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A B S T R A C T

This paper introduces an analytically tractable and computationally efficient model for legged robot dynamics
during locomotion on a dynamic rigid surface (DRS), along with an approximate analytical solution and a real-
time walking pattern generator synthesized based on the model and solution. By relaxing the static-surface
assumption, we extend the classical, time-invariant linear inverted pendulum (LIP) model for legged locomotion
on a static surface to dynamic-surface locomotion, resulting in a time-varying LIP model termed as ‘‘DRS-LIP’’.
Sufficient and necessary stability conditions of the time-varying DRS-LIP model are obtained based on the
Floquet theory. This model is also transformed into Mathieu’s equation to derive an approximate analytical
solution that provides reasonable accuracy with a relatively low computational cost. Using the extended model
and its solution, a walking pattern generator is developed to efficiently plan physically feasible trajectories for
quadrupedal walking on a vertically oscillating surface. Finally, simulations and hardware experiments from a
Laikago quadrupedal robot walking on a pitching treadmill (with a maximum vertical acceleration of 1 m/s2)
confirm the accuracy and efficiency of the proposed analytical solution, as well as the efficiency, feasibility,
and robustness of the pattern generator, under various surface motions and gait parameters.
. Introduction

Legged robots have the potential to traverse various surfaces that
re prohibitively challenging for tracked or wheeled robots, including
tationary (uneven or discrete) surfaces [1–6] and dynamic rigid sur-
aces (i.e., rigid surfaces moving in the inertial frame) [7,8]. Legged
obots capable of reliably traversing a dynamic rigid surface (DRS) can
id in various critical real-world applications such as firefighting, main-
enance, inspection, surveillance, and disinfection on ships and public
ransit vehicles. The objective of this study is to model and analyze the
ssential dynamic behaviors of a legged robot that walks on a vertically
scillating DRS, and to exploit the analytical results for efficient and
easible pattern generation of quadrupedal walking. There has been
mple work on reduced-order modeling and trajectory generation of
egged locomotion on stationary surfaces, but not for DRS. This paper
onstitutes one of the first attempts to build a reduced-order model
nd leverage such a model in motion planning for DRS locomotion.
owever, reduced-order modeling and analysis of DRS locomotion are

undamentally complex due to the nonlinear robot dynamics [9–11]
nd the time-varying movement of surface-foot contact points [7,12].

✩ This paper was recommended for publication by Associate Editor Weichao Sun.
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1.1. Reduced-order models of legged locomotion on stationary or dynamic
surfaces

A reduced-order dynamics model of legged locomotion captures
the robot’s essential dynamic behaviors [13]. One of the most widely
studied reduced-order models for stationary surface walking is the
linear inverted pendulum (LIP) model [14–17], which approximates a
legged robot as a point mass atop a massless leg.

Due to its simplicity, the LIP model is analytically tractable and
can provide physical insights into the essential robot dynamics. It also
explicitly reveals the simplified relationship between the center of
pressure (CoP), which can be used to infer the feasibility of ground
contact forces (i.e., no foot rolling about any edge of the region of
contact), and the center of mass (CoM). Although the LIP model is not
as accurate as a full-order model [18] in capturing the complete full-
body robot dynamics, many of today’s walking robots can be relatively
accurately modeled as an LIP for planning and control [3,19], since
they typically have a heavy upper body and lightweight legs. Thus,
the LIP can serve as a basis of walking pattern generation to ensure
planning efficiency and feasibility, as reviewed later.
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The classical LIP model [14] for static surfaces has been extended
to various complex scenarios such as foot slippage [20], a varying CoM
height [15], CoM motions on 3-D planes [21], nontrivial centroidal
angular momentum [19,22], balancing on a seasaw [23], and hybrid
robot dynamics [16,24]. Due to their static-surface assumption, they
may not be suitable for DRSes with significant motions.

For locomotion on a DRS whose motions are affected by the robot
(e.g., passive and relatively lightweight surfaces), several reduced-
order robot dynamics models have been recently introduced, including
an extended LIP [25], centroidal dynamics [26], and rimless-wheel
models [27]. Still, it is unclear how to expand these models to DRSes
whose motion cannot be affected by the robot (e.g., trains, vessels, and
elevators). For such substantially heavy or rigidly actuated DRSes, the
effects of the DRS motion on a spring-loaded inverted pendulum model
have been numerically studied [28]. However, the stability conditions
and analytical solution of the model remain unknown.

Beyond the scope of legged locomotion, the modeling and analysis
of an inverted pendulum with a vertically oscillating support, i.e., the
Kapitza pendulum [29], is a classical physics problem. The Kapitza
pendulum has an intriguing property that under high-frequency support
oscillations, the pendulum’s upper equilibrium becomes stable whereas
its lower one is unstable. Yet, it is an open question whether and
when the Kapitza pendulum is a reasonable approximation of DRS
locomotion. Furthermore, the motion frequencies of real-world DRSes
(e.g., vessels [30]) are commonly too low to meet the conditions
underlying the Kapitza pendulum.

1.2. Walking pattern generation based on pendulum models

Since the LIP model represents the low-dimensional CoM dynamics
of robot walking, it has been utilized to efficiently plan physically
feasible walking motions on a static surface. Given the user-specified
footstep and CoP positions, the exact closed-form analytical solution of
the classical LIP [17,31,32] has been used to enable real-time planning
of feasible CoM trajectories for static-surface walking. This analytical
solution has been augmented with the discrete-time jump of the CoM
position (relative to the CoP) at a foot-landing event, which is then
used to derive the desired footstep locations that provably stabilizes the
hybrid LIP model [16,24]. Recently, the exact capturability conditions
of a LIP model with a time-varying CoM height have been derived
based on the closed-form solution of the model’s time-varying damping
function at a robot’s desired final CoM state [15]. These conditions
are then used to plan the desired CoM and CoP trajectories with
provable capturability guarantees. As reviewed earlier, the underlying
LIP models of these planners assume a stationary walking surface, and
therefore the planner may not be directly used for DRS locomotion
when the surface motion is significant.

1.3. Contributions

This study focuses on addressing the open questions in reduced-
order dynamic modeling and walking pattern generation for locomo-
tion on DRS, as discussed in Sections 1.1 and 1.2. Motivated by these
research needs, this study aims to theoretically extend the classical LIP
model [14] from stationary surfaces to substantially heavy or rigidly
actuated DRSes (e.g., ships), introduce an analytical approximate so-
lution to the extended LIP model (termed as ‘‘DRS-LIP’’), and develop
and experimentally validate a real-time walking pattern generator that
uses the proposed solution to ensure planning efficiency and feasibility.
A preliminary version of this work appeared in [33] where we derived
the DRS-LIP model. The new, substantial contributions of this study are:

(a) Forming the analytical approximate solution of the DRS-LIP
2

under a vertical, sinusoidal DRS motion.
(b) Providing the sufficient and necessary stability conditions of the
DRS-LIP model based on the Floquet theory, and performing
stability analysis under common ranges of surface motions and
gait parameters.

(c) Designing a hierarchical walking pattern generator that utilizes
the proposed analytical solution to efficiently plan feasible robot
motions.

(d) Validating the accuracy and computational efficiency of the
proposed analytical approximate solution through comparison
with a highly accurate numerical solution.

(e) Demonstrating the planner efficiency, feasibility, and robustness
through both realistic PyBullet simulations and hardware exper-
iments under various surface movements, gait parameters, and
uncertainties.

The paper is organized as follows. Section 2 introduces the deriva-
tion of the proposed reduced-order model of locomotion on DRS.
Section 3 presents the analytical approximate solution of the proposed
model under a vertical, sinusoidal surface motion. Section 4 explains
the stability condition and analysis of the proposed model. Section 5
develops an efficient walking pattern generator based on the analytical
results. Section 6 reports the validation outcomes of the proposed
analytical solution and planner. Section 7 discusses the capabilities and
limitations of the proposed methods. Finally, Section 8 provides the
concluding remarks.

1.4. Abbreviations and notations

Abbreviation Description
CoM Center of mass.
CoP Center of pressure.
DRS Dynamic rigid surface.
LIP Linear inverted pendulum.
𝑅𝑒(⋅) Real part of a number (⋅).

2. Reduced-order model of DRS locomotion

This section introduces an analytically tractable and computation-
ally efficient reduced-order model that captures the essential robot
dynamics associated with legged walking on a DRS. The model is
derived by extending the classical LIP model [14] from a static surface
to a DRS, and is called ‘‘DRS-LIP’’.

Since today’s legged robots typically have a heavy upper body and
lightweight legs, their CoM dynamics can be approximately described
by a LIP, i.e., a point mass atop a massless leg [14], under the following
assumption:

(A1) The robot’s rate of whole-body angular momentum about the CoM
is negligible.

Assumption (A1) is reasonable for real-world locomotion because the
robot’s trunk is typically controlled to maintain a steady orientation for
housing sensors (e.g., cameras).

In this study, we use a 3-D LIP to capture the essential dynamics of
a 3-D legged robot walking on a DRS, as shown in Fig. 1. The point
mass and support point 𝑆 in Fig. 1 correspond to the robot’s CoM and
CoP, respectively.

Let

𝐫𝑤𝑐 = [𝑥𝑤𝑐 , 𝑦𝑤𝑐 , 𝑧𝑤𝑐 ]𝑇 (1)

and

𝐫𝑤𝑠 = [𝑥𝑤𝑠, 𝑦𝑤𝑠, 𝑧𝑤𝑠]𝑇 (2)

respectively denote the positions of the CoM and point 𝑆 in the world

frame.
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𝑥
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Fig. 1. Illustration of the proposed DRS-LIP model. All three grid planes are horizontal.
The top and middle ones pass through the CoM and the leg’s far end 𝑆, respectively.
The bottom one is fixed to the world frame.

Then, the CoM position relative to point 𝑆, denoted as 𝐫𝑠𝑐 , is defined
as:

𝐫𝑠𝑐 = 𝐫𝑤𝑐 − 𝐫𝑤𝑠 =∶ [𝑥𝑠𝑐 , 𝑦𝑠𝑐 , 𝑧𝑠𝑐 ]𝑇 . (3)

The CoM dynamics during DRS locomotion can be obtained as:

𝑥̈𝑤𝑐 =
𝑓𝑎𝑥𝑠𝑐
𝑚𝑟

sin 𝜃,

𝑦̈𝑤𝑐 =
𝑓𝑎𝑦𝑠𝑐
𝑚𝑟

sin 𝜃, and

𝑧̈𝑤𝑐 =
𝑓𝑎
𝑚

cos 𝜃 − 𝑔,

(4)

where 𝑚 is the robot’s total mass, 𝜃 is the angle of the position vector
𝐫𝑠𝑐 relative to the vertical axis, 𝑔 is the norm of the gravitational
acceleration, 𝑟 is the projected length of 𝐫𝑠𝑐 on the horizontal plane,
and 𝑓𝑎 is the norm of the ground contact force pointing from point 𝑆
to the CoM.

2.1. DRS-LIP under a general vertical surface motion

We consider the following assumption on the vertical distance 𝑧𝑠𝑐
between the CoM and point 𝑆 (see Fig. 1):

(A2) The CoM maintains a constant height 𝑧0 above the support point
𝑆; that is,

𝑧𝑠𝑐 = 𝑧0.

This assumption is analogous to the simplifying assumption of the
classical LIP model that the point-mass height over the stationary
surface is constant [14].

Under assumption (A2), the relationships

̇𝑤𝑐 = 𝑧̇𝑤𝑠 and 𝑧̈𝑤𝑐 = 𝑧̈𝑤𝑠

hold, and thus the norm of the axial force, 𝑓𝑎, becomes

𝑓𝑎 =
𝑚(𝑧̈𝑤𝑠 + 𝑔)

cos 𝜃
. (5)

Accordingly, the horizontal components of the LIP dynamics in
Eq. (4) become:

𝑥̈𝑤𝑐 = (𝑧̈𝑤𝑠 + 𝑔)
𝑥𝑠𝑐
𝑧0

and

𝑦̈𝑤𝑐 = (𝑧̈𝑤𝑠 + 𝑔)
𝑦𝑠𝑐
𝑧0

.
(6)

From Eq. (3), we know 𝑥̈𝑤𝑐 = 𝑥̈𝑤𝑠 + 𝑥̈𝑠𝑐 and 𝑦̈𝑤𝑐 = 𝑦̈𝑤𝑠 + 𝑦̈𝑠𝑐 .
Substituting them into Eq. (6) yields the following horizontal LIP
dynamics:

𝑥̈𝑠𝑐 −
𝑧̈𝑤𝑠 + 𝑔

𝑧0
𝑥𝑠𝑐 = −𝑥̈𝑤𝑠 and

𝑦̈𝑠𝑐 −
𝑧̈𝑤𝑠 + 𝑔

𝑦𝑠𝑐 = −𝑦̈𝑤𝑠.
(7)
3

𝑧0
Note that the DRS’ acceleration at 𝑆 equals the acceleration of point 𝑆,
i.e., (𝑥̈𝑤𝑠, 𝑦̈𝑤𝑠, 𝑧̈𝑤𝑠) in Eq. (7), when there is no slippage between the
support point 𝑆 and the surface.

To account for the effects of the DRS motion on the LIP dynamics
in Eq. (7), we choose to treat the DRS acceleration (𝑥̈𝑤𝑠, 𝑦̈𝑤𝑠, 𝑧̈𝑤𝑠)
as explicit time functions, instead of building a separate dynamics
model for the DRS [23,26,27]. The rationale of this design choice is
twofold. First, for real-world rigidly actuated and/or heavy DRSes such
as vessels, the physical interaction between a robot and such a DRS
has a negligible effect on the dynamics of a DRS. Second, in real-world
applications, the time profiles of the DRS motion are commonly sensed,
estimated, and predicted by real-time monitoring systems [34].

With the surface motion modeled as time functions, the LIP dy-
namics in Eq. (7) are linear, nonhomogeneous, and time-varying. Since
DRSes, such as cruising ships in regular sea waves, have relatively small
horizontal acceleration compared with vertical acceleration [12,35,36],
we assume:

(A3) The horizontal accelerations of point 𝑆 (i.e., 𝑥̈𝑤𝑠 and 𝑦̈𝑤𝑠) are
negligible.

Under assumption (A3), the forcing terms in Eq. (7) (i.e., −𝑥̈𝑤𝑠 and
−𝑦̈𝑤𝑠) vanish, and the horizontal LIP dynamics in Eq. (7) become linear,
time-varying, and homogeneous:

̈𝑠𝑐 −
𝑧̈𝑤𝑠 + 𝑔

𝑧0
𝑥𝑠𝑐 = 0 and

𝑦̈𝑠𝑐 −
𝑧̈𝑤𝑠 + 𝑔

𝑧0
𝑦𝑠𝑐 = 0.

(8)

Recall that the vertical CoM position relative to the support point 𝑆,
𝑧𝑠𝑐 , is constant under assumption (A2), and given by:

𝑧𝑠𝑐 = 𝑧0. (9)

Remark 1 (DRS-LIP). The LIP model in Eqs. (8) and (9) describe the
simplified dynamics of DRS walking under assumptions (A1)-(A3), i.e.,
a DRS-LIP model for a vertically moving surface.

2.2. DRS-LIP under a vertical sinusoidal surface motion

A real-world DRS, such as a vessel in regular sea waves, typically
exhibits a vertical, sinusoidal motion with a constant amplitude and
frequency [36]. Thus, we focus on such motions for further analysis of
the DRS-LIP model in Eqs. (8) and (9).

Under a vertical, sinusoidal surface motion, the vertical acceleration
𝑧̈𝑤𝑠 of point 𝑆 is sinusoidal, and Eq. (8) becomes the well-known
Mathieu’s equation [37], as explained next.

For generality, the vertical sinusoidal motion of the DRS at the
surface-foot contact point can be expressed as:

𝑧𝑤𝑠 = 𝐴 sin𝜔𝑡, (10)

where the real scalar parameters 𝐴 and 𝜔 are the amplitude and
frequency of the vertical surface motion, respectively.

Then, the surface acceleration 𝑧̈𝑤𝑠 at the support point is 𝑧̈𝑤𝑠 ∶=
−𝐴𝜔2 sin𝜔𝑡, with which the horizontal CoM dynamics in Eq. (8) be-
comes:

̈𝑠𝑐 −
𝑔 − 𝐴𝜔2 sin𝜔𝑡

𝑧0
𝑥𝑠𝑐 = 0 and

𝑦̈𝑠𝑐 −
𝑔 − 𝐴𝜔2 sin𝜔𝑡

𝑧0
𝑦𝑠𝑐 = 0.

(11)

In Eq. (11), the two equations of motion in the 𝑥- and 𝑦-directions
are decoupled and share the same structure. Therefore, their solutions
have the same form. For brevity, we focus on the DRS-LIP model in the
𝑥-direction for solution derivation and stability analysis in the rest of
this paper.
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With a new time variable defined as

𝜏 ∶= 𝜋 + 2𝜔𝑡
4

, (12)

the DRS-LIP dynamics in Eq. (11) can be transformed into the standard
Mathieu’s equation as:

𝑑2𝑥𝑠𝑐
𝑑𝜏2

+ (𝑐0 − 2𝑐1 cos 2𝜏)𝑥𝑠𝑐 = 0, (13)

where the real scalar coefficients 𝑐0 and 𝑐1 are defined as

𝑐0 ∶= −
4𝑔

𝜔2𝑧0
and 𝑐1 ∶=

2𝐴
𝑧0

.

. Approximate analytical solution

This section introduces a reasonably accurate and computation-
lly efficient approximate analytical solution of the proposed DRS-LIP
ynamics model under a vertical, sinusoidal surface motion.

.1. Exact analytical solution

The DRS-LIP model in Eq. (13) generally does not have an exact,
losed-form analytical solution. One straightforward approach to derive
n approximate analytical solution is to utilize the fundamental solu-
ion matrix based on the Floquet theory [37]. Alternatively, we choose
o exploit the existing analytical results of the well-studied Mathieu’s
quation to obtain a more computationally efficient solution.

There are various existing analytical approximate solutions of Math-
eu’s equation, including periodic solutions [38] and those expressed
hrough power series [37]. In this study, we adopt the exact analytical
olution from [39] because of its generality and accuracy:

heorem 1 (Exact Solution of Mathieu’s Equation). The exact, gen-
ral (periodic or non-periodic) analytical solution of Mathieu’s equation
n Eq. (13) is as follows:

𝑠𝑐 (𝜏) = 𝛼1𝑒
𝜇𝜏

∞
∑

𝑛=−∞
𝐶2𝑛𝑒

𝑖2𝑛𝜏 + 𝛼2𝑒
−𝜇𝜏

∞
∑

𝑛=−∞
𝐶2𝑛𝑒

−𝑖2𝑛𝜏 . (14)

ere, 𝜇 is the characteristic exponent of Eq. (13), 𝛼1 and 𝛼2 are real scalar
oefficients, 𝑛 is an integer, 𝑖 is a unit imaginary number, and 𝐶2𝑛’s are
omplex scalar coefficients.

The proof of Theorem 1 is omitted for brevity, which can be readily
btained based on derivations in [39].

Despite its generality and exact accuracy, the analytical solution
n Eq. (14) may demand an overly high computational load for real-
ime trajectory planning. Therefore, we use the exact solution to ob-
ain an approximate solution that is reasonably accurate with a low
omputational cost.

To compute such an approximate solution, we need to determine
he number of terms to keep in the approximate solution as well as the
alues of the parameters 𝜇, 𝛼1, 𝛼2, and 𝐶2𝑛’s, which is explained in the
est of this section.

.2. Recurrence relationship between characteristic exponent 𝜇 and solution
arameters 𝛽𝑛’s

To compute the characteristic exponent 𝜇 for obtaining the approx-
mate solution, we first derive the recurrence relationship between 𝜇
nd the solution parameters 𝛽𝑛’s.

The solution of Mathieu’s equation can be assumed as [40]:

𝑠𝑐 (𝜏) = 𝑒𝜇𝜏
∞
∑

𝑛=−∞
𝐶2𝑛𝑒

𝑖2𝑛𝜏 . (15)

Substituting Eq. (15) into Mathieu’s equation in Eq. (13), we obtain:
∞
∑

=−∞
[(𝜇2 + (𝑖2𝑛)2 + 4𝑖𝜇𝑛)𝐶2𝑛

(𝑖2𝑛+𝜇)𝜏
4

+(𝑐0 − 2𝑐1 cos 2𝜏)𝐶2𝑛]𝑒 = 0. d
ith cos(2𝜏) = 𝑒𝑖2𝜏+𝑒−𝑖2𝜏
2 , this equation becomes:

∞
∑

=−∞

[

(

𝜇2 − (2𝑛)2 + 2(𝑖𝜇)(2𝑛) + 𝑐0
)

𝐶2𝑛

− 𝑐1(𝑒𝑖2𝜏 + 𝑒−𝑖2𝜏 )𝐶2𝑛

]

𝑒(𝑖2𝑛+𝜇)𝜏 = 0,
(16)

hich can be further rearranged as:
∞
∑

=−∞

[

(

(𝑖𝜇)2 + (2𝑛)2 − 2(𝑖𝜇)(2𝑛) − 𝑐0
)

𝐶2𝑛𝑒
(𝑖2𝑛+𝜇)𝜏

+ 𝑐1𝐶2𝑛𝑒
(𝑖2(𝑛+1)+𝜇)𝜏 + 𝑐1𝐶2𝑛𝑒

(𝑖2(𝑛−1)+𝜇)𝜏
]

= 0.
(17)

Since the sum in Eq. (17) is over 𝑛 ∈ (−∞,∞), we can relabel all 𝑛’s
n 𝑐1𝐶2𝑛𝑒(𝑖2(𝑛+1)+𝜇)𝜏 and 𝐶2𝑛𝑒(𝑖2(𝑛−1)+𝜇)𝜏 as 𝑛 − 1 and 𝑛 + 1, respectively.

This relabeling transforms Eq. (17) into:
∞
∑

=−∞

[

(

(2𝑛 − 𝑖𝜇)2 − 𝑐0
)

𝐶2𝑛

+𝑐1𝐶2(𝑛+1)+𝑐1𝐶2(𝑛−1)

]

𝑒(𝑖2𝑛+𝜇)𝜏 = 0.
(18)

From Eq. (18), we obtain the recurrence relationship between the
characteristic exponent 𝜇 and the solution parameters 𝛽𝑛’s as follows:

𝛽𝑛(𝜇)𝐶2(𝑛+1) + 𝐶2𝑛 + 𝛽𝑛(𝜇)𝐶2(𝑛−1) = 0, (19)

here the complex scalar function 𝛽𝑛 is defined as

𝑛(𝜇) ∶=
𝑐1

(2𝑛 − 𝑖𝜇)2 − 𝑐0
. (20)

3.3. Analytical expression of characteristic exponent 𝜇

Eq. (19) for all 𝑛 ∈ Z+ generates the following infinite set of linear
homogeneous equations with the coefficients 𝐶2𝑛’s as the unknown
variables:

𝜟(𝜇)
[

⋯ , 𝐶−6, 𝐶−4, 𝐶−2 𝐶0, 𝐶2, 𝐶4, 𝐶6,…
]𝑇 = 𝟎, (21)

where 𝟎 is a zero column vector with an infinite dimension and

𝜟(𝜇) ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
⋯ 0 𝛽−1 1 𝛽−1 0 0 0 ⋯
⋯ 0 0 𝛽0 1 𝛽0 0 0 ⋯
⋯ 0 0 0 𝛽1 1 𝛽1 0 ⋯
⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (22)

This set of linear equations have nontrivial solutions for the un-
known coefficients 𝐶2𝑛’s if the determinant of 𝜟(𝜇), denoted as |𝜟(𝜇)|,
equals zero. From [40], we know |𝜟(𝜇)| = 0 can be compactly expressed
s:

|𝜟(0)| sin2
(
𝜋
√

𝑐0
2

)

= 1 − cosh(𝜇𝜋). (23)

Solving Eq. (23) provides the exact analytical expression of 𝜇 as:

𝜇 = ± 1
𝜋
cosh−1

(

1 − 2|𝜟(0)| sin2
(
𝜋
√

𝑐0
2

)

)

. (24)

Remark 2 (Offline Computation of Parameters 𝜇 and 𝜟(𝜇)). Recall that
0 ∶= − 4𝑔

𝜔2𝑧0
and 𝑐1 ∶=

2𝐴
𝑧0

. Therefore, the values of 𝑐0 and 𝑐1 are known
if the user-specified CoM height 𝑧0 is known and if the surface motion
frequency 𝜔 and magnitude 𝐴 are measured, estimated, or predicted
in real-time (e.g., by a surface motion monitoring system [34]). With
known 𝑐0 and 𝑐1, the values of 𝛽𝑛(0) (for all 𝑛 ∈ Z+) and |𝜟(0)| are
nown. Then, we can pre-compute 𝜇 using its analytical expression in
q. (24), which could then be used to compute the analytical solution
uring online walking pattern generation.
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3.4. Truncation of infinite series

Since the two infinite series in the exact solution in Eq. (14) are
absolutely and uniformly convergent for any 0 < 𝜏 < ∞ [41], the exact
solution is also convergent and can be approximated as a sum of finite
terms.

We use 𝑥̂𝑠𝑐 (𝜏) to denote the approximate solution. With 𝑁 terms
kept, the approximate solution is given by:

̂𝑠𝑐 (𝜏) = 𝛼1𝑒
𝜇𝜏

𝑁
∑

𝑛=−𝑁
𝐶2𝑛𝑒

𝑖2𝑛𝜏 + 𝛼2𝑒
−𝜇𝜏

𝑁
∑

𝑛=−𝑁
𝐶2𝑛𝑒

−𝑖2𝑛𝜏 . (25)

To simultaneously ensure sufficient accuracy and efficiency for the
solution computation, we can determine the number of terms kept, 𝑁 ,
offline for the considered range of DRS motion parameters and the user-
specified solution tolerance. Specifically, we can numerically compute
the minimum number of terms kept that results in a series truncation
error less than the tolerance for the given DRS parameter range, which
can then be used as the value of 𝑁 .

3.5. Computation of coefficients 𝐶2𝑛’s

With the characteristic exponent, 𝜇, and the number of terms kept,
𝑁 , determined, we can obtain the value of the coefficient 𝐶2𝑛 (𝑛 ∈
{0, 1,… , 𝑁}) recursively based on Eq. (19), by setting 𝐶2𝑁 = 0 and
𝐶0 = 𝐴 [39].

The recurrence relationship in Eq. (19) indicates that the coefficient
satisfies

|𝐶2𝑛| ≪ |𝐶2(𝑛−1)| (26)

for sufficiently large index 𝑛 (e.g., 𝑛 > 𝑁).
Hence, the coefficients with sufficiently large indices can be ne-

glected; that is, 𝐶2(𝑁+1) ≈ 0.
With 𝐶2(𝑁+1) = 0, solving the recurrence relation in Eq. (19) for all

indices 𝑛 ∈ {0, 1,… , 𝑁} gives:

for 𝑛 =𝑁 ∶

𝛽𝑁𝐶2(𝑁+1) + 𝐶2𝑁 + 𝛽𝑁𝐶2(𝑁−1) = 0,

⇒ 𝐶2𝑁 = −𝛽𝑁𝐶2(𝑁−1), since 𝐶2(𝑁+1) = 0

for 𝑛 =𝑁 − 1 ∶

𝛽𝑁−1𝐶2𝑁 + 𝐶2(𝑁−1) + 𝛽𝑁−1𝐶2(𝑁−2) = 0,

⇒ 𝐶2(𝑁−1) =
−𝛽𝑁−1

1 − 𝛽𝑁𝛽𝑁−1
𝐶2(𝑁−2)

for 𝑛 =𝑁 − 2 ∶

𝛽𝑁−2𝐶2(𝑁−1) + 𝐶2(𝑁−2) + 𝛽𝑁−2𝐶2(𝑁−3) = 0,

⇒ 𝐶2(𝑁−2) =
−𝛽𝑁−2

1 − 𝛽𝑁−2𝛽𝑁−1
1−𝛽𝑁−1𝛽𝑁

𝐶2(𝑁−3)

⋯

(27)

Hence, 𝐶2𝑛 (𝑛 ∈ {0, 1,… , 𝑁}) can be expressed as:

𝐶2𝑛 =
−𝛽𝑛

1 − 𝛽𝑛𝛽𝑛+1
1−

𝛽𝑛+1𝛽𝑛+2

1−
𝛽𝑛+2𝛽(𝑛+3)

1− ⋯

𝐶2(𝑛−1).
(28)

By setting 𝐶0 = 𝐴 in Eq. (28), all other coefficients are determine
sing Eq. (28). The relation in Eq. (28) is utilize to find the coefficients
−2𝑛, by replacing the index 𝑛 with its additive inverse −𝑛.

.6. Computation of coefficients 𝛼1 and 𝛼2

The last set of parameters that need to be determined for computing
he approximate analytical solution 𝑥̂ are 𝛼 and 𝛼 , which can be
5

𝑠𝑐 1 2
btained based on the given initial condition of 𝑥̂𝑠𝑐 as introduced next.
Recall that the coefficient 𝛽𝑛 is defined in Eq. (20). This definition

indicates that 𝛽−𝑛 is the complex conjugate of 𝛽𝑛, and accordingly 𝐶−2𝑛
is the complex conjugate of 𝐶2𝑛.

We can express the scalar, complex coefficient 𝐶2𝑛 using the follow-
ng generic form:

2𝑛 = 𝑟2𝑛𝑒
𝑖𝜃2𝑛 , (29)

here 𝑟2𝑛 and 𝜃2𝑛 are real constants.
Then, substituting 𝐶2𝑛 = 𝑟2𝑛𝑒𝑖𝜃2𝑛 into the approximate analytical

solution in Eq. (25) gives:

̂𝑠𝑐(𝜏) = 𝛼1𝑒
𝜇𝜏

𝑁
∑

𝑛=−𝑁
𝑟2𝑛𝑒

𝑖𝜃2𝑛𝑒𝑖2𝑛𝜏 + 𝛼2𝑒
−𝜇𝜏

𝑁
∑

𝑛=−𝑁
𝑟2𝑛𝑒

𝑖𝜃2𝑛𝑒−𝑖2𝑛𝜏

= 𝛼1𝑒
𝜇𝜏

𝑁
∑

𝑛=1

[

𝑟0 + 𝑟2𝑛(𝑒𝑖(2𝑛𝜏+𝜃2𝑛) + 𝑒−𝑖(2𝑛𝜏+𝜃2𝑛))
]

+ 𝛼2𝑒
−𝜇𝜏

𝑁
∑

𝑛=1

[

𝑟0 + 𝑟2𝑛(𝑒−𝑖(2𝑛𝜏−𝜃2𝑛) + 𝑒𝑖(2𝑛𝜏−𝜃2𝑛))
]

= 𝛼1𝑒
𝜇𝜏

𝑁
∑

𝑛=1

[

𝑟0 + 2𝑟2𝑛 cos(2𝑛𝜏 + 𝜃2𝑛)
]

+ 𝛼2𝑒
−𝜇𝜏

𝑁
∑

𝑛=1

[

𝑟0 + 2𝑟2𝑛 cos(2𝑛𝜏 − 𝜃2𝑛)
]

.

(30)

Recall 𝜏 ∶=
𝜋
2 +𝜔𝑡
2 . Replacing 𝜏 with

𝜋
2 +𝜔𝑡
2 in Eq. (30) yields:

̂𝑠𝑐 (𝑡) = 𝛼1𝑒
𝜇

𝜋
2 +𝜔𝑡
2

𝑁
∑

𝑛=1

[

𝑟0 + 2𝑟2𝑛 cos
( 𝑛𝜋
2

+ 𝑛𝜔𝑡 + 𝜃2𝑛
)

]

+ 𝛼2𝑒
−𝜇

𝜋
2 +𝜔𝑡
2

𝑁
∑

𝑛=1

[

𝑟0 + 2𝑟2𝑛 cos
( 𝑛𝜋
2

+ 𝑛𝜔𝑡 − 𝜃2𝑛
)

]

.

(31)

Given initial condition (𝑥̂𝑠𝑐 (0), ̇̂𝑥𝑠𝑐 (0)), we can compute the coefficients
𝛼1 and 𝛼2 based on the solution in Eq. (31).

Finally, with the values of the parameters 𝜇, 𝐶2𝑛’s, 𝛼1, and 𝛼2
obtained as explained earlier, we can readily compute the approxi-
mate solution by substituting those parameter values in the solution
expression in Eq. (25).

4. Stability analysis

This section presents the stability condition of the DRS-LIP model
associated with locomotion on a vertically moving surface, along with
the stability analysis based on the proposed approximate analytical
solution.

4.1. Sufficient and necessary stability condition

Before introducing the stability condition, we first define the notion
of stability for the DRS-LIP model.

Definition 1 (Stability of the DRS-LIP Model). By the Floquet the-
ory [42], the DRS-LIP in Eq. (11) is called ‘‘stable’’ if all its solutions
are bounded for any 𝑡 > 0, and is ‘‘unstable’’ if an unbounded solution
exists for 𝑡 > 0.

The stability of the DRS-LIP, as defined in Definition 1, can be
determined with the characteristic exponents 𝜇. Since the DRS-LIP
is a linear, second-order ordinary differential equation, it has two
characteristic exponents, denoted as 𝜇1 and 𝜇2.

Theorem 2 (Stability Condition). Let Re(𝜇1) and Re(𝜇2) respectively
denote the real parts of 𝜇1 and 𝜇2. Suppose that Re(𝜇1) ≤ Re(𝜇2). Then,
by the Floquet theory, the model is stable if and only if Re(𝜇1),Re(𝜇2) < 0.
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Fig. 2. Unbounded time evolution of solution 𝑥̂𝑠𝑐 (𝑡) of the DRS-LIP model under: (a)
the same model parameters (𝐴 = 7 cm, 𝜔 = 𝜋 rad/s, and 𝑧0 = 42 cm) but 100 different
initial conditions satisfying |𝑥𝑠𝑐 (0)| < 0.4 m and |𝑥̇𝑠𝑐 (0)| < 0.4 m/s and (b) different
parameters (0 < 𝜔 ≤ 2𝜋 rad/s, 0 < 𝐴 ≤ 100 cm, and 30 ≤ 𝑧0 ≤ 55 cm) but the same
initial condition (𝑥𝑠𝑐 (0) = 0.02 m and 𝑥̇𝑠𝑐 (0) = 0.1 m∕s).

4.2. Numerical stability analysis

For typical ship motions in regular sea waves, the parameters
(i.e., displacement magnitude 𝐴 and frequency 𝜔) of the DRS-LIP model
in Eq. (13) take values within [30]:

𝐴 ≤ 100 cm and 𝜔 ≤ 2𝜋 rad/s.

Also, the kinematically feasible CoM height 𝑧0 of a typical
quadrupedal robot (e.g., Unitree’s Laikago) is within:

0.3 m < 𝑧0 < 0.55 m.

Under these parameter ranges, we use Eq. (24) to numerically
compute the characteristic exponents and obtain that

Re(𝜇2) > 0 and Re(𝜇1) < 0.

Therefore, by the Floquet theory [42], the DRS-LIP is unstable
(i.e., an unbounded solution exists on 𝑡 > 0) under the considered
operating condition.

To illustrate this physical insight, Fig. 2 presents the corresponding
approximate analytical solutions. Subplot (a) displays the approxi-
mate solutions under different initial conditions (|𝑥𝑠𝑐 (0)| < 0.4 m and
|𝑥̇𝑠𝑐 (0)| < 0.4 m∕s) and DRS-LIP parameters (𝜔 = 𝜋 rad/s, 𝐴 = 7 cm, and
𝑧0 = 42 cm). Subplot (b) shows the solutions under the same initial
condition (𝑥𝑠𝑐 (0) = 0.02 m and 𝑥̇𝑠𝑐 (0) = 0.1 m∕s) but different model
parameters (0 < 𝜔 ≤ 2𝜋 rad/s, 0 < 𝐴 ≤ 100 cm, and 30 ≤ 𝑧0 ≤ 55 cm).
In all cases except for the trivial initial condition 𝑥𝑠𝑐 (0), 𝑥̇𝑠𝑐(0) = 0, the
solutions grow towards infinity as time 𝑡 increases, confirming that the
DRS-LIP model is unstable under the considered operating condition.

Remark 3 (Effects of DRS-LIP Model Stability on Robot Walking Stability).
Despite the instability of the DRS-LIP model during continuous stance
phases, the model is useful for the planning and control of a full-order
robot to ensure robot walking stability. This is essentially because as
long as the desired CoM motion is feasible during continuous phases,
there exists a wide class of nonlinear control approaches (e.g., our prior
input–output linearizing controller [7,43]) that can provably guarantee
the walking stability for the overall hybrid full-order robot model. In
this study, we implement such a controller to indirectly validate the
feasibility of the proposed planner (see Section 6.5).

5. DRS-LIP based walking pattern generation

To demonstrate the practical uses of the DRS-LIP model and its
analytical solution, this section presents a hierarchical walking pattern
generator that exploits these theoretical results to enable efficient and
6

Fig. 3. A complete quadrupedal walking cycle, with the four feet marked as Front Left
(FL), Front Right (FR), Rear Left (RL), and Rear Right (RR).

feasible planning for quadrupedal walking on a vertically oscillating
DRS.

The planner is designed for quadrupedal walking [3,7] whose gait
cycle comprises four continuous foot-swinging phases and four discrete
foot-landing events (see Fig. 3).

The planner has two layers as illustrated in Fig. 4: (i) the higher
layer generates kinematically and dynamically feasible CoM position
trajectories, by using the proposed analytical solution of the DRS-LIP
model and incorporating necessary feasibility constraints, and (ii) the
lower layer utilizes trajectory interpolation to efficiently translate the
CoM trajectories into the desired motion for all degrees of freedom of
the full-order robot model.

Since the time profiles of the DRS motion are commonly sensed
or estimated by real-time motion monitoring systems (e.g., shipboard
sensors [34]), the planner design assumes that the nominal profile
of the surface motion is known with bounded inaccuracy. Hardware
experiment results that demonstrate the inherent robustness of the
proposed framework under inaccurate surface motion knowledge is
provided in Section 6.

5.1. Higher-layer CoM trajectory planner

The higher-layer planner uses the DRS-LIP as a basis to efficiently
generate feasible reference trajectories of the CoM position 𝐫𝑠𝑐 (𝑡) thro-
ugh nonlinear optimization.

As the planner is introduced primarily for highlighting the use-
fulness of the analytical results, we construct a simple higher-layer
planner that is computationally efficient for real-world implementa-
tions, by reducing the number of optimization variables through the
pre-specification of common gait parameters (which characterize the
desired gait features). While a simple CoM trajectory planner is devel-
oped in this study based on the proposed model and analytical solution,
the model and solution could be incorporated in a more complex
planner (e.g., [44]) that demands fewer user-defined gait parameters
and is more versatile for generating complex locomotion tasks.

5.1.1. User-defined gait parameters
Similar to [45], the pre-specified gait parameters in this study are

chosen as: (i) average walking velocity (i.e., horizontal CoM velocity),
(ii) foot contact sequence (see Fig. 3), (iii) stance foot positions, (iv)
constant CoM height 𝑧0 above the surface (for respecting assumption
(A2)), and (v) gait period. The values of parameters (i)-(iv) are typically
set to help ensure a kinematically feasible gait. The value of the
parameter (v) is selected such that the quotient of the DRS’ nominal
motion period and the desired gait period is an integer (i.e., the desired
CoM motion complies with the DRS motion).

5.1.2. Optimization variables
We choose the optimization variables 𝜶 of the planner as the initial

CoM position (𝑥 , 𝑦 ) and velocity (𝑥̇ , 𝑦̇ ) within each continuous
𝑠𝑐 𝑠𝑐 𝑠𝑐 𝑠𝑐
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Fig. 4. Overview of the proposed hierarchical walking pattern generator. The higher layer exploits the proposed analytical solution of the DRS-LIP model to ensure efficient and
physically feasible planning of the desired CoM position trajectories 𝐫𝑠𝑐 (𝑡). The lower layer converts the reference CoM trajectories 𝐫𝑠𝑐 (𝑡) into full-body reference motions (𝐫𝑏(𝑡),
𝜸𝑏(𝑡), and 𝐫𝑓 (𝑡)) through trajectory interpolation.
phase. The rationale for this choice is that these variables, along with
the DRS-LIP model parameters and the DRS motion profile, completely
determine the horizontal CoM position trajectories. The vertical CoM
position 𝑧𝑠𝑐 is not included as an optimization variable because it can
be readily obtained from the user-defined CoM height 𝑧0.

5.1.3. Constraints
We design the constraints to enforce gait feasibility and desired gait

features. Note that these constraints are formed based on the proposed
analytical approximate solution 𝑥̂𝑠𝑐 . The equality constraints include:
(i) continuity of the CoM trajectories at the foot-landing events and (ii)
the desired walking velocity. The inequality constraints are: (i) friction
cone constraint for avoiding foot slipping, (ii) confinement of CoM
trajectories within the polygon of support for approximately respecting
the CoP constraint, and (iii) upper and lower bounds on 𝜶.

To meet the constraints, 𝜶 is obtained by solving the following
optimization problem:

min
𝜶

ℎ(𝜶)

subject to 𝐟𝑒𝑞(𝜶) = 𝟎, 𝐠𝑖𝑛𝑒𝑞(𝜶) ≤ 𝟎,
(32)

where ℎ(𝜶) is a scalar cost function (e.g., energy cost of transport), and
the vector-valued functions 𝐟𝑒𝑞 and 𝐠𝑖𝑛𝑒𝑞 are the sets of all aforemen-
tioned equality and inequality constraints, respectively. The expressions
of 𝐟𝑒𝑞 and 𝐠𝑖𝑛𝑒𝑞 are omitted for space consideration.

5.2. Lower-layer full-body trajectory generator

The lower-layer planner is essentially trajectory interpolation that
translates the reference CoM trajectory 𝐫𝑠𝑐(𝑡) (supplied by the higher-
layer planner) into the robot’s full-body trajectories. To impose a
steady trunk/base pose and to avoid swing foot scuffing on the surface,
we choose these full-order trajectories to be the absolute base pose
(position 𝐫𝑏 and orientation 𝜸𝑏) and the swing foot position 𝐫𝑓 relative
to the base.

The input to the lower-layer planner (see Fig. 4) are: the nominal
DRS motion that is vertical and sinusoidal, the CoM position trajectories
provided by the higher-layer planner, and the user-defined parameters
(e.g., CoM height, stance foot locations, and maximum swing foot
height).

5.2.1. Base pose trajectories
The CoM of the robot is approximated as the base (i.e., the geo-

metric center of the trunk) because a quadruped’s trunk typically has a
symmetric mass distribution and is substantially heavier than the legs.
Thus, we set the desired base position trajectories 𝐫𝑏(𝑡) same as the
desired CoM position trajectories 𝐫𝑠𝑐 (𝑡). As real-world locomotion tasks
are typically encoded by a robot’s absolute global/base position, we
choose to transform these relative position trajectories into the absolute
ones.
7

With the DRS position 𝐫𝑤𝑠(𝑡) at the support point 𝑆, we obtain the
absolute base position trajectories 𝐫𝑏(𝑡) as:

𝐫𝑏(𝑡) = 𝐫𝑠𝑐 (𝑡) + 𝐫𝑤𝑠(𝑡). (33)

To avoid overly stretched leg joints for ensuring kinematic feasibility,
the desired base orientation trajectories 𝜸𝑏(𝑡) are designed to comply
with the DRS orientation.

5.2.2. Swing foot position trajectories
The desired swing foot trajectories 𝐫𝑓 (𝑡) (relative to the support

point 𝑆) are designed to agree with the desired stance foot locations
and to respect the kinematic limits of the robot’s leg joints. Specifically,
we plan the desired swing foot trajectory during a continuous phase by
using Bézier polynomials [7] to connect the adjacent desired stance foot
positions.

We use 𝑠 to denote the scalar normalized phase variable that rep-
resents how far a walking step has progressed. Let 𝐫𝑓,𝑖 and 𝐫𝑓,𝑒 respec-
tively denote the desired swing foot locations at the initial and end
instants of a continuous phase. We assign the values of 𝐫𝑓,𝑖 and 𝐫𝑓,𝑒 to
match the desired stance foot locations for the given continuous phase.

Then, we use the following Bézier curve to express the desired swing
foot position 𝐫𝑓 within the given phase:

𝐫𝑓 (𝑠) = 𝐫𝑓,𝑖 + 𝐏(𝑠)(𝐫𝑓,𝑒 − 𝐫𝑓,𝑖), (34)

where 𝐏(𝑠) is a 3 × 3 diagonal matrix-valued function with each
diagonal term an 𝑛th-order Bézier polynomial interpolation.

For walking along a straight line, we can design the lateral swing
foot position as constant for simplicity. We design the forward and
vertical trajectories to have a relatively fast initial velocity within
Continuous Phases 1 and 3, as illustrated in Fig. 5(a). This relatively
fast initial velocity allows the robot’s full body to have sufficient mo-
mentum to leave the previous support polygon and enter the planned
current polygon, thereby indirectly meeting the CoP constraints under
the desired contact sequence.

Also, as inspired by previous quadrupedal robot planning [3], a brief
four-leg-in-support phase is inserted upon a foot-landing event when
the two consecutive polygons of support only share a common edge
(i.e., ‘‘Switching 1 → 2’’ and ‘‘Switching 3 → 4’’ in Fig. 3), so as to ensure
smooth and feasible transitions during these events. This transitional
phase is highlighted with a gray background in Fig. 5. Thanks to this
transitional phase, the initial forward and vertical swing foot velocities
within Phases 2 and 4 do not need to be as fast as Phases 1 and 3 (see
Fig. 5(b)).

Remark 4 (Effects of LIP Model Accuracy on Trajectory Generation Fea-
sibility). The dynamic feasibility of the planned trajectories partly de-
pends on the closeness between the DRS-LIP model and the actual robot
dynamics. The DRS-LIP model is a relatively faithful representation of
an actual DRS-robot system when the robot and DRS behaviors meet
the assumptions (A1)-(A3) that underlie the proposed model and its
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Fig. 5. Normalized swing foot position trajectories in 𝑥- and 𝑧-directions during (a)
Continuous Phases 1 and 3 and (b) Continuous Phases 2 and 4. The gray background
highlights the transitional four-leg-in-support phase.

Fig. 6. Mean percentage error of the proposed analytical approximate solution com-
pared with the high-accuracy numerical solution under model parameters 𝐴 = 7 cm,
𝜔 = 𝜋 rad/s, and 𝑧0 = 42 cm for 100 random initial conditions satisfying |𝑥𝑠𝑐 (0)| < 0.2
m and |𝑥̇𝑠𝑐 (0)| < 0.2 m∕s.

Table 1
Average computation time of analytical and numerical solutions for 1000
trials in MATLAB (mean ± SD).

Solution method Computation time (ms)

Numerical 2.61 ± 0.43
Analytical (proposed) 0.16 ± 0.02

solution. Indeed, assumption (A3) holds when the surface motion is
vertical and sinusoidal, and the planner explicitly imposes assumption
(A2). Moreover, as the planner enforces the desired base orientation
to comply with the surface orientation for kinematic feasibility, the
planned motion will reasonably respect assumption (A1) for surfaces
that translate without rotary motions. Even for real-world DRSes that
rotate (e.g., rocking vessels), the rate of the robot’s centroidal angular
momentum will be negligible under the typical angular movement
range of those DRSes [30], thus still respecting assumption (A1).

6. Simulation and experiment validation

This section presents the simulation results that validate the pro-
posed approximate analytical solution and walking pattern generator.

6.1. Validation of solution accuracy and efficiency

The accuracy and computational efficiency of the proposed analyt-
ical approximate solution in Eq. (25) is assessed through comparison
with a highly accurate numerical solution. For fairness of comparison,
both solutions are computed in MATLAB on 𝑡 ∈ [0, 0.5] s. The
8

Fig. 7. Setup of (a) experiments and (b) PyBullet simulations for testing the planner
effectiveness using a pitching Motek treadmill ( 1⃝) and a Laikago quadruped ( 2⃝). The
treadmill has a split belt ( 4⃝) that moves at a constant speed while the treadmill rocks
about the horizontal axis ( 3⃝).

approximate solution has ten terms kept (i.e., 𝑁 = 10) for a reasonable
trade-off between accuracy and computational efficiency. The compar-
ative numerical solution is computed using MATLAB’s ODE45 solver
with an error tolerance of 10−9 and at a time interval of 0.5 ms.

To validate the proposed solution under different initial conditions,
1000 sets of initial conditions are randomly chosen within a common
movement range of quadrupedal walking [3]: |𝑥𝑠𝑐 (0)| < 0.2 m and
|𝑥̇𝑠𝑐 (0)| < 0.2 m∕s. The DRS-LIP model parameters are chosen to be
within realistic ranges of DRS motions [30,36] and quadrupedal robot
dimensions [7]: 𝐴 = 7 cm, 𝜔 = 𝜋 rad/s, and 𝑧0 = 42 cm.

Fig. 6 shows the accuracy of the approximate analytical solution
(with ten terms kept) compared with the numerical solution for 100 out
of the 1000 trials. Within those 100 trials, the maximum value of the
absolute percentage error is lower than 0.02% in magnitude, indicating
the reasonable accuracy of the proposed approximate solution. For all
1000 trials, the absolute percentage error, measured by mean ± one
standard deviation (SD), is (0.0012 ± 0.005)%.

Table 1 displays the comparison of the average computational time
cost (measured by mean±SD) for the aforementioned 1000 trials. The
proposed approximate analytical solution is about 15 times faster to
compute than the numerical one.

6.2. Simulation and experimental setup for planner validation

The setup of simulations and hardware experiments is shown in
Fig. 7. The experiment video is provided as a supplementary file and is
available at https://youtu.be/F9LH8mdhedg.

https://youtu.be/F9LH8mdhedg
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Fig. 8. Image tiles of quadrupedal walking on a pitching treadmill under the proposed walking pattern generator synthesized based on the DRS-LIP model and its analytical
solution. The top and bottom rows respectively show PyBullet simulations and hardware experiments.
(

Table 2
User-defined gait parameters in walking pattern generation.

Gait parameter (G1) (G2)

Friction coefficient 0.5 0.5
Robot’s base height 𝑧0 (cm) 42 42
Gait duration (s) 2 2
Average walking velocity (cm/s) 5 6
Step length (cm) 10 12
Max. step height (cm) 5 5

6.2.1. Robot
The validation of the planner utilizes a Laikago quadruped (see

Fig. 7) developed by Unitree Robotics. The dimension of the robot is
55 cm × 35 cm × 60 cm. The robot’s total mass is 25 kg and a power
density of 0.8 kW/kg. The robot is powered by a 650 Wh lithium-ion
battery weighing 4.4 kg. It has twelve independently actuated joints
that can produce up to 18 kW of instantaneous power. Each leg weighs
2.9 kg and has three brushless DC motors located close to the trunk.
The torque limits of the hip-roll, hip-pitch, and knee-pitch motors are
20 Nm, 55 Nm, and 55 Nm, respectively. The robot is equipped with
an IMU at the trunk, 12 joint encoders, and a contact sensor at each
foot.

6.2.2. Nominal and uncertain DRS motion
Three DRS motions are tested to assess the efficiency, feasibility, and

robustness of the planner under different surface motions that emulate
vessel movements in regular sea waves [36].

Due to our limited equipment access to programmable, actuated
DRS that exclusively exhibits vertical motion, we focus on PyBullet
simulations for the planner validation on a vertically moving surface
with the following nominal profile without movement uncertainties:

(DRS1) The DRS motion is vertical and sinusoidal with 𝐴 = 10 cm and
𝜔 = 𝜋 rad/s.

Meanwhile, we use a Motek M-Gait treadmill that performs a pitch-
ing motion (see Fig. 7) to approximate a vertically moving DRS both in
hardware experiments and PyBullet simulations. The Motek treadmill
can be pre-programmed to perform user-defined pitching (but not
vertical) motions and belt translation. The treadmill weighs 750 kg with
a dimension of 2.3 m × 1.82 m × 0.5 m. A 4.5 kW servo motor powers
each of the treadmill’s two belts. During the hardware experiments, the
robot is placed approximately 1 m away from the treadmill’s axis of
rotation, and the belt speed is set to be the same as the desired walking
9

speed. Fig. 8 shows images of the Laikago robot walking on the rocking
treadmill in simulations and experiments.

The actual movement of the pitching treadmill at the foot-surface
contact points is different from the nominal, vertical DRS motion used
in planning and control, since the pitching treadmill naturally possesses
non-negligible horizontal motion and the robot’s actual location on the
treadmill directly affects the actual surface motion at the support feet.
Both the nominal and actual surface motions are listed below for the
two surface profiles tested:

(DRS2) The nominal, vertical surface motion used in planning and
control is sinusoidal with 𝐴 = 7 cm and 𝜔 = 𝜋 rad/s. The
actual, pitching DRS motion is a sinusoidal function with an
amplitude of 5◦ and frequency of 0.5 Hz.

(DRS3) The nominal, vertical surface motion used in planning and
control is sinusoidal with 𝐴 = 11 cm and 𝜔 = 𝜋 rad/s. The
actual, pitching DRS motion is a sinusoidal function with an
amplitude of 7◦ and frequency of 0.5 Hz.

For all surface motions (DRS1)-(DRS3), the surface accelerations in
the vertical direction are relatively significant for planner validation,
with peak contact-point accelerations approximately at 100 cm/s2,
70 cm/s2, and 110 cm/s2 in magnitude, respectively, when the robot
stands about 1 m away from the treadmill’s axis of pitching. The
corresponding magnitude of contact-point displacements are 10 cm,
7 cm, and 11 cm, respectively.

For the uncertain surface motions (DRS2) and (DRS3), the up-
per bounds of the uncertainty in the absolute acceleration of the
surface-robot contact points are approximately 20 cm/s2 and 10 cm/s2
in vertical and horizontal directions, respectively. Thus, the maxi-
mum absolute uncertainties are about 10%–20% of the peak vertical
acceleration at the contact points.

6.2.3. Validation cases
We validate the efficiency, feasibility, and robustness of the pro-

posed planner under four different combinations of surface motions
and desired gait features, both through hardware experiments and
simulations. The gait features are sampled from the two parameter sets
(G1) and (G2) as specified in Table 2.

To assess the planning efficiency, computations in MATLAB and
C++ are conducted under:

Case 1) Combination of surface motion (DRS2) and gait parameters
(G1).
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Table 3
Average time cost of 1000 runs of higher-layer planning (mean±SD) under Case 1.

Solution method MATLAB C++
(fmincon) (Ipopt)

Numerical (ms) 1320.7 ± 13.8 72.3 ± 6.7
Analytical (ms) 269.1 ± 12.9 8.6 ± 2.2

To validate the planner feasibility under no surface motion uncer-
tainty, we perform PyBullet simulations under:

Case 2) Combinations of vertical surface motion (DRS1) and gait (G1).

Finally, both hardware experiments and Pybullet simulations are
used to evaluate the planner robustness in the presence of uncertain
surface motions:

Case 3) Combination of uncertain surface motion (DRS2) and gait
parameters (G1) and

Case 4) Combination of uncertain surface motion (DRS3) and gait
parameters (G2).

6.3. Planner efficiency validation

To demonstrate that utilizing the proposed analytical solution im-
proves the planner efficiency compared with the numerical solution,
the higher-layer CoM trajectory planning problem is solved based on
both solutions under Case 1.

For simplicity, the cost function ℎ in Eq. (32) is chosen as trivial.
A 6th-order Bézier curve is used to design the desired swing foot
trajectory for allowing adequate freedom in trajectory design. Also, we
choose to lower the load of computing the proposed analytical solution
by pre-computing its solution parameters 𝜇 and 𝐶2𝑛, as discussed in
Remark 2.

To assess the planner efficiency under different common solvers,
both MATLAB and C++ are used to solve the optimization-based plan-
ning problem in Eq. (32) for 1000 runs with the same initial guess of the
optimization variable 𝜶. For fairness of comparison, the optimality and
constraint tolerances are set as 10−6 in all runs. In MATLAB, fmincon
is used with an interior-point solver. For the C++ optimization, the
nonlinear optimization solver of the Ipopt package [46] is utilized. We
solve the optimization problem on a Windows 10 PC with 32 GB DDR4
RAM and an Intel Xeon W-10855M processor running at a base speed
of 2.8 GHz.

For those 1000 runs, Table 3 shows that the mean time costs of the
analytical solution based higher-layer planning is approximately 4 and
7 times shorter than the numerical solution based one in MATLAB and
C++, respectively.

Furthermore, Table 3 indicates that the higher-layer planner takes
8.6±2.2 ms to generate the desired CoM trajectory when it is solved by
C++ using the approximate analytical solution. The median time cost
of those 1000 runs of computations is 8.4 ms. Also, solving the lower-
layer planner is typically fast (e.g., MATLAB can solve it within 2 ms)
since the planning is essentially trajectory interpolation. Therefore, the
mean time cost for solving both higher and lower layers will be less
than 11 ms. Since such a time cost is much smaller than the typical
quadrupedal walking gait period (i.e., about 2 s [3]) and real-world DRS
motion periods (e.g., 1-100 s for vessels [30]), the proposed planner
would be adequately fast to timely regenerate the desired full-order
trajectories in case of any significant changes in the DRS motion.

6.4. Comparing planner efficiency

To highlight the significant reduction in planning time of the pro-
posed walking pattern generator thanks to the use of our proposed
time-varying LIP model, we compare the time cost of the proposed
generator for planning 2 s of walking motion with the existing planning
10
Fig. 9. PyBullet simulation results for the robot’s base and front-right leg under Case
2.

method that utilizes a full-order robot model [7,47]. This compara-
tive planner is formulated as an optimization problem similar to the
proposed pattern generator.

The optimization variables of the full-order model based planner is
the vector of Bézier coefficients 𝜷 associated with the base pose and
swing foot trajectories.

The equality constraints include: (i) continuity of the desired base
pose trajectories across walking phases and (ii) the desired walking
velocity. The inequality constraints are: (i) bounds on the joint configu-
ration, (ii) bounds on the CoM position trajectories, and (iii) upper and
lower bounds on 𝜷. The cost function is set as a scalar cost function with
the same physical meaning as the proposed walking pattern generator.

Under the same settings for the optimization problem, computing
unit, and user-defined parameters as in Section 6.3, the MATLAB
planning time for 2 s of walking pattern based on the full-order robot
model, among 10 trials, is 162.4 ± 13.7 s while the time cost is 0.27 ±
0.01 s for the proposed planner based on the time-varying LIP model.
This comparative simulation demonstrates a substantial improvement
in planning efficiency based on the proposed model simplification,
enabling real-time walking pattern generation.

6.5. Planner feasibility validation

Besides efficiency, the proposed DRS-LIP and its solution can also
be used to guarantee planning feasibility, which is validated in PyBullet
simulations under Case 2.

To test the feasibility of the planned motion, we choose to im-
plement our previous nonlinear feedback controller [7] that does not
explicitly ensure the feasibility of ground contact forces during hard-
ware experiments (Remark 3). If the controller turns out to be effective
in sustaining stable walking on a DRS, we can infer that the planned
trajectory is at least approximately physically feasible.

This controller is derived based on the hybrid full-order robot
model and proportional derivative (PD) control. Given feasible desired
trajectories, it provably guarantees the walking stability. To help ensure
a reasonable tracking performance, the PD gains are tuned as 0.7 and
1.0 in simulations, and 5.5 and 0.15 on hardware.

As shown in Fig. 9, the robot sustains stable walking for the entire
testing period of 50 gait cycles. The base and joint trajectories closely
track their reference values, as shown in subplots (a) and (b). Also,
subplot (c) indicates that the actual robot motion indeed respects the
torque limits.
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Fig. 10. Hardware experiment and PyBullet simulation results for the robot’s base and
front-right leg under Case 3.

Fig. 11. Hardware experiment and PyBullet simulation results for the robot’s base and
front-right leg under Case 4.

6.6. Robustness validation under surface motion uncertainty

To evaluate the inherent robustness of the proposed planner in the
presence of moderate levels of uncertain DRS motions as specified in
Section 6.2.2, we test the planner under Cases 3 and 4, with results
respectively presented in Figs. 10 and 11.

In both simulations and experiments, the robot walking is stable, as
indicated by the trajectory tracking accuracy in subplots (a) and (b) of
Figs. 10 and 11 as well as the experiment video. Moreover, subplots (c)
of Figs. 10 and 11 confirm that the joint torque limits are met in both
simulations and experiments.

Yet, the torque profiles of the front-right leg’s three joints display
notable discrepancies between PyBullet and experiment results, pos-
sibly due to the differences between the simulated and actual robot
dynamics as well as the different inherent meanings of their effective
PD gains.

Also, the experiment video shows that the robot experiences rel-
atively notable rebounding and slipping at contact-switching events
when a rear leg lands on the surface. This violation of the planned
contact sequence is directly due to the temporary loss of contact force
feasibility, and could be mitigated through improved controller design
as discussed in Section 7.
11
7. Discussion

This paper has introduced a reduced-order dynamic model of a
legged robot that walks on a DRS, by analytically extending the classi-
cal LIP model from stationary surfaces [14] to a DRS (e.g., a vessel). The
resulting DRS-LIP model in Eq. (8) is a linear, second-order differential
equation, similar to the classical LIP. However, the DRS-LIP is explicitly
time-varying whereas the classical LIP is time-invariant. This funda-
mental difference is due to the time-varying movement of the surface at
the surface-foot contact points. This study also investigates the stability
of the DRS-LIP based on the Floquet theory. Similar to the classical
LIP that describes stationary-surface locomotion [14], the DRS-LIP is
unstable under the usual movement range of real-world DRSes such as
vessels [30].

The DRS-LIP is valid under assumption (A1) that the actual robot’s
rate of whole-body angular momentum about the CoM is negligible. To
relax this assumption, the point mass of the proposed DRS-LIP could
be augmented with a flywheel [19,21] to account for the nonzero
rate of angular momentum. Moreover, the DRS-LIP can be generalized
from a constant CoM height (as enforced by assumption (A2)) to a
varying height by integrating with the variable-height LIP for stationary
surfaces [15].

This study also derives the approximate analytical solution of the
DRS-LIP for vertical, sinusoidal surface motions. Its sufficient accuracy
and improved computational efficiency compared with numerical solu-
tions are confirmed through MATLAB simulations (Fig. 6 and Table 1).
Although the proposed reduced-order model in Eq. (7) does not assume
a specific form of surface motion, the proposed analytical solution is de-
rived for vertical and sinusoidal surface motions, which are typical for
real-world ship motions in regular sea waves [30,35]. To address sur-
face motions that are vertical and nonperiodic with their time profiles
pieced together by periods of different sinusoidal waves, which cover a
wide range of DRS motions [30], the proposed analytical solution could
be extended by: (i) forming the individual analytical solutions for those
different periods based on the proposed solution derivation method and
then (ii) piecing them together to form the needed overall solution.
Moreover, if the vertical nonperiodic surface motion comprises periods
of general periodic functions instead of sinusoidal waves, we could
potentially use the Floquet theory [42] to derive the analytical solution
by numerically precomputing the fundamental matrix of the reduced-
order model and then constructing the analytical solution using the
fundamental matrix. Our future work will also tackle the modeling and
planning problem for legged locomotion under general surface motions
[48] that contain horizontal movements [49,50].

To highlight the practical usefulness of the analytical results, the
DRS-LIP model and its solution have been used as a basis to synthe-
size a two-layer walking pattern generator that efficiently produces
desired, physically feasible motions for quadrupedal DRS walking. The
feasibility of the planned motion is validated by using our previous
tracking controller [7] to command a quadrupedal robot to follow
the planned motion during DRS walking. As discussed in Section 6.1,
simulation and experiment results indicate the reasonable feasibility
and robustness of the proposed planner under different gait parameters
and surface motions (Figs. 9–11). Furthermore, validations through
hardware experiments demonstrated its robustness to uncertainties in
DRS motions. To mitigate the temporary violation of the planned
gait sequence observed in experiments, which is partly induced by
the discrepancies between the DRS-LIP and the actual robot dynam-
ics, the planned motion could be tracked by an optimization-based
controller [51] that explicitly ensures physical feasibility.

With the peak absolute acceleration of the surface-foot contact
points at around 1 m/s2, the quadrupedal walking speed relative to
the rocking treadmill is about 5 cm/s in the hardware experiments,
which, to our best knowledge, is the fastest quadruped walking speed
on a vigorously rotating surface for hardware experiments [7]. To
achieve faster walking despite the inevitably higher inaccuracy of the
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reduced-order model induced by the higher nonlinearity of actual robot
dynamics, we can augment the controller described in Section 6.1,
which does not reason about the feasibility of necessary constraints
(e.g., ground contact forces), with an optimization-based controller [2,
3] that explicitly guarantee the feasibility for actual walking. Moreover,
while we consider a constant average walking speed (relative to the
dynamic surface) in the validation of the proposed walking pattern
generator, the proposed planner can be readily extended from constant
to variable speed walking, because the proposed reduced-order model
and its analytical solution are valid in describing the robot dynamics
within any walking cycle of constant or variable speed walking.

8. Conclusions

This paper has presented an analytically tractable and computation-
ally efficient reduced-order robot dynamics model, the approximate
analytical solution of the model, and a real-time motion generator
for legged locomotion on a dynamic rigid surface (DRS). The pro-
posed model was derived by theoretically extending the classical linear
inverted pendulum (LIP) model from a stationary surface to a DRS,
and describes the essential time-varying robot dynamics associated
with DRS walking, which is fundamentally different from the classical
time-invariant LIP model. The analytical solution of the extended LIP
model was obtained based on the conversion of the model into the
well-studied Mathieu’s equation. Exploiting these analytical results,
a real-time walking pattern generator was developed to efficiently
plan feasible robot motions for quadrupedal walking on a vertically
oscillating surface. Simulation results revealed the continuous-phase
stability property of the proposed time-varying LIP model, and demon-
strated the efficiency and accuracy of the analytical solution under a
common range of real-world DRS movement. Finally, both 3-D realistic
PyBullet simulations and hardware experiments on a physical Laikago
quadrupedal robot confirmed the computational efficiency, physical
feasibility, and inherent robustness of the proposed framework under
various gait parameters and surface motions.
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