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This paper introduces an adaptive robust trajectory track-
ing controller design to provably realize stable bipedal
robotic walking under parametric and unmodeled uncer-
tainties. Deriving such a controller is challenging mainly
because of the highly complex bipedal walking dynamics
that are hybrid and involve nonlinear, uncontrolled state-
triggered jumps. The main contribution of the study is
the synthesis of a continuous-phase adaptive robust tracking
control law for hybrid models of bipedal robotic walking by
incorporating the construction of multiple Lyapunov func-
tions into the control Lyapunov function. The evolution of
Lyapunov function across the state-triggered jumps is explic-
itly analyzed to construct sufficient conditions that guide the
proposed control design for provably guaranteeing the sta-
bility and tracking performance of the hybrid system in the
presence of uncertainties. Simulation results on fully actu-
ated bipedal robotic walking validate the effectiveness of the
proposed approach in walking stabilization under uncertain-
ties.

1 Introduction
Bipedal robots can potentially be used to perform locomo-

tion tasks for a wide range of real-world operations such as
home assistance, emergency response, and search and res-
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cue. One common control approach towards accomplishing
these locomotion tasks is trajectory tracking control. How-
ever, a robot’s trajectory tracking performance is typically af-
fected by uncertainties such as parametric uncertainties and
unmodeled uncertainties [1–3]. Parametric uncertainties ex-
ist when the estimated values of the system’s model param-
eters such as a robot’s link masses do not match their true
values, whereas unmodeled uncertainties include nonlinear
functions such as joint frictions. Without proper treatment,
these uncertainties can deteriorate tracking performance and
even cause instability of bipedal robots, which makes it nec-
essary to design locomotion controllers to mitigate the nega-
tive effects of uncertainties.

1.1 Related Work on Control Design for Continuous
Systems under Uncertainties

To mitigate uncertainties for ensuring the stability and
tracking performance of continuous systems, adaptive and
robust control has been extensively studied. Adaptive con-
trol [4–6] could achieve accurate steady-state tracking un-
der parametric uncertainties by exploiting online adaptation
laws to update the estimation of model parameters, but it may
not be effective under unmodeled uncertainties such as dis-
turbances [7]. On the contrary, robust control [8, 9] could
guarantee satisfactory transient tracking performance under
unmodeled uncertainties but cannot guarantee accurate final
tracking under parametric uncertainties without relying on
high-gain feedback or discontinuous control action.

To combine the complementary advantages of adaptive
control and robust control, the inherent conflict of adap-
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tive and robust control design methodologies needs to be
resolved. The conflict is that, the estimated model param-
eters provided by the adaptive control may grow unbounded
under unmodeled uncertainties, which will then induce ag-
gressive robust control action for estimation error mitiga-
tion. To resolve the conflict, an adaptive robust control ap-
proach [10, 11] adds a known bound to the parameter es-
timation to avoid unbounded parameter drifting. The ap-
proach has been used to significantly improve the transient
and steady-state trajectory tracking performance for various
continuous systems [12–16] in the presence of parametric
and unmodeled uncertainties.

1.2 Related Work on Control Design for Walking
Robots under Uncertainties

By modeling a walking robot as a continuous system,
the previously reviewed adaptive control and robust control
strategies have been exploited to stabilize and improve the
trajectory tracking performance for walking robots [17–22].

However, treating a walking robot as a continuous system
in controller design may not be appropriate because bipedal
walking robots are inherently hybrid dynamical systems, in-
volving both continuous motions (e.g., foot swinging mo-
tions) and state-triggered jumps (e.g., sudden jumps in a
robot’s joint velocities upon a foot-landing impact) [3, 23–
27]. These jumps are particularly difficult to handle in con-
troller design because they are nonlinear and triggered when
the system’s state satisfies certain conditions (e.g., the swing
foot striking the walking surface). Furthermore, they can-
not be directly controlled due to their infinitesimal periods
of duration [28].

To provably stabilize bipedal walking robots by explic-
itly addressing their hybrid dynamical behaviors, the Hybrid
Zero Dynamics (HZD) framework has been proposed based
on orbital stabilization [29] and recently extended to mitigate
uncertainties that are prevalent in practical applications [1,2].
Yet, as orbitally stabilizing controllers is not suitable for ac-
curate trajectory tracking [30], these approaches and the un-
derlying stability analysis methods cannot be used to solve
the problem of trajectory tracking control.

Beyond the scope of walking controller design, robust
trajectory tracking control for general hybrid systems with
state-triggered jumps has been investigated based on Lya-
punov stability analysis [31]. Still, the previous work does
not explicitly analyze the evolution of Lyapunov function
across the uncontrolled state-triggered jumps and thus may
not be used to directly inform controller design.

To realize reliable trajectory tracking for hybrid sys-
tems with state-triggered jumps (including the fully actuated
walking robots), we have introduced a Lyapunov-based tra-
jectory tracking controller design based on an explicit anal-
ysis of the evolution of the Lyapunov function across state-
triggered jumps [32–35]. This controller design has recently
been extended and experimentally implemented to achieve
provably stable quadrupedal robotic walking on a dynamic
rigid surface that rotates in the inertial frame [36]. How-
ever, these previous control approaches utilize input-output

linearization and thus may not be effective in guaranteeing a
good tracking performance under modeling errors or distur-
bances. To this end, this study extends our previous control
approach to address parametric and unmodeled uncertain-
ties for a class of hybrid systems that include fully actuated
bipedal walking robots.

1.3 Contributions
This study addresses the expansion of the adaptive ro-

bust controller design methodology from continuous systems
to fully actuated hybrid systems with state-triggered jumps
for provably guaranteeing the system stability and tracking
performance under parametric and unmodeled uncertainties.
The specific contributions of this study are:

(a) To synthesize adaptive robust control laws for fully ac-
tuated hybrid systems with state-triggered jumps by in-
corporating the construction of multiple Lyapunov func-
tions into control Lyapunov function.

(b) To analyze the stability, tracking performance, and pa-
rameter estimation convergence of the closed-loop sys-
tem by explicitly examining the effects of state-triggered
jumps on the evolution of Lyapunov function under un-
certainties.

(c) To provide sufficient conditions based on these analy-
ses under which the proposed control law guarantees the
trajectory tracking performance in the presence of para-
metric and unmodeled uncertainties.

(d) To demonstrate the validity of the theoretical re-
sults through simulations of a fully actuated three-
dimensional (3-D) bipedal robot.

Some of the results from this manuscript have been re-
ported in [37]. The new, substantial contributions of this
paper include: a) important details and discussions of the
proposed controller design and stability analysis are added,
including the full proof of Theorem 1 along with all the re-
marks in Sections 3 and 4; b) the convergence analysis of
parameter estimation under no unmodeled uncertainties is
added as a new section (Section 5), including Theorem 2
and its proof, which was missing in [37]; c) comparative
simulation results between four controllers are presented in
Section 6 to illustrate the advantages of the proposed con-
troller, whereas only the simulation results of the proposed
controller were presented in [37]; and d) simulation results
of the proposed controller under parametric uncertainties are
also added in Section 6, which were missing in [37].

The paper is structured as follows. Section 2 presents the
full-order hybrid dynamic model of fully actuated bipedal
walking robots. Section 3 introduces the continuous-phase
adaptive robust control law. Section 4 derives the proposed
sufficient closed-loop stability conditions, which can be used
to guide the design of adaptive robust controllers for fully
actuated hybrid systems. Section 5 explains the analysis of
parameter estimation convergence in the absence of uncer-
tain nonlinearities. Section 6 reports the simulation results
on 3-D bipedal robotic walking.
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Fig. 1. A directed graph of a complete fully actuated bipedal walking
step

2 Model
This section presents the hybrid model of bipedal walking

dynamics, which serves as a basis for controller derivation.

2.1 Hybrid Walking Dynamics
Bipedal walking dynamics are inherently hybrid, involv-

ing continuous motion (e.g., foot swinging) as well as state-
triggered jumps (e.g., sudden jumps in joint velocities when
the swing foot strikes the walking surface), as illustrated in
Fig. 1.

The robot is fully actuated when its number of degrees
of freedom (DOFs), denoted as n, matches the number of
independent actuators, denoted as m. As this study addresses
the controller design for fully-actuated walking, the equality
m = n holds in the remaining derivation and analysis of the
paper.

Continuous-phase dynamics. During continuous phases,
the robot’s dynamic model can be expressed as:

M(q,βββ )q̈+C(q, q̇,βββ )q̇+G(q,βββ )+ f̃(t,q, q̇) = Buu, (1)

where q ∈ Q and u ∈ U are the vectors of joint positions
and torques, respectively, βββ ∈Ωβ is the vector of model pa-
rameters with uncertain values, M : Q×Ωβ → Rn×n is the
inertia matrix, C : T Q×Ωβ → Rn×n is the Coriolis matrix,
G : Q×Ωβ →Rn is the gravitational term, f̃ :R+×T Q→Ω f̃
is the vector of unmodeled uncertainties (e.g., disturbances
and joint friction), and Bu ∈Rn×n is an input matrix. Q⊂Rn

is the robot’s configuration space when the support foot re-
mains in a full, static contact with the ground and the joint
position limits are met. T Q is the tangent space of Q.
U ⊂ Rm is the set of the robot’s admissible joint torques.
Ωβ ⊂ Rnp and Ω f̃ ⊂ Rn are known bounded sets.

The continuous-phase dynamics in Eq. (1) has the follow-
ing properties [38, 39]:

Property 1. The inertia matrix M is symmetric positive def-
inite, and there exist positive numbers km and kM such that

kmIn×n ≤ M≤ kMIn×n (2)

for any q ∈ Q and βββ ∈Ωβ , where In×n ∈ Rn×n is an identity
matrix.

Property 2. The Coriolis matrix C can be selected such that
the matrix Ṁ−2C is skew-symmetric.

Assumption 1 (Linear Parameterization of Continu-
ous-Phase Dynamics). The model parameters βββ (e.g., a
robot’s link masses) linearly parameterize M, C, and G as:

Y(q, q̇, q̇r, q̈r)βββ := M(q,βββ )q̈r +C(q, q̇,βββ )q̇r +G(q,βββ )
(3)

where qr ∈ Rn is any reference vector.

State-triggered jumps. When a continuous phase ends, the
robot’s swing leg strikes the ground causing a discontinuity
in the joint positions and velocities. The joint positions of
the two legs experience a sudden jump because the swing
and the support legs switch roles. The joint velocities may
also experience a sudden jump due to the coordinate swap
and the rigid-body impact associated with a swing-foot land-
ing. These jumps cannot be directly controlled due to their
infinitesimal duration.

The jumps in q and q̇ upon a foot-landing event can be
expressed as:

[
q+

q̇+

]
= ∆∆∆(q−, q̇−,βββ ) (4)

where ?+ and ?− represent the values of ? right before or
after an impact, respectively. The derivation of ∆∆∆ is given
in [40].

Switching surface. A switching surface Sq describes the oc-
currence of a swing-foot landing as:

Sq := {(q, q̇,βββ ) ∈ T Q :zsw(q,βββ ) = 0,
żsw(q, q̇,βββ )< 0},

(5)

where zsw is the height of the swing foot above the ground.
Note that the switching surface Sq is not a function of the
unknown parameters βββ if βββ are link masses.

The overall hybrid system dynamics of a walking robot
can be expressed as:


Mq̈+Cq̇+G+ f̃ = Buu, if (q−, q̇−) /∈ Sq;[

q+

q̇+

]
= ∆∆∆, if (q−, q̇−) ∈ Sq.

(6)

2.2 Boundedness of Model Parameters and Unmodeled
Nonlinearities

Given that uncertainties, such as unmodeled joint frictions
and unknown link masses, are usually bounded during real-
world applications [41], it is assumed in this study that un-
certainties are bounded:

Assumption 2 (Boundedness of Model Parameters). The ac-
tual value of the model parameter βββ is bounded by known
vectors βββ min and βββ max:

βββ ∈ [βββ min,βββ max]. (7)
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Fig. 2. Block diagram of a continuous adaptive robust control law

Assumption 3 (Boundedness of Unmodeled Nonlinearities).
The unmodeled nonlinearities f̃ are bounded by a known
function h f (t,q, q̇):

‖f̃(t,q, q̇)‖ ≤ h f (t,q, q̇). (8)

3 Continuous Adaptive Robust Control
This section presents an adaptive robust control approach

that stabilizes the continuous phase of the uncertain hybrid
system in Eq. (6). To guarantee the stability and tracking
performance of the overall hybrid system, sufficient condi-
tions are derived in Section 4 for guiding the gain tuning of
the control law.

Without loss of generality, we choose the joint positions
q as the variables to be controlled. Note that a fully actu-
ated system has full control authority over all of its n joint
positions and thus can directly command all joints to track n
desired trajectories qd(t). The tracking error is e = q−qd .

Control Objective. To derive a control law that stabilizes
the uncertain hybrid system in Eq. (6) and guarantees a
bounded final tracking error for achieving provably stable
bipedal robotic walking.

We propose to achieve this control objective by extend-
ing the continuous adaptive robust controller (ARC) design
methodology [42] from continuous systems to fully actuated
hybrid systems with state-triggered jumps, because a) only
the continuous phase of the hybrid system in Eq. (6) can be
directly driven but not the jumps and b) ARC is effective in
addressing uncertainties for continuous systems as reviewed
in Section 1.

A continuous ARC consists of a nonlinear robust feedback
term, a parameter adaptation law, a feedforward term, and
a linear stabilizing feedback term (see Fig. 2). The robust
feedback term mitigates the effects of unmodeled nonlinear
uncertainties. The parameter adaptation law estimates the ac-
tual values of the model parameters. The feedforward term
compensates for the nonlinear dynamics using estimated pa-
rameter values. The linear stabilizing feedback term stabi-
lizes the continuous-phase system.

3.1 Robust Feedback
The robust feedback term of an ARC is crucial to guaran-

tee the stability and transient tracking performance of a con-
tinuous system under unmodeled uncertainties. We choose

sliding mode control (SMC) [42] as the robust feedback term
because previous work [19] has validated its enhanced per-
formance in rejecting uncertainties for legged locomotion.

An SMC drives a system’s state to a hypersurface in the
state space (i.e., a sliding mode). To enhance the track-
ing performance of the continuous-phase system within the
sliding mode, we form the SMC using a dynamic compen-
sator [42]:

{
ẋc = Acxc +Bce;
yc = Ccxc +Dce,

(9)

where xc and yc are the state and the output of the dynamic
compensator, respectively. Ac ⊂ Rnc×nc , Bc ⊂ Rnc×nc , Cc ⊂
Rn×nc , and Dc ⊂ Rn×n are matrices that define the dynamic
compensator (nc = n). These matrices are chosen such that
(Ac, Bc, Cc, Dc) is observable and controllable.

Introduce a vector ξξξ ∈ Rn to define the sliding mode as
ξξξ = 0, and choose ξξξ as:

ξξξ = q̇− q̇r, (10)

where q̇r := q̇d − yc. Then, the goal of the SMC is to guar-
antee that the system state remains within the sliding mode,
that is, ξξξ remains zero.

Let hs be the sum of the bounds of unmodeled uncertain-
ties and parameter estimation error. Then,

hs(t,q, q̇, q̇r, q̈r) := h f (t,q, q̇)+hβ (q, q̇, q̇r, q̈r), (11)

where the definition of hβ is given in Section 3.2. The ideal

SMC is then −hs
ξξξ

‖ξξξ‖ .
To reduce the chattering effect caused by the discontinuity

of the ideal SMC, the robust feedback term is designed as:

ur = h̄(−hs
ξξξ

‖ξξξ‖ ), (12)

where h̄(−hs
ξξξ

‖ξξξ‖ ) is a continuous approximation of the ideal
SMC with an approximation error ε(t) (ε(t)> 0 for any t >
0).

A valid choice of the continuous approximation h̄ should
satisfy the following two conditions [42]:

(C1) ξξξ
T h̄(−hs

ξξξ

‖ξξξ‖ )≤ 0.

(C2) hs‖ξξξ‖+ξξξ
T h̄(−hs

ξξξ

‖ξξξ‖ )≤ ε(t).

Here, we utilize the following definition of h̄ among oth-
ers [4, 43] because it is relatively easy to implement thanks
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to its simple expression:

h̄(−hs
ξξξ

‖ξξξ‖
) :=


−Ksξξξ if ‖ξξξ‖ ≤ φh

−hs
ξξξ

‖ξξξ‖ if ‖ξξξ‖ ≥ (1+ ε2)φh

−(1− c1)Ksξξξ − c1hs
ξξξ

‖ξξξ‖ elsewhere

,

(13)
where Ks ∈ Rn×n is any symmetric positive definite matrix,
and ε1 and ε2 are any positive scalars. φh := φ

hs(t,q,q̇,q̇r ,q̈r)+ε1
,

where φ(t) is any positive scalar function on t > 0. c1 =
‖ξξξ‖−φh

ε2φh
. Then, the approximation error ε is ε(t) = (1 +

ε2)φh(t).

Remark 1 (Reset of ξξξ at T+
k ). The state variable xc of the

dynamic compensator can be arbitrarily designed at the ini-
tial moment of any continuous phase. Let Tk be the initial
timing of the kth walking step (k ∈ {1,2, ...}). Selecting Cc
as a nonsinguar matrix, we can reset the value of xc as

xc(T+
k ) =−C−1

c (ė(T+
k )+Dce(T+

k )). (14)

Accordingly, ξξξ is reset to zero whenever a new walking step
begins, that is,

ξξξ (T+
k ) = ė(T+

k )+yc(T+
k ) = 0, (15)

which helps reduce the unpleasant transient response of ξξξ .

Remark 2 (Response within Sliding Mode). The transfer
function matrix from ξξξ to e is (sIn×n + Gc(s))−1, where
Gc(s) := Cc(sInc×nc −Ac)

−1Bc +Dc. By carefully assign-
ing the poles of the matrix, the desired response within the
sliding mode can be achieved.

3.2 Parameter Adaptation
The parameter adaption law estimates the actual values of

the uncertain model parameters βββ . By reducing the mod-
eling error, it enhances the final tracking accuracy without
replying on high-gain feedback control. With the estimated
parameters, a feedforward term can be formed to compen-
sate for the nonlinear continuous-phase dynamics, as shown
in Fig. 2.

Let β̂ββ ∈ Ωβ be the estimate of βββ . Let β̃ββ := β̂ββ −βββ be the
parameter estimation error. The parameter adaptation law is
expressed as:

˙̂
βββ =−ΓΓΓτττ. (16)

The adaptation function τττ is defined as:

τττ = YT (q, q̇, q̇r, q̈r)ξξξ . (17)

This parameter estimation law can cause an unbounded
estimation error under unmodeled uncertainty f̃. However,

the robust feedback term given in Section 3.1 demands the
knowledge of the estimation error bound. The key to resolve
this conflict is to impose a bound on the parameter estima-
tion β̂ββ . To this end, different modifications of β̂ββ have been
proposed [42]. We choose to utilize a smooth modification
so as to allow explicit analysis of the convergence of β̂ββ based
on Lyapunov theory in Section 5.

Let πππ(β̂ββ ) be a smooth projection of β̂ββ with sufficiently
smooth, bounded derivatives and satisfying the conditions
below:

(C3) πππ(β̂ββ ) = β̂ββ if β̂ββ ∈Ωβ .
(C4) πππ(β̂ββ ) ∈ Ω

β̂
:= [βββ min − εεεβ βββ max + εεεβ ] if β̂ββ ∈ Rnp ,

where εεεβ ∈ Rnp is a known vector of small positive
numbers.

An example of the smooth projection mapping πππ(β̂ββ ) [11]
is:

πi(β̂i) =


βimin + εiβ (1− e

− β̂i−βimin
εiβ ) if β̂i < βimin

βimax + εiβ (1− e
− β̂i−βimax

εiβ ) if β̂i > βimax

β̂i elsewhere

,

where the scalars πi, β̂i, βimin, βimax, and εiβ are the ith ele-
ments of the vectors πππ , β̂ββ , βββ min, βββ max, and εεεβ , respectively.

To simplify notations, define β̂ββ π := πππ(β̂ββ ) and β̃ββ π := β̂ββ π−
βββ . From Assumption 2 and the conditions (C3) and (C4), we
have:

‖Y(q, q̇, q̇r, q̈r)β̃ββ π‖ ≤ hβ (q, q̇, q̇r, q̈r). (18)

An example of the bound hβ is:

hβ := ‖Y(q, q̇, q̇r, q̈r)‖βM := ‖Y(q, q̇, q̇r, q̈r)‖‖βββ max−βββ min+εεεβ ‖.
(19)

Remark 3 (Boundedness of ‖Y‖). For a general legged
robot with all joints revolute, the boundedness of ‖Y‖ can be
guaranteed as follows. The norms ‖M(q,βββ )‖, ‖C(q, q̇,βββ )‖,
and ‖G(q,βββ )‖ are all bounded within the robot’s joint limit
(i.e., (q, q̇) ∈ T Q) [39]. Suppose the reference trajectory qd
is planned as physically feasible (i.e., qd , q̇d , and q̈d are
all bounded). Then, the trajectory qr, q̇r, and q̈r are also
bounded within the robot’s joint and actuation limits. Thus,
‖Y(q, q̇, q̇r, q̈r)‖ is bounded.

3.3 Overall Control Law
In summary, the expression of a continuous ARC is:

u = B−1
u (ur +Y(q, q̇, q̇r, q̈r)β̂ββ π −Kξ ξξξ ), (20)

where Kξ ∈Rn×n is any symmetric positive definite matrix.
The robust feedback term ur and the adaptation law for β̂ββ are
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given in Eqs. (12) and (16), respectively.
With properly selected control gains of the ARC, the sta-

bility and tracking performance of the continuous phases of
the uncertain hybrid systems in Eq. (6) can be ensured. Yet,
the state-triggered jumps remain uncontrolled, and thus the
ARC may not be effective in stabilizing the overall hybrid
system. Therefore, in Section IV, we derive sufficient condi-
tions under which the continuous ARC provably guarantees
the stability and tracking performance for the overall hybrid
system under uncertainties.

4 Closed-loop Stability Analysis
This section analyzes the stability of the uncertain hybrid

systems with state-triggered jumps in Eq. (6) under the pro-
posed continuous ARC. The outcome of the analysis is a set
of sufficient conditions that can be used to guide the selec-
tion and tuning of control gains for guaranteeing the stability
and tracking performance of the closed-loop hybrid system.

The key of the proposed stability analysis is to explicitly
analyze the effects of state-triggered jumps on the system
stability and tracking performance. Such an explicit anal-
ysis is necessary as the jumps are uncontrolled because of
their infinitesimal duration. However, the analysis is com-
plex mainly because the occurrence timing of these jumps is
an implicit function of state.

Define z :=
[

xc
e

]
. Then,

{
ż = Azz+Bzξξξ ;
yz = Czz,

(21)

where Az :=
[

Ac Bc
−Cc −Dc

]
, Bz :=

[
0

In×n

]
, and Cz :=

[
0 In×n

]
.

Let the system state be

x :=
[

z
ξξξ

]

with ‖x‖ :=
√
‖z‖2 +‖ξξξ‖2.

The closed-loop hybrid system under the continuous ARC
can be expressed as:

{
Mξ̇ξξ +(C+Kξ )ξξξ = h̄(−hs

ξξξ

‖ξξξ‖ )+Yβ̃ββ π − f̃

ż = Azz+Bzξξξ
if (t,x−,βββ ) /∈ Sx;[

ξξξ
+

z+

]
=

[
0

∆∆∆z

]
if (t,x−,βββ ) ∈ Sx.

(22)
The expression of ∆∆∆z(t,x−,βββ ) can be obtained from Eqs. (4),
(9) and (14). The expression of Sx can be obtained
from Eqs. (5) and (10). Note that ∆∆∆z is explicitly time-
dependent because the reference trajectory qd is explicitly
time-dependent.

Theorem 1. The continuous-phase tracking control law in
Eq. (20) stabilizes the hybrid system in Eq. (22) locally if its

control gains are selected such that:

(C5) The matrix Az in Eq. (22) is Hurwitz.
(C6) The state x converges sufficiently fast during continu-

ous phases.

Proof: Let Vξ (ξξξ ) and Vz(z) be the Lyapunov function candi-
dates for ξξξ and z, respectively:

Vξ =
1
2

ξξξ
T Mξξξ and Vz = zT Pzz. (23)

Because the matrix Az is Hurwitz by the condition (C5), the
matrix Pz ∈Rnc×nc can be obtained by solving the following
Lyapunov equation [30]:

AT
z Pz +PzAz =−Qz, (24)

where Qz ∈Rnc×nc is any symmetric positive definite matrix.
The total Lyapunov function is defined as:

Vt(x) =Vξ (ξξξ )+Vz(z). (25)

The derivation of the stability conditions is based on the
incorporation of the construction of multiple Lyapunov func-
tions into the control Lyapunov functions Vt . By the stabil-
ity theory via the construction of multiple Lyapunov func-
tions [44], a hybrid system is stable if two conditions are
met: a) the value of the Lyapunov function is decreasing
during continuous phases and b) the values of the Lyapunov
function just after each jump form a sequence that strictly
decreases.

Evolution of Vt during continuous phases. Following the
above conditions, we first analyze the evolution of the Lya-
punov function Vt during continuous phases. Define

k1 := λmin(Pz), k2 := λmax(Pz), and k3 :=
λmin(Qz)

k2
, (26)

with λmin(?) and λmin(?) being the largest and the small-
est eigenvalues of ?, respectively. Within the continuous
phase of the kth walking step, i.e., t ∈ (Tk,Tk+1] with Tk
(k ∈ {1,2, ...}) the initial timing of the kth walking step, we
know from Eq. 23 that

k1‖z‖2 ≤Vz ≤ k2‖z‖2 (27)

and

V̇z ≤−k3Vz (28)

for any z(0) ∈ Rnc+n.
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From Eqs. (2) and (23), there exists a positive number rξ

such that

1
2

km‖ξξξ‖2 ≤Vξ ≤
1
2

kM‖ξξξ‖2 (29)

holds for all ξξξ (0) ∈ {ξξξ : ‖ξξξ‖ ≤ rξ}.
From Property 2, Ṁ−2C is skew symmetric. Then,

1
2

ξξξ
T Ṁξξξ = ξξξ

T Cξξξ . (30)

From Eqs. (22), (25), and (30),

V̇ξ = ξξξ
T Mξ̇ξξ +

1
2

ξξξ
T Ṁξξξ

= ξξξ
T
(Mξ̇ξξ +Cξξξ )

= ξξξ
T
(Yβ̃ββ π − f̃−Kξ ξξξ + h̄(−hs

ξξξ

‖ξξξ‖ ))

≤ ‖ξξξ‖(‖Yβ̃ββ π‖+‖f̃‖)−ξξξ
T Kξ ξξξ +ξξξ

T h̄(−hs
ξξξ

‖ξξξ‖ )).

(31)
Therefore, from the condition (C2) and Eqs. (8), (11),

and (18), we have

V̇ξ ≤−ξξξ
T Kξ ξξξ + ε(t)≤−λξVξ + ε(t), (32)

where

λξ :=
2λmin(Kξ )

kM
. (33)

Hence, for all x(0) ∈ Brξ
(0) := {x : ‖x‖ ≤ rξ}, the total

control Lyapunov function Vt satisfies

kt1‖x‖2 ≤Vt(x)≤ kt2‖x‖2 (34)

and

V̇t ≤−kt3Vt + ε(t) (35)

within the continuous phase of the kth walking step, where

kt1 := min(k1,
km

2
), kt2 := max(k2,

kM

2
),

and kt3 := min(k3,λξ ).
(36)

Evolution of Vt across jumps. Because ξξξ is reset to zero
at the initial timing of each walking step, Vξ is reset to zero.
Hence, only the evolution of Vz across the jump ∆∆∆z needs to
be analyzed.

To simplify notations, ?(T−k ) and ?(T+
k ) are denoted as

?|−k and ?|+k , respectively, in the following analysis.
The norm of z after an impact at T−k+1 can be estimated as:

‖z|+k+1‖=‖∆∆∆z(Tk+1,x|−k+1,βββ )‖
≤ ‖∆∆∆z(Tk+1,x|−k+1,βββ )−∆∆∆z(τk+1,x|−k+1,βββ )‖
+‖∆∆∆z(τk+1,x|−k+1,βββ )−∆∆∆z(τk+1,0,βββ )‖

+‖∆∆∆z(τk+1,0,βββ )−∆∆∆z(τk+1,0, β̂ββ π)‖

+‖∆∆∆z(τk+1,0, β̂ββ π)‖,
(37)

where τk+1 (k ∈ {1,2, ...}) is the planned initial timing of the
(k+1)th walking step.

Suppose that the reference trajectories are generated to
be compatible with the estimated reset map [29], we have
∆∆∆z(τk+1,0, β̂ββ π) = 0.

Because the reset map ∆∆∆z is continuously differentiable in
t, x, and βββ , there exists a positive number r1 such that ∆∆∆z is
Lipschitz continuous in these variables for any x(0)∈Br1(0).
Thus, the approximation of ‖z|+k+1‖ becomes:

‖z|+k+1‖= ‖∆∆∆z(Tk+1,x|−k+1,βββ )‖

≤ LT |Tk+1− τk+1|+Lx‖x|−k+1‖+Lβ‖βββ − β̂ββ π‖,
(38)

where the positive numbers LT , Lx, and Lβ are Lipschitz con-
stants.

From Eq. (19),

‖βββ − β̂ββ π‖= ‖β̃ββ π‖ ≤ βM. (39)

As h̄(−hs
ξξξ

‖ξξξ‖ ) and Yβ̂ββ π are continuous functions of t, x,

and β̂ββ π , there exist positive numbers kT and r2 such that

|Tk+1− τk+1| ≤ kT ‖x|−k+1‖ (40)

for any x(0) ∈ Br2(0) [45]. Note that the Zeno behavior as-
sociated with hybrid dynamical systems are excluded from
the system in this study because of our focus on the local
stability of the desired trajectories.

Thus, Eqs. (38)-(40) yield

‖z|+k+1‖ ≤ (LT kT +Lx)‖x|−k+1‖+Lβ βM. (41)

Then,

‖z|+k+1‖
2 ≤ L∆x‖x|−k+1‖

2 +2L2
β

β
2
M, (42)

where L∆x := 2(LT kT +Lx)
2.

Note that Vξ |+k+1 = 0 because ξξξ |+k+1 = 0. Thus, Eqs. (25),
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(27), (29), and (42) give

Vt |+k+1 ≤
kt2L∆x

kt1
Vt |−k+1 +2kt2L2

β
β

2
M. (43)

Evolution of Vt during the overall hybrid process. From
Eq. (35),

Vt |−k+1 ≤
∫ Tk+1

Tk

e−kt3(Tk+1−ν)
ε(ν)dν + e−kt3(Tk+1−Tk)Vt |+k .

(44)
Then,

Vt |+k+1 ≤
kt2L∆x

kt1
e−kt3(Tk+1−Tk)Vt |+k

+
kt2L∆x

kt1

∫ Tk+1

Tk

e−kt3(Tk+1−ν)
ε(ν)dν

+2kt2L2
β

β
2
M.

(45)

Recall that ε(t) is a known, bounded positive function on
t > 0. Then, there exists a positive number εmax such that the
following inequality holds for all t:

ε(t)≤ εmax. (46)

Thus,

∫ Tk+1

Tk

e−kt3(Tk+1−ν)
ε(ν)dν ≤ εmax

kt3
(1− e−kt3∆Tk), (47)

where ∆Tk := Tk+1 − Tk is the duration of the kth walking
step.

Combining Eqs. (45)-(47) yields

Vt |+k+1 ≤ δkVt |+k +bk, (48)

where δk := kt2L∆x
kt1

e−kt3∆Tk and bk := 2kt2L2
β

β 2
M +

kt2L∆xεmax
kt1kt3

(1− e−kt3∆Tk).
From Eq. (40), we know that ∆Tk is bounded. Hence, there

exist positive numbers ∆Tmin and ∆Tmax such that ∆Tmin ≤
∆Tk ≤ ∆Tmax holds for all k ∈ {1,2, ...}. Then,

δk ≤ δmax :=
kt2L∆x

kt1
e−kt3∆Tmin (49)

and

bk ≤ bmax := 2kt2L2
β

β
2
M +

kt2L∆xεmax

kt1kt3
(1− e−kt3∆Tmax). (50)

Since the continuous-phase convergence rate kt3 is suffi-
ciently fast (i.e., condition (C6)), it can be chosen to satisfy

kt3 >
1

∆Tmin
ln(

kt2L∆x

kt1
). (51)

Then, from Eq. (49), we have

δmax < 1. (52)

Thus, for any k ∈ {1,2, ...}, we have

Vt |+k+1 ≤ δ
k+1
max Vt |+0 +

1−δ k+1
max

1−δmax
bmax (53)

for any x(0) ∈ Br(0) with r = min(rξ ,r1,r2). Therefore,
when k→ ∞, i.e., when t→ ∞, we have

Vt |+∞ →
bmax

1−δmax
. (54)

This inequality indicates the exponential convergence of ‖x‖
to a bounded number during the overall hybrid process.

�

Remark 4 (Satisfaction of the proposed stability condition
(C5)). The condition (C5) can be met by properly choosing
the matrices Ac, Bc, Cc, and Dc of the dynamic compensator

in Eq. (21) such that Az =

[
Ac Bc
−Cc −Dc

]
is Hurtwiz.

Remark 5 (Satisfaction of the proposed stability condi-
tion (C6)). By the proof of Theorem 1, the condition (C6)
is met if the continuous-phase convergence rate kt3 sat-
isfies the inequality in Eq. (51). The rate can be as-
signed by properly choosing the control gains as explained
below. From Eqs. (26), (33), and (36), we have kt3 =

min(λmin(Qz)
λmax(Pz)

,
2λmin(Kξ )

kM
), where Pz can be obtained by solv-

ing the Lyapunov equation in Eq. (23) with Qz chosen as a
symmetric positive definite matrix (e.g., an identity matrix),
Kξ is a control gain, and kM can be estimated based on joint
limits and the expression of the inertia matrix M.

Remark 6 (Boundedness of parameter estimation error). Al-
though the convergence of the parameter estimation error
β̃ββ π is not explicitly considered in the stability analysis, it is
indeed bounded at the steady state because the parameter
estimation by definition is bounded, as indicated by the con-
ditions (C3) and (C4). In the following section, we will show
that the parameter estimation error converges to zero in the
absence of unmodeled uncertainties, i.e., f̃ = 0, when certain
conditions on the reference trajectory are met.
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5 Parameter Estimation Convergence Analysis
This section derives the sufficient conditions under which

the continuous ARC exponentially eliminates the parameter
estimation error in the absence of the unmodeled uncertain-
ties (i.e., f̃ = 0).

Theorem 2. Let the conditions (C5) and (C6) hold along
with the following condition:

(C7) The reference trajectories satisfy the persistent excita-
tion condition, i.e.,

∫ t+T

t
YT (qd , q̇d , q̇d , q̈d)Y(qd , q̇d , q̇d , q̈r)dν ≥ εdI

(55)
for any t ≥ t0, where T , t0, and εd are some positive
numbers.

Then, in the absence of the unmodeled nonlinearity, i.e.,
f̃ = 0, the proposed continuous-phase control law in Eq. (20)
locally asymptotically stabilizes the hybrid system in Eq. (22)
and drives the parameter estimation to the true value.

Proof: Let Vβ be the Lyapunov function candidate associated
with the parameter estimation error β̃ββ . Vβ is defined as [11]

Vβ (β̃ββ ,βββ ) :=
np

∑
i=1

∫
β̃i

0
(πi(βi +ν)−βi)dν , (56)

where πi and βi (i ∈ {1,2, ...,np}) are the ith element of the
function πππ and the vector βββ , respectively.

From the parameter adaptation law in Eq. (16) and the def-
inition of Vβ , we obtain the first derivative of Vβ as

V̇β (β̃ββ ,βββ ) =−ξξξ
T Yβ̃ββ π . (57)

In order to analyze the convergence of the parameter esti-
mation error β̃ββ π , we introduce an augmented state

x̃ :=
[

x
β̃ββ

]
, (58)

along with an updated total Lyapunov function candidate

Ṽt(x̃) =Vt(x)+Vβ (β̃ββ ,βββ ). (59)

The norm of ‖x̃‖ is defined as ‖x̃‖ :=
√
‖x‖2 +‖β̃ββ‖2.

The overall hybrid closed-loop system associated with the

augmented state is then:




Mξ̇ξξ +(C+Kξ )ξξξ = h̄(−hs

ξξξ

‖ξξξ‖ )+Yβ̃ββ π − f̃

ż = Azz+Bzξξξ
˙̃
βββ =−ΓΓΓτττ

if (t,x−) /∈ Sx;

ξξξ
+

z+

β̃ββ
+

=

 0
∆∆∆z

β̃ββ
−

 if (t,x−) ∈ Sx.

(60)

Evolution of Ṽt during continuous phases. Combining the
derivatives of the individual Lyapunov functions Vt and Vβ in
Section 4 and given that f̃ = 0, we have

˙̃Vt = V̇t +V̇β

= ξξξ
T
(Yβ̃ββ π −Kξ ξξξ + h̄(−hs

ξξξ

‖ξξξ‖ ))− zT Qzz−ξξξ
T Yβ̃ββ π .

(61)
From the condition (C1), the above equation becomes

˙̃Vt ≤−ξξξ
T Kξ ξξξ − zT Qzz. (62)

Recall Tk (k ∈ {1,2, ...}) is the initial moment of the kth

walking step. Let (x̄, ¯̃
βββ ) be the solution to the continuous-

phase subsystem of Eq. (60) on t > Tk with initial condition
[x̄T (T+

k ),
¯̃
βββ

T (T+
k )]T = x̃(T+

k ). Then, [x̄T ,
¯̃
βββ

T ]T = x̃ on t ∈
(Tk,Tk+1].

The inequality in Eq. (62) implies that x̄ ∈ L2 ∩ L∞ and
¯̃
βββ ∈ L∞. From the continuous-phase subsystem of Eq. (60),
˙̄x ∈ L∞. Thus, x̄ is uniformly continuous. Also, for x̄ and ¯̃

βββ ,
all terms of the continuous-phase subsystem are uniformly
continuous, and thus ˙̄x is uniformly continuous. Then,
by Barbalat’s lemma [4], x̄ → 0 locally exponentially on
t > Tk. Accordingly, x locally exponentially diminishes on
t ∈ (Tk,Tk+1]. Thus, from the continuous-phase subsystem
of Eq. (60), Yβ̄ββ π locally exponentially approaches zero on
t ∈ (Tk,Tk+1]. If the reference trajectories satisfy the persis-
tent excitation condition (i.e., the condition (C7)), then the
parameter estimation error β̃ββ π exponentially diminishes on
t ∈ (Tk,Tk+1] [4].

Hence, there exist positive numbers k̃t , α̃t , and r̃t1 such
that the augmented state x̃ satisfies [30]

‖x̃(t)‖ ≤ k̃teα̃t (t−Tk)‖x̃|+k ‖ (63)

for any x̃(0)∈Br̃t1(0) and t ∈ (Tk,Tk+1], k∈{1,2, ...}; that is,
the augmented state x̃, including the parameter estimation er-
ror β̃ββ π , exponentially diminishes during continuous phases.

Evolution of Ṽt across jumps. By the definition of the
Lyapunov function Vβ in Eq. (56), the discrete event of
state-triggered jumps does not cause a sudden change in Vβ .

Therefore, β̃ββ
+
= β̃ββ

−
, and accordingly β̃ββ

+

π = β̃ββ
−
π .

The approximation of ‖z+‖ right after an impact at t =
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TK+1 becomes

‖z|+k+1‖=‖∆∆∆z(Tk+1,x|−k+1,βββ )‖
≤ ‖∆∆∆z(Tk+1,x|−k+1,βββ )−∆∆∆z(τk+1,x|−k+1,βββ )‖
+‖∆∆∆z(τk+1,x|−k+1,βββ )−∆∆∆z(τk+1,0,βββ )‖

+‖∆∆∆z(τk+1,0,βββ )−∆∆∆z(τk+1,0, β̂ββ π)‖

+‖∆∆∆z(τk+1,0, β̂ββ π)‖.
(64)

Then, following similar derivations as in Section 4 and
noting that ‖β̃ββ π‖ ≤ ‖β̃ββ‖, there exist a positive number r̃t2
such that

‖z|+k+1‖ ≤ (LT kT +Lx)‖x|−k+1‖+Lβ‖β̃ββ‖ (65)

for any x̃(0) ∈ Br̃t2(0) and t ∈ (Tk,Tk+1], k ∈ {1,2, ...}. Cor-
respondingly,

‖z|+k+1‖
2 ≤ 2(LT kT +Lx)

2‖x|−k+1‖
2 +2L2

β
‖β̃ββ‖2. (66)

Since β̃ββ |+k+1 = β̃ββ |−k+1 and ξξξ |+k+1 = ξξξ |−k+1, we have

‖x̃|+k+1‖
2 = ‖z|+k+1‖

2 +‖ξξξ |+k+1‖
2 +‖β̃ββ‖2

≤ 2(LT kT +Lx)
2‖x|−k+1‖

2 +(2L2
β
+1)‖β̃ββ‖2

≤ L̃2
x‖x̃|−k+1‖

2,

(67)

where L̃x := max(
√

2(LT kT +Lx)2,
√

2L2
β
+1).

Evolution of Ṽt during the overall hybrid process. Com-
bining the evolution of the augmented state x̃ during the con-
tinuous phase and across the state-triggered jump yields

‖x̃|+k+1‖ ≤ L̃x‖x̃|−k+1‖ ≤ L̃xk̃te−α̃t ∆Tk‖x̃|+k ‖ (68)

for any x̃(0) ∈ Br̃(0) with r̃ := min(r, r̃t1, r̃t2).
Therefore, if the control gains are chosen such that

Lx̃k̃te−α̃t ∆Tk < 1,

then for any x̃(0) ∈ Br̃(0) the augmented state x̃ will expo-
nentially converge to zero for the overall hybrid dynamical
process. Accordingly, the parameter estimation error β̃ββ will
also exponentially converge to zero. �

Remark 7 (Satisfaction of the persistent excitation condition
(C7)). By Theorem 2, to realize accurate parameter estima-
tion requires that the reference trajectory qd(t) should satisfy
the persistent excitation condition (C7). Because walking on
flat horizontal terrain is typically periodic, qd(t) is typically
planned as periodic [46]. Then, the condition is satisfied if

Fig. 3. A 3-D biped with nine revolute joints [35]

the sampling increment of controller discretization in real-
world implementation is significantly smaller than the walk-
ing period [4], which can easily be met as the sampling rate
in practical applications is typically about 1 ms whereas the
walking period is about 0.3 - 1.5 s.

6 Simulation Results
This section presents simulation results that demonstrate

the effectiveness of the proposed trajectory tracking control
method in realizing stable 3-D bipedal robotic walking in the
presence of parametric and unmodeled uncertainties.

6.1 Simulation Setup
The robot model [47] considered in this study is shown in

Fig. 3. The robot has nine revolute joints with the mass of
each link lumped at the link’s center. Physical parameters of
the simulated robot model are given in Tab. 1.

Table 1. Robot Model Parameters

parameter variable value

lower-limb mass m1 0.4 kg

upper-limb mass m2 0.8 kg

torso mass mT 4.8 kg

lower-limb length l1 0.4 m

upper-limb length l2 0.4 m

torso length l3 0.4 m

hip width w 0.3 m
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To stabilize the closed-loop system and achieve a reliable
tracking performance, the following controller parameters
should be properly tuned:

(a) The gain of the linear stabilizing feedback term, Kξ .
(b) The gain of the parameter adaptation law, ΓΓΓ.
(c) The parameters of the robust controller, including the

matrices of the dynamic compensator (i.e., Ac, Bc, Cc,
and Dc) and the parameters of the SMC (i.e., Ks, φ , ε1,
and ε2).

As indicated by the stability and performance analysis in
Sections 4 and 5, the general rules for tuning these controller
parameters include:

(a) A larger Kξ generally increases the rate of continuous-
phase convergence of the tracking error (i.e., kt3).

(b) A larger ΓΓΓ can result in faster continuous-phase conver-
gence of the estimated parameters to their true values.

(c) Faster poles of the transfer function from ξξξ to e (i.e.,
(sIn×n +Gc(s))−1) can lead to faster continuous-phase
convergence of the tracking error.

(d) A smaller φ , a lager ε1, or a smaller ε2 can all expand
the range of states that the ideal SMC (i.e.,−hs

ξξξ

‖ξξξ‖ ) acts
on.

6.2 Performance Comparison under Parametric and
Unmodeled Uncertainties

To validate the effectiveness of the proposed continuous
ARC in achieving the control objective as stated in Section 3,
four different controllers were implemented and compared:
(a) the proposed ARC, (b) a robust controller, (c) an adap-
tive controller, and (d) a baseline controller without robust
feedback or parameter adaptation, which is equivalent to our
previous input-output linearizing controller [32–35].

For the purpose of performance comparison, the following
values of uncertainties and initial conditions are used in the
simulations of all four controllers:

(a) The maximum norm of the unmodeled uncertainty is 30,
i.e., h f = 30.

(b) The initial position and velocity tracking errors of each
joint are 0.2 rad (about 11◦) and 0.3 rad/s (about 17◦/s),
respectively. Relatively large initial tracking errors are
chosen here so as to test the regions of attraction of the
controllers.

(c) The unknown parameters are the robot’s link masses,
i.e., βββ = [m1 m2 mT ]

T = [0.4 0.8 4.8]T kg.
(d) The lower and the upper bounds of the parameter esti-

mation are set as βββ min = [−1.1 − 0.4 − 1.2]T kg and
βββ max = [3.4 2.3 16.8] kg, respectively. This setting al-
lows us to assess the performance of the proposed ARC
under relatively large bounds of parameter estimation.

(e) The initial parameter estimation is β̂ββ (0) = β̂ββ π(0) =
[2.7 2.1 10.8]T kg, corresponding to an initial estima-
tion error of β̃ββ (0) = β̃ββ π(0) = [2.3 1.3 6]T kg. These
significant initial parametric uncertainties permit a clear
comparison in parameter estimation accuracy as well as
robustness.

Fig. 4. Trajectory tracking results of Baseline Control (Case 1) dur-
ing three simulated walking steps

Fig. 5. Tracking results of Adaptive Control (Case 2) during three
simulated walking steps

The parameters of the four controllers are chosen as:

Case 1: Baseline Control (BC): The control law is formed
as in Section 3 with the adaptive and robust gains turned
off. Specifically, the control gains are chosen as: Ac =
Bc = Cc = 09×9 with 09×9 ∈ R9×9; Dc = ωcI9×9 (ωc =
40 rad/s); φ = 0; ΓΓΓ = 03×3; and Kξ = 30I9×9. Using
these parameters renders a corner frequency for the slid-
ing mode as ωc = 40 rad/s and an effective stabilizing
feedback gain for ξξξ as Kξ +ωcI9×9 = 70I9×9. The posi-
tion trajectory tracking results are shown in Fig. 4. The
poor trajectory tracking performance indicates that the
robot fails to sustain walking within three steps.

Case 2: Adaptive Control (AC): The control law is formed
as in Section 3 with the robust gains turned off. The val-
ues of the control gains are chosen to be the same as
in Case 1 except for the parameter adaptation gain, ΓΓΓ,
which is chosen as ΓΓΓ = 40I3×3. The position trajectory
tracking results are shown in Fig. 5. The parameter es-
timation and torque profile are omitted due to the overly
large overshoot of the responses.

Case 3: Robust Control (RC): The control law is formed
as in Section 3 with the parameter adaptation turned
off. The dynamic compensator is set as: Ac = 09×9,
Bc = 100I9×9, Cc = I9×9, and Dc = 2ωcI9×9 (ωc = 10),
which render the corner frequency of the sliding mode
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Fig. 6. Tracking results of Robust Control (Case 3) during three simulated walking steps. a) Joint position tracking. b) Parameter estimation.
c) Joint torque profiles.

Fig. 7. Tracking results of Robust Control in the presence of unmodeled nonlinearities different from Case 3. a) Joint position tracking. b)
Parameter estimation. c) Joint torque profiles.

as ωc = 10. The parameters of the SMC are chosen as:
φ = 30, ε1 = 1, and ε2 = 0.5. The adaptation law is
turned off by choosing ΓΓΓ = 03×3. The linear stabiliz-
ing feedback gains for ξξξ are chosen as Kξ = 40I9×9 and
Ks = 20I9×9. These gains produce an overall feedback
gain for ξξξ as Kξ +Ks = 60I9×9. Note that both the cor-
ner frequency and overall feedback gain are smaller than
those of the BC and the AC. The simulation results are
shown in Fig. 6.

Case 4: Adaptive Robust Control (ARC): The control
law is formed as in Section 3 with both robust and
adaptive control action turned on. The feedback gains,
the dynamic compensator, and the SMC are set exactly
the same as the RC. The only gain different from the
RC is the adaptation gain, which is chosen the same
as the AC, i.e., ΓΓΓ = 40I3×3. The simulation results are
shown in Fig. 8.

6.3 Discussions on Performance Comparison
Based on the simulation results, the performance of the

four controllers are compared and discussed as follows:

Final tracking error and convergence rate: To assess and
compare the transient performance and final accuracy of
trajectory tracking, we evaluate the rate of the actual tra-

jectory’s convergence to the reference trajectory along
with the tracking error near steady state. The BC and
the AC both have an effective feedback gain and a corner
frequency larger than those of the RC and ARC. How-
ever, under the relatively large uncertainties and initial
tracking errors, the BC is not able to stabilize the hy-
brid system as shown in Fig. 4, and the AC causes a
very large transient parameter estimation error that in-
duces an overly large control effort. In contrast, thanks
to the robust feedback term, the RC and the ARC re-
alizes higher final tracking accuracy and faster conver-
gence rate under unmodeled uncertainties, as shown in
Figs. 6 (a) and 8 (a).

Control effort demanded: Simulation results show that
AC, RC, and ARC demand different levels of control
effort for stabilization. The BC is not included in the
comparison as it fails to stabilize the system. The torque
profile under the AC is not shown due to the overly large
overshoot, which is induced by the rejection of the large
parameter estimation error under unmodeled uncertain-
ties. However, as shown in Figs. 6 (c) and 8 (c), the RC
and the ARC demand relatively low peak torque. The
comparison highlights the necessity of enforcing a fi-
nite bound to the parameter estimation produced by the
adaptation law in Eq. (16), which is missing in the de-
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sign of AC.

Control chattering: Due to the use of aggressive nonlinear
robust feedback, i.e., the modified SMC, the RC and
the ARC are subject to certain amount of control chat-
tering, especially at the initial period of each walking
step (see Figs. 6 (c) and 8 (c)). During these initial
periods, the ideal SMC is activated to reject the track-
ing error divergence caused by the uncontrolled state-
triggered jumps upon foot-landing events. However,
as confirmed through simulations, the ARC causes less
chattering than the DC thanks to the incorporation of pa-
rameter estimation.

Robustness: To evaluate the robustness of the RC and the
ARC under relatively aggressive disturbances, the non-
linear function f̃ is modified to include an additional
term, 10 · (−1)

t
0.2 , which emulates a relatively large

disturbance that instantaneously switches signs at least
twice during a walking step. Simulation results are
shown in Figs. 7 and 9. As shown in the figures, the
tracking performances of both controllers are close to
the cases where the additional nonlinear function term
is absent (i.e., Figs. 6 and 8), which illustrates the ro-
bustness of the RC and the ARC in rejecting unmodeled
uncertainties. Because unknown external payloads are
an important source of uncertainties for real-world ap-
plications of legged locomotion, the robustness of ARC
is further assessed under parametric uncertainty only in
the torso mass β3 in addition to the unmodeled nonlin-
earity f̃ as specified in Section 6.2. The initial torso mass
estimation error β̃3(0) is set as 8 kg, which is 167% of
the true value of β3. Despite the significant initial uncer-
tainty in the torso mass, the proposed ARC realizes ac-
curate trajectory tracking and parameter estimation with
a relatively fast convergence rate, as shown in Fig. 11.

Parameter estimation convergence: The simulation re-
sults show that both the AC and the ARC drive the pa-
rameter estimations to a close neighborhood of their true
values. However, the estimation error under the AC in-
creases to an overly large value before converging to-
wards zero, causing overly large joint torques. Thus, the
parameter estimation plot of the AC is omitted. In con-
trast, the ARC achieves a small estimation error without
causing an overly large joint torque thanks to the smooth
projection of parameter estimation, as shown in Fig. 8
(c).

Parameter estimation without unmodeled uncertainties:
As predicted by Theorem 2, the ARC should be able to
eliminate parameter estimation errors when the unmod-
eled uncertainties are absent (i.e., f̃ = 0). The control
parameters and the simulation setup are chosen exactly
the same as in Section 6.1, except that the unmodeled
uncertainties are set as f̃ = 0. As shown in Fig. 10, the
ARC indeed eliminates the parameter estimation error
at the steady state, which validates Theorem 2.

7 Discussions
The proposed control approach can be potentially ex-

tended and applied to realize nonperiodic legged locomo-
tion. The desired gait is chosen as periodic time trajecto-
ries in this study mainly for simplifying the motion plan-
ning task. Specifically, such desired trajectories provably
satisfy the persistent excitation condition (i.e., the condition
(C7)) that is demanded to achieve accurate parameter estima-
tion, as explained in Remark 7. Yet, the theoretical basis of
the proposed approach (i.e., the Lyapunov-based closed-loop
stability analysis shown in the proofs of the main theorems)
does not necessarily assume the periodicity of the desired
gait. To extend the proposed approach to realize nonperiodic
legged locomotion, we will integrate the approach with non-
periodic motion planning [48] by deriving conditions under
which nonperiodic trajectories meet the persistent excitation
condition.

One limitation of the proposed control approach in han-
dling real-world legged locomotion is that it does not explic-
itly respect the feasibility of the ground reaction force and
center of pressure. Particularly, in the presence of overly
large uncertainties, the robust feedback term (e.g., the SMC)
of the proposed control approach may induce chattering that
violates ground-contact constraints such as unilateral and
friction-cone constraints, which can cause the loss of proper
contact between the support foot and the ground and may
even lead to falling. To overcome this limitation, we will
investigate the integration of the proposed approach with
real-time optimization so as to realize satisfactory trajec-
tory tracking simultaneously with the guaranteed feasibility
for the ground-contact constraints. This potential integra-
tion seems promising as indicated by recent progress in com-
bining quadratic programming based real-time optimization
and feedback control such as input-output linearizing con-
trol [49] and control barrier functions [50].

Another limitation of the proposed control approach lies
in that it only addresses fully actuated bipedal walking in-
stead of the general multi-domain walking [51], which com-
prises domains of full actuation, underactuation, and over ac-
tuation. In our future work, we will integrate the proposed
controller design with our previous work on tracking control
of multi-domain hybrid systems [52] to enable stable multi-
domain walking even under uncertainties.

8 Conclusions
A continuous adaptive robust control law has been pro-

posed for hybrid systems with state-triggered jumps to
achieve accurate trajectory tracking of fully actuated 3-D
bipedal walking under parametric uncertainties and unmod-
eled disturbances. The control law was derived based on
the incorporation of the construction of multiple Lyapunov
functions into the control Lyapunov function. Specifically,
the stability, tracking performance, and parameter estima-
tion convergence of the closed-loop hybrid system were an-
alyzed by explicitly examining the effects of state-triggered
jumps on the evolution of the Lyapunov function under un-
certainties. These analyses produced sufficient conditions
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Fig. 8. Tracking results of Adaptive Robust Control (Case 4) during three simulated walking steps. a) Joint position tracking. b) Parameter
estimation. c) Joint torque profiles.

Fig. 9. Tracking results of Adaptive Robust Control in the presence of unmodeled nonlinearities different from Case 4. a) Joint position
tracking. b) Parameter estimation. c) Joint torque profiles.

Fig. 10. Tracking results of Adaptive Robust Control in the absence of unmodeled nonlinearities. a) Joint position tracking. b) Parameter
estimation. c) Joint torque profiles.

that were then used to guide the design of a continuous
ARC for ensuring the stability and performance of hybrid
systems with state-triggered jumps that include fully actu-
ated bipedal walking robots. Through simulated walking ex-
periments in the presence of parametric and unmodeled un-
certainties, the tracking performance of the proposed ARC
and three other widely used controllers were assessed and
compared. The simulation results demonstrated that the pro-
posed ARC achieves accurate tracking and fast convergence

while demanding the least amount of control effort and in-
ducing the least degree of chattering. Furthermore, addi-
tional simulation results showed that the proposed control
law achieves asymptotic parameter estimation convergence
under parametric uncertainties alone.
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