a finite569

bound of the surface acceleration whereas our previous DRS570

locomotion controllers [8], [12], [14] assume an accurately571

known surface motion. Finally, the HT-LIP footstep con-572

troller is cast as a QP that enables real-time, feasible foot573

placement while exactly enforcing the stability condition.574

The experiments reveal that the proposed framework can575

handle a significant level of unknown DRS sway (up to 2.6576

m/s2), although it does not explicitly treat unknown hori-577

zontal motions. Our future work will extend the proposed578

theoretical results and control framework from vertical DRS579

motions to simultaneous surface translation and rotation.580

VI. CONCLUSION581

This paper has introduced a hierarchical control frame-582

work for robust quadrupedal trotting during unknown and583

general vertical ground motions. A reduced-order model was584

derived by analytically extending the existing linear, time-585

invariant H-LIP model to explicitly consider the surface mo-586

tion, resulting in a hybrid, time-varying LIP model (i.e., HT-587

LIP). Taking the HT-LIP as a basis, a discrete-time, provably588

stabilizing footstep controller was constructed and then cast589

as a quadratic program to enable real-time foot placement590

planning. The proposed control framework incorporated the591

HT-LIP footstep controller as a higher-layer planner, and its592

middle and lower layers were developed to plan and control593

the robot’s full-body motions that agree with the desired594

robot motions supplied by the higher layer. Experiment re-595

sults confirmed the robustness of the proposed framework in596

realizing stable quadrupedal trotting under various unknown,597

aperiodic surface motions, external pushes, solid and liquid598

loads, and slippery and rocky surfaces.599
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