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Abstract— This paper presents the analysis and stabilization of
a hybrid-linear inverted pendulum (H-LIP) model that describes
the essential robot dynamics associated with legged locomotion
on a dynamic rigid surface (DRS) with a general vertical motion.
The H-LIP model is analytically derived by explicitly capturing the
discrete-time foot placement and the continuous-phase dynamics
associated with DRS locomotion, and by considering aperiodic
DRS motions and variable H-LIP continuous-phase durations.
The closed-loop tracking error dynamics of the H-LIP model is
then established under a discrete-time feedback footstep control
law. The stability of the closed-loop H-LIP error dynamics is
analyzed to construct sufficient conditions on the control gains for
ensuring the asymptotic error convergence. Simulation results of
the proposed H-LIP walking on a vertically moving DRS confirm
the proposed control law stabilizes the H-LIP model under various
vertical, aperiodic DRS motion profiles and variable H-LIP step
durations.

I. INTRODUCTION

Stability is an essential performance measure of legged lo-
comotion. Legged locomotion stability can be loosely defined
as the robot’s ability to sustain walking without falling over.
Previous studies on legged robot planning and control have
demonstrated stable legged locomotion on stationary (even
or uneven) surfaces [1]–[7]. Particularly, provable stability of
legged locomotion has been achieved by explicitly considering
the full-order, hybrid, nonlinear dynamics of legged robots and
by ensuring the asymptotic stability of the associated hybrid
control system [8], [9]. Yet, due to the high complexity [10],
[11] of the full-order robot models associated with legged
locomotion on a stationary surface, they may not be suitable
for serving as the basis of robot planners and controllers.
To alleviate the model complexity, various reduce-order robot
models have been introduced, among which a widely used one
is the linear inverted pendulum (LIP) model.

The LIP model approximates a legged (robot or human)
locomotor that walks on a stationary surface as a point mass
atop a massless leg [12]. Different variations of the LIP model
have been created, including a model that considers the vari-
able height of the point mass above the stationary ground [13],
[14]. To explicitly address the hybrid dynamic behaviors of
legged locomotors for stationary surface walking, a hybrid
LIP (i.e., H-LIP) model [15]–[18] has been introduced, and
the asymptotic stability conditions for the H-LIP model have
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been established based on the theory of hybrid linear time-
invariant systems, along with a provably stabilizing, discrete-
time footstep controller [15]. Still, the existing LIP models
may not be suitable for describing the locomotor dynamics
during walking on a dynamic rigid surface (DRS), which is a
rigid surface moving in the inertial/world frame, because they
do not explicitly account for the time-varying movement of the
foot-surface contact point (i.e., support point of the LIP) [19]–
[22].

Our recent work has analytically extended the classical LIP
model [12] from static to dynamic surfaces and analyzed the
stability of the periodic LIP motion under vertical [23], [24]
and horizontal surface motions [25], [26]. Yet, it remains
unclear how an aperiodic DRS motion affects the stability of
the LIP.

This paper focuses on analytically extending the H-LIP
model [15] from static surfaces to DRSes that have general
(periodic or aperiodic) vertical motions, deriving its stability
conditions, synthesizing a discrete-time control law satisfying
the conditions, and validating the effectiveness of the proposed
work through simulations of aperiodic H-LIP walking on a
DRS with general (aperiodic) vertical surface acceleration.

The organization of this paper is as follows. Section II de-
rives the H-LIP model for locomotion on a DRS with a general
vertical surface motion. In Sec. III, the derivation of the S2S
error dynamics under a discrete-time foot-stepping controller is
introduced. Section IV presents the proposed stability analysis
of the H-LIP model under variable continuous-phase durations
and general vertical DRS movements. In Sec. V, the design of
an asymptotically stabilizing footstep controller is presented.
Section VI reports simulation results. The paper is concluded
in Sec. VII.

Notations. This paper adopts the following notations. N,
R, and R+ denote the complete sets of natural, real, and
positive real numbers, respectively. Rn and Rm×n (∀m,n ∈ N)
denote the n-dimensional real vectors and m×n real matrices,
respectively. The notation |.| is the absolute value function of a
real scalar. With abuse of notation, we also use |.| to represent
the component-wise absolute value function for real vectors
and matrices in this study. ∥ . ∥ and ∥ . ∥∞ respectively denote
the 2-norm and the infinity norm of a vector. For a matrix A,
the infinity norm is defined as: ∥ A ∥∞ := maxi (∑ j |Ai j|) with
Ai j the element of A at the intersection of the ith row and jth
column.

II. HYBRID-LINEAR INVERTED PENDULUM ON A
DYNAMIC RIGID SURFACE

This section presents the derivation of a hybrid-linear in-
verted pendulum (H-LIP) model that describes the essential
dynamics of legged walking on a dynamic rigid surface (DRS)
with a general vertical surface motion.
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A. Continuous-Phase Dynamics
Legged walking or trotting inherently involves hybrid loco-

motor behaviors, comprising continuous phases of leg swing-
ing and discrete events of foot touchdowns. Thus, a hybrid
model is well suited to describe legged locomotor dynamics.
This subsection explains the continuous-phase dynamics of the
proposed H-LIP model.

Consider a three-dimensional (3-D) LIP walking on a ver-
tically moving DRS [24], as illustrated in Fig. 1. Under
the constant CoM height assumption of the classical LIP
model [12], [24], the equations of motion of the LIP model
in the x- and y-directions of the wolrd frame are decoupled
and share the same form. Thus, we only need to analyze the
dynamics in one of the two directions [15]. For brevity, we
present the H-LIP model in the x-direction alone.

The selected state vector of the model is x := [xsc, ẋsc]
T ,

where xsc and ẋsc are the x-direction position and velocity of
the center of mass (CoM) with respect to the support point S
in the world frame, respectively.

Within a continuous phase, the LIP dynamics for locomotion
on a DRS with a general vertical surface motion is described
by the following linear time-varying homogeneous equation
[23], [24]:

ẋ(t) = A(t)x(t), (1)

where the expressions of the real matrix A(t) is given by:

A(t) :=
[

0 1
f (t) 0

]
. (2)

Here, f (t) := (z̈ws(t)+g)
z0

, with g the magnitude of the gravita-
tional acceleration, z0 the CoM height above the support point,
and z̈ws the vertical acceleration of the support point S. Note
that the explicit time dependence of A(t) is induced by the
vertical surface acceleration z̈ws.

Consider the following practically reasonable assumption on
a real-world DRS motion:
(A1) The vertical acceleration z̈ws of the DRS is bounded as

z̈ws ∈ (−g, g) and is locally Lipschitz on t ∈ R+.
Assumption (A1) is automatically satisfied when the unilat-

eral ground-contact constraint is ensured during H-LIP walking
on a DRS. The Lipschitz continuity assumption is valid for
real-world DRSes such as ships and elevators because they
have finite acceleration limits [27], [28].

Let the scalar variable τn (n ∈ N) denote the nth switching
instant (i.e., the instant when the swing foot touches down).
Let the time duration of the nth continuous phase be ∆τn.
Then, ∆τn = τn+1−τn. The following assumption on the finite
continuous-phase duration is considered:
(A2) The continuous-phase duration ∆τn of the H-LIP step-

ping is bounded for any n ∈ N.
Let ∆τm and ∆τM be the lower and upper bounds of ∆τn,
respectively. Then, the boundedness of ∆τn can be expressed
as ∆τn ∈ [∆τm, ∆τM ] for any n ∈ N.

Assumption (A2) is practically reasonable because the de-
sired duration of one continuous phase of H-LIP walking has
to be greater than 0 to avoid Zeno behavior and it should have
a finite upper bound during real-world mobility tasks.

B. Switching Events
Let (.)− and (.)+ respectively denote the value of the

variable (.) just before and after the switching. At the switch-
ing timing (i.e., t = τ−n ), the support point S of the LIP

Fig. 1. A 2-D illustration of the H-LIP model walking on a DRS.
A 2-D model is adequate for stability analysis because under the
assumption of a constant CoM height (i.e., zsc = z0), the 3-D model
becomes linear, and the H-LIP dynamics in the x- and y-directions are
decoupled and share exactly the same model structure.

instantaneously resets its location on the DRS (see Fig. 1).
Such a position reset corresponds to the sudden change in the
support foot position of a walking robot when its swing foot
lands on the ground and becomes the new support foot.

This jump in the state x across the switching event is
expressed as [15]:

x+ = x−+Bu. (3)

Here, the scalar input variable u is chosen as the step length
(denoted as lx) of the H-LIP in the x-direction (see Fig. 1).
The matrix B is a constant matrix that maps the input u to the
state x, and we have B = [−1, 0]T .

From the continuous-phase dynamics in (1) and the reset
map in (3), it is clear that the proposed H-LIP model is linear
time-varying and can be compactly expressed as:{

ẋ(t) = A(t)x(t) if t ̸= τ−n ,

x+ = x−+Bu if t = τ−n .
(4)

III. STEP-TO-STEP ERROR DYNAMICS UNDER A
DISCRETE-TIME CONTROL LAW

This section explains a discrete-time stepping controller
for the H-LIP model and derives the associated hybrid error
dynamics.

A. Hybrid Error Dynamics

To ensure the physical feasibility of the desired H-LIP
walking motion, the desired state trajectory of the H-LIP
during walking on a DRS is generated to respect the hybrid
H-LIP dynamics as described in (4). Thus, the reference state
trajectory xr(t) should satisfy:{

ẋr(t) = A(t)xr(t) if t ̸= τ−r,n,

x+r = x−r +Bur if t = τ−r,n,
(5)

where ur and τr,n respectively denote the values of the input
u and the switch timing τn associated with the desired state
trajectory xr(t).

Let e be the tracking error between the actual and the
reference states expressed as:

e := x(t)−xr(t) =: [e, ė]T . (6)

For simplicity of analysis, we consider the following as-
sumption on the switching instants of the H-LIP [15]:

(A3) The switching instants associated with the actual and the
reference state trajectories coincide (i.e., τn = τr,n).
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Under assumption (A3), taking the difference between (4)
and (5) yields the following hybrid error dynamics:{

ė(t) = A(t)e(t) if t ̸= τ−n ,

e+ = e−+B(u−ur) if t = τ−n .
(7)

B. Stepping Controller
Although the H-LIP dynamics during a continuous phase

is unactuated and inherently unstable [24], we can directly
command the discrete-time dynamics through the control input
u. In this study, we design u as the following footstep controller
that only acts at the switching instants:

u = ur +Ke−, (8)

where the feedback gain matrix K is defined as K := [k1, k2]∈
R1×2, where k1 and k2 are scalar real variables to be designed.

By substituting the feedback control law (8) in the hybrid
error dynamics in (7), we obtain the overall hybrid closed-loop
error dynamics as:{

ė(t) = A(t)e(t) if t ̸= τ−n ,

e+ = (I+BK)e− if t = τ−n ,
(9)

where I is an identity matrix with an appropriate dimension.
The objective of the stepping controller in (8) is to asymp-

totically drive the overall closed-loop error e to zero; that is,
limt→∞ e(t) = 0.

C. Step-to-Step Error Dynamics
We choose to perform the stability analysis for the hybrid

error dynamics in (9) based on its step-to-step (S2S) dynamics.
The S2S error dynamics is a discrete-time map from the error
state just before a switching event to the error state just before
the subsequent switching event [15]. Since the S2S dynamics
completely characterize the error evolution across a complete
hybrid cycle, using it as a basis could simplify the stability
analysis.

To derive the S2S model that maps the error state from τ−n
to τ

−
n+1 (∀n ∈ N), we utilize the hybrid error dynamics in (9)

to first apply the state reset map at instant τ−n to obtain e(τ+n ),
and then to integrate the continuous-phase dynamics from τ+n
to τ

−
n+1, as introduced next.

By integrating the continuous-phase dynamics of (9) through∫
τ
−
n+1

τ+
n

ė(t)dt =
∫

τ
−
n+1

τ+
n

A(t)e(t)dt,

we obtain:
e(τ−n+1) = ΦΦΦ( f (t);τ

−
n+1,τ

+
n )e(τ+n ), (10)

where the 2×2 matrix ΦΦΦ( f (t);τ
−
n+1,τ

+
n ) is the state-transition

matrix of the nth continuous phase from time instant τ+n to τ
−
n+1.

The matrix ΦΦΦ( f (t);τ
−
n+1,τ

+
n ) can be computed numerically,

e.g., by using the Picard iteration [29].
Substituting the state reset map (9) in (10) yields the S2S

dynamics as:

e(τ−n+1) = ΦΦΦ( f (t);τ
−
n+1,τ

+
n )(I+BK)e(τ−n ). (11)

For brevity, we adopt the following notations: e−n+1 :=
e(τ−n+1), e−n := e(τ−n ), and Ad,n := ΦΦΦ( f (t);τ

−
n+1,τ

+
n )(I+BK).

Note that Ad,n is essentially the discrete-time S2S mapping
matrix for the overall closed-loop error dynamics.

With these notations, the discrete-time S2S error dynamics
is compactly expressed as:

e−n+1 = Ad,ne−n . (12)

IV. STABILITY ANALYSIS

This section derives the proposed sufficient stability condi-
tions for the closed-loop H-LIP model based on its S2S error
dynamics. These conditions are utilized to guide the design of
the foot placement controller for asymptotically stabilizing H-
LIP walking on a DRS under a general vertical surface motion
and variable continuous-phase durations.

To obtain the stability conditions for variable-duration walk-
ing on a DRS with a general vertical surface motion, we
cannot directly apply the previous stability conditions for
static-surface H-LIP walking [15]. The S2S error dynamics
used in the previous work is time-invariant with a constant
continuous-phase duration, whereas those of interest to this
study are explicitly time-varying with variable-time durations
of continuous phases.

We first present the following well-known stability condi-
tions on general discrete-time systems that include the S2S
error dynamics in (12), using which we will then derive the
sufficient conditions that can be directly used to guide the
design of the control gain K. The following theorem is directly
adapted from [30].
Theorem 1 (Asymptotic stability conditions for S2S error
dynamics): The discrete-time S2S error dynamics of the H-
LIP stepping on a DRS with a general vertical surface motion
in (12) is uniformly asymptotically stable if and only if there
exists a Lyapunov function candidate V (en) satisfying:
(B1) V (en)> 0 (∀en ̸= 0) and V (0) = 0.
(B2) α1(∥ en ∥)≤V (en)≤ α2(∥ en ∥).
(B3) ∆V (e−n ) :=V (e−n+1)−V (e−n )≤−α3(∥ e−n ∥).
Here αi(.) (i ∈ {1,2,3}) is a κ∞ function; that is, αi(.) : R+ 7→
R+ is continuous and strictly increasing with αi(0) = 0 and
αi(∞)→ ∞.

To obtain sufficient conditions on the control gain K based
on the general stability conditions (B1)-(B3), we choose the
Lyapunov function candidate as:

V (e) :=
1
2

eT e =
1
2
∥ e ∥2 . (13)

Clearly, the function V (e) in (13) is positive definite and meets
conditions (B1) and (B2). To ensure that V (e) also satisfies
condition (B3) under the proposed control law, we analyze its
evolution under the S2S error dynamics in (12), as explained
in the rest of this section.

A. Boundedness of Function f (t)

From the expression of f (t) in (2) and assumption (A2), we
know that f (t) is a positive, bounded function on t ∈R+. Let
the positive constants fm and fM respectively denote the lower
and upper bounds of f (t) on t ∈ R+; e.g., fm := inft∈R+ f (t)
and fM := supt∈R+ f (t). Then, 0 < fm ≤ f (t)≤ fM on t ∈R+.
Lemma 1 (Boundedness of continuous-phase solutions):
Consider the linear, time-varying, continuous-time system ¨̃e−
f (t)ẽ = 0 along with the following two systems:

ëm − fmem = 0 and (14)
ëM − fMeM = 0. (15)
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Under the same initial condition for these three systems,

|em(t)| ≤ |ẽ(t)| ≤ |eM(t)|

holds for any t ∈ R+.
As Lemma 1 is directly adapted from Sec. 2 in [31], its

proof is omitted for space consideration.
Let ΦΦΦm and ΦΦΦM respectively denote the state-transition

matrices associated with (14) and (15). By Lemma 1, we utilize
the state evolutions of (14) and (15) to obtain the following
boundedness of |e−n+1| under the initial condition e+n :

|ΦΦΦm( fm;τ
−
n+1,τ

+
n )e+n | ≤ |e−n+1| ≤ |ΦΦΦM( fM ;τ

−
n+1,τ

+
n )e+n | (16)

Since (14) and (15) are linear time-invariant systems, we
have

ΦΦΦm( fm;τ
−
n+1,τ

+
n ) = ΦΦΦm( fm;∆τn,0) and

ΦΦΦM( fM ;τ
−
n+1,τ

+
n ) = ΦΦΦM( fM ;∆τn,0).

(17)

Also, recall e+n = (I+BK)e−n . Then, the inequality in (16)
becomes:

|ΦΦΦm( fm;∆τn,0)(I+BK)e−n | ≤ |e−n+1|
≤ |ΦΦΦM( fM ;∆τn,0)(I+BK)e−n |

(18)
Define

Ad,n := ΦΦΦm( fm;∆τn,0)(I+BK) and

Ad,n := ΦΦΦM( fM ;∆τn,0)(I+BK).
(19)

With these notations, (18) is rewritten as:

|Ad,ne−n | ≤ |e−n+1| ≤ |Ad,ne−n |. (20)

The right-hand side of this inequality is utilized for proving
the following sufficient condition of asymptotic stability in
Theorem 2.

B. Sufficient Stability Conditions

Theorem 2 (Sufficient closed-loop stability conditions):
Consider the following condition:

(C1) There exists a feedback gain K for the stepping controller
in (8) such that

ad :=∥ Ad,n ∥∞< 1 (21)

holds for any f ∈ [ fm, fM ], n ∈N, and ∆τn ∈ [∆τm, ∆τM ].

Then, the overall closed-loop S2S error dynamics in (12) is
asymptotically stable.
Proof : Using the right-hand side of the inequality in (20) and
the properties of component-wise absolute value function |.|,
we have:

|e−n+1| ≤ |Ad,ne−n | ≤ |Ad,n||e−n |. (22)

Note that by the definition of the component-wise absolute
value function |.| explained in Sec. I-C, |Ad,n| is a real matrix
with all elements positive while |e−n | is a real vector with all
elements positive.

Upon writing the error vector relation in (22) as a quadratic
form and utilizing the properties of induced norms, we obtain:

(e−n+1)
T e−n+1 ≤ (|Ad,n||e−n |)T |Ad,n||e−n |

=∥ (|Ad,n||e−n |) ∥2

≤ (∥ Ad,n ∥∞∥ e−n ∥)2 = a2
d ∥ e−n ∥2 .

(23)

We are now ready to examine the upper bound of ∆V (e−n ):

∆V (e−n ) =V (e−n+1)−V (e−n ) =
1
2
∥ e−n+1 ∥

2 −1
2
∥ e−n ∥2

≤ 1
2

a2
d ∥ e−n ∥2 −1

2
∥ e−n ∥2=: −γ ∥ e−n ∥2,

(24)

where γ := 1
2 (1−a2

d) ∈ (0, 1
2 ).

From (24), it is clear that ∆V (e−n ) satisfies condition (B3)
of Theorem 1. Thus, if condition (C1) is met, then the
Lyapunov function candidate in (13) satisfies all the conditions
in Theorem 1, which concludes the proof. ■

V. ASYMPTOTICALLY STABILIZING FOOTSTEP
CONTROLLER DESIGN

This section presents a systematic way to utilize the pro-
posed stability conditions to design feedback gains that asymp-
totically stabilize the linear, hybrid, time-varying H-LIP error
dynamics.

To guarantee the asymptotic stability of the H-LIP based on
Theorem 2, we design the stepping control gain K in (8) such
that ∥ Ad,n ∥< 1 for any f (t) ∈ [ fm, fM ] and n ∈ N.
Theorem 3 (Sufficient stability conditions on control gain):
The feedback stepping-controller gain K (i.e., k1 and k2)
ensures the asymptotic closed-loop stability of the H-LIP error
system in Eq. (9) for the given foot-stepping duration ∆τn and
the known constant fM , if the controller gains k1 and k2 satisfy
the following inequalities for any n ∈ N:

2

∣∣∣∣∣cosh(
√

fM∆τn)(1− k1)

∣∣∣∣∣< 1,

2

∣∣∣∣∣ 1√
fM

sinh(
√

fM∆τn)− cosh(
√

fM∆τn)k2

∣∣∣∣∣< 1,

2

∣∣∣∣∣√ fM sinh(
√

fM∆τn)(1− k1)

∣∣∣∣∣< 1, and

2

∣∣∣∣∣cosh(
√

fM∆τn)−
√

fM sinh(
√

fM∆τn)k2

∣∣∣∣∣< 1.

(25)

Proof: From (19) and Theorem 2, we know the controller gain
K needs to meet the following condition to ensure the system
stability:

∥ Ad,n ∥∞=∥ ΦΦΦM( fM ;∆τn,0)(I+BK) ∥∞< 1. (26)

Recall that the linear time-invariant system in (15) can be
rewritten as: [

ėM
ëM

]
= AM

[
eM
ėM

]
,

where AM :=
[

0 1
fM 0

]
.

Since ΦΦΦM is the state-transition matrix of the continuous-
time linear time-invariant system in (15), we can express ΦΦΦM
as:

ΦΦΦM( fM ; t,0) := eAMt =

[
cosh

√
fMt 1√

fM
sinh

√
fMt

√
fM sinh

√
fM∆τn cosh

√
fMt

]
.

With the expressions of the state-transition matrix ΦΦΦM , the
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Fig. 2. General aperiodic vertical acceleration profiles of the DRS.

mapping matrix B, and the gain matrix K, we obtain:∣∣∣∣∣ΦΦΦM( fM ;∆τn,0)(I+BK)

∣∣∣∣∣
=

∣∣∣∣∣
[
(1− k1)ΦΦΦM,11 ΦΦΦM,12 − k2ΦΦΦM,11
(1− k1)ΦΦΦM,21 ΦΦΦM,22 − k2ΦΦΦM,21

]∣∣∣∣∣,
(27)

where ΦΦΦM,i j denotes the element at the ith row and jth column
of the state-transition matrix ΦΦΦM( fM ;∆τn,0), and

ΦΦΦM,11 = cosh(
√

fM∆τn), ΦΦΦM,12 =
1√
fM

sinh(
√

fM∆τn),

ΦΦΦM,21 =
√

fM sinh(
√

fM∆τn), ΦΦΦM,22 = cosh(
√

fM∆τn).

(28)

With the expressions of ΦΦΦM,i j , the conditions in (25) are
equivalent to:

2|ΦΦΦM,11(1− k1)|< 1, 2|ΦΦΦM,12 −ΦΦΦM,11k2|< 1,
2|ΦΦΦM,21(1− k1)|< 1, and 2|ΦΦΦM,22 −ΦΦΦM,21k2|< 1

(29)

for any n ∈ N.
Under these conditions, we can obtain

|ΦΦΦM,11(1− k1)|+ |ΦΦΦM,12 −ΦΦΦM,11k2|< 1 and
|ΦΦΦM,21(1− k1)|+ |ΦΦΦM,22 −ΦΦΦM,21k2|< 1

(30)

for any n ∈ N. Then, by the definition of the infinity norm
∥ . ∥∞, we know ∥ Ad,n ∥∞ := max(|ΦΦΦM,11(1− k1)|+ |ΦΦΦM,12 −
ΦΦΦM,11k2|, |ΦΦΦM,21(1− k1)|+ |ΦΦΦM,22 −ΦΦΦM,21k2|)< 1.

■
We compute control gains k1 and k2 for a given set of

parameters fM and ∆τn such that they satisfy (25). Theorem 3
guarantees that these gains asymptotically stabilize the closed-
loop H-LIP error dynamics.

VI. SIMULATIONS

This section presents the validation results for the proposed
stability conditions under two different cases of aperiodic
vertical surface motion.

A. Simulation Setup

1) DRS motions: We consider the following two general
vertical acceleration profiles for simulation validation:
(a) Case 1: The vertical acceleration of the DRS is composed

of polynomial and sinusoidal functions, and is given as:

z̈ws(t) := 3sin t +2sin
√

3t +
t2 +1

t2 +20t +5
(m/s2). (31)

(b) Case 2: The vertical acceleration is given as:

z̈ws(t) := (e0.022t −5e−0.01t)cos
√

10t (m/s2). (32)

Figure 2 displays the vertical DRS acceleration profiles of
Cases 1 and 2.

Fig. 3. The error state convergence under the proposed foot-stepping
controller for two cases of vertical surface acceleration: (a) Case 1 and
(b) Case 2. The switching instants of the H-LIP are marked by vertical
lines on the time axis, and the duration of the nth step is denoted by
∆τn.

Note that the surface acceleration profiles in both cases
cover the common range of the vertical accelerations of real-
world DRSes such as ships whose vertical acceleration is
typically less than 3 m/s2 in magnitude [27], [28].

2) User-defined parameters: The user-defined parameters
for each case are given in Table I, which include the CoM
height z0, gait duration ∆τn, walking speed, and step length
lr,x. Note that we utilize the DRS vertical acceleration profile
and user-defined parameter z0 to determine the range of f (t).

TABLE I
USER-DEFINED DESIRED PARAMETERS OF THE H-LIP.

Parameters Case 1 Case 2
H-LIP CoM height z0 (cm) 30 30

Gait duration ∆τn (s) [0.15, 0.5] [0.15, 0.5]
Walking speed (cm/s) [20, 67] [16, 54]
Step length lr,x (cm) 10 8

3) Initial conditions: The presented simulation results for
both cases correspond to twenty random initial conditions
satisfying |e| ≤ 5 cm and |ė| ≤ 5 cm/s.

4) Controller gains: With the user-specified range of step
duration ∆τn and DRS acceleration profiles in both Cases 1 and
2, we observe that there exists a finite range of gains that fulfill
the sufficient stability conditions in (25), and the computed
gains for Cases 1 and 2 are K = [1, 0.18] and K = [1, 0.17],
respectively. The analysis in Sec. V guarantees that for any
given set of parameters fM and ∆τn, these gains asymptotically
stabilize the H-LIP closed-loop error dynamics.

B. Results
With the gain setting of Case 1, the evolution of the closed-

loop error state [e, ė]T for the first two seconds is shown in
Fig. 3 (a).The stepping controller asymptotically stabilizes the
H-LIP error dynamics for all twenty initial conditions. The
initial error converges to approximately zero in less than two
seconds.

Figure 3 (b) illustrates the asymptotic convergence of the
closed-loop error state for the initial two seconds of Case 2.
Yet, it takes a relatively longer time than Case 1 to converge to
zero. The slower convergence rate in Case 2 may be attributed
to the selected constant gains.
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In both simulation cases, the H-LIP model behaves as
an open-loop unstable system until the first foot touchdown,
resulting in a significant increase in error during the initial
continuous phase. However, when a walking step is taken, the
feedback stepping controller is activated, leading to a gradual
decrease in error until it asymptotically reaches zero.

VII. CONCLUSION

This paper has introduced a hybrid-linear inverted pendulum
(H-LIP) model that can be used to capture the essential robot
dynamics associated with legged walking on a dynamic rigid
surface (DRS) under a general (periodic or aperiodic) vertical
surface motion. Based on the H-LIP model and its error
state dynamics, a discrete-time footstep feedback control law
was introduced, and the asymptotic stability of the resulting
closed-loop tracking error dynamics was analyzed under vari-
able continuous-phase durations and aperiodic vertical DRS
accelerations. The effectiveness of the proposed control law
in asymptotically stabilizing the H-LIP error dynamics was
validated under various significant aperiodic DRS motions.

Our future work will build upon the results from this study
to investigate the stabilization of real-world legged robot lo-
comotion under a general DRS motion profile. We will extend
the proposed stability conditions by relaxing the assumption
that the desired and actual impact timings should coincide, and
develop a systematic method to design the footstep controller
gains.
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