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Abstract— Uncertainties are prevalent in real-world applica-

tions of bipedal walking robots, which may deteriorate the

robot’s locomotion performance and even cause instability.

However, designing controllers to address uncertainties for

bipedal robotic walking is challenging mainly due to the high

complexity of the hybrid walking dynamics under uncertainties.

In this paper, an adaptive robust control strategy is proposed

by combining control Lyapunov functions and the construction

of multiple Lyapunov functions for provably guaranteeing

the trajectory tracking performance of bipedal robots in the

presence of uncertainties such as modeling errors and distur-

bances. Simulation results on a three-dimensional bipedal robot

with nine revolute joints are conducted to illustrate that the

proposed adaptive robust control law can ensure satisfactory

tracking performance in the presence of parametric modeling

uncertainties and unmodeled nonlinearities.

I. INTRODUCTION

Legged robots can potentially be used to perform locomo-
tion tasks for a wide range of real-world operations such as
emergence response, search and rescue, and home assistance.
These locomotion tasks can often be translated into tasks
of tracking the planned motions such as the planned joint
position trajectories. However, enabling legged robots to reli-
ably perform trajectory tracking tasks remains a challenging
controller design problem. One of the main causes of the
challenge is that uncertainties are pevalent during real-world
robot operations. Parametric modeling errors and uncertain
disturbances are common examples of these uncertainties.
Parametric modeling errors exist when the modeled values
of a system parameter (e.g., a robot’s link masses) are differ-
ent from the actual ones, whereas unmodeled uncertainties
represent unmodeled disturbances (e.g., a gust of wind) and
dynamic behaviors (e.g., unmodeled joint friction). Without
properly addressed, these uncertainties can deteriorate a
legged robot’s stability and tracking performance, which
makes it necessary to design locomotion controllers that can
mitigation the negative effects of such uncertainties.

To guarantee the stability and tracking performance of
continuous systems in the presence of uncertainties, adaptive
and robust control strategies have been intensively inves-
tigated. Adaptive controllers [1]–[3] have the remarkable
advantage in achieving accurate steady-state tracking in the
presence of parametric modeling errors. However, it may not
be able to guarantee the stability and the transient tracking

1Yan Gu is with the Department of Mechanical Engineering, Uni-
versity of Massachusetts Lowell, Lowell, MA 01854, U.S.A. Email:
yan gu@uml.edu.

2Chengzhi Yuan is with the Department of Mechanical, Industrial and
Systems Engineering, University of Rhode Island, Kingston, RI 02881,
U.S.A. Email: cyuan@uri.edu.

performance in the presence of unmodeled uncertainties such
as disturbances. In contrast, robust control [4], [5] guarantees
satisfactory transient performance of tracking in the presence
of unmodeled uncertainties, but it cannot guarantee accu-
rate steady-state tracking. To methodologically combine the
complementary advantages of adaptive control and robust
control for continuous systems, an adaptive robust control
approach [6], [7] has been proposed, which resolves the
inherent conflict of the two controller design methodologies
by adding a known bound to the estimated parameters in
the parameter adaptation law. This approach has been used
to significantly improve both the transient and the steady-
state trajectory tracking performance for various continuous
systems in the presence of parametric modeling errors and
unmodeled nonlinearities [8], [9]. However, extending this
approach to the class of hybrid systems that include legged
robots has not been fully explored, which is a complicated
challenge due to the high complexity of hybrid and uncertain
legged locomotion dynamics.

Bipedal robotic walking is an inherently hybrid dynamical
process, which consists of both continuous motions (e.g.,
foot swinging motions) and discrete behaviors (e.g., foot-
landing impacts) [10]. The discrete behaviors are triggered
when the system’s state satisfies certain conditions (e.g.,
the swing foot hitting the walking surface), and can cause
sudden jumps in a robot’s joint velocities. Due to the
infinitesimal period of duration, the jumps cannot be directly
controlled, thus posing a difficult challenge for tracking
controller design.

To explicitly address the state-triggered jumps, controller
design for bipeda walking robots have been intensively
investigated based on formal stability analysis. The Hybrid
Zero Dynamics (HZD) framework [10] is the first control
approach that provably stabilizes bipedal walking robots. Its
orbitally stabilizing controller can drive a robot’s state to
converge to the desired orbit in the state space. Recently, the
HZD framework has been extended to address uncertainties
common in bipedal walking operations. To guarantee the
tracking performance of bipedal robots that walking over ter-
rains with uncertain heights, finite state machines have been
utilized to guide the switching between multiple controls
designed for different terrain heights [11]. Moreover, robust
optimal control approaches for bipedal walking have been
introduced to deal with modeling uncertainties [12]. The ef-
fectiveness of these approaches in handling uncertainties has
been experimentally validated on physical bipedal robots.
However, orbitally stabilizing controllers cannot gurantee
reliable trajectory tracking [13].
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Our previous work has introduced a Lyapunov-based
trajectory tracking controller design based on the explicit
analysis of the Lyapunov fucntion evolution across state-
triggered jumps [14]–[16]. However, our previous control
approach is synthesized based on input-ouput linearization,
which is valid under the assumption that the model is
accurately known and no disturbances exist.

The objective of this study is to extend adaptive robust
control from continuous systems to hybrid systems with
state-triggered jumps that include fully actuated bipedal
walking robots for provably guaranteeing the tracking per-
formance under parametric uncertainties and disturbances.
There are three main contributions of this study:
(a) To synthesize adaptive robust control laws for hybrid

systems with state-triggered jumps by combining con-
trol Lyapunov function and the construction of multiple
Lyapunov functions.

(b) To explicitly analyze the convergence of parametric es-
timation and tracking error across state-triggered jumps.

(c) To provide sufficient conditions under which the pro-
posed adaptive robust control will provably guarantee
the tracking performance of single-domain fully actu-
ated hybrid systems with state-triggered jumps under
parametric uncertainties and disturbances.

This paper is structured as follows. Section II presents the
hybrid dynamic model of bipedal walking robots. Section III
explains the continuous-phase adaptive robust control law.
In Section IV, sufficient closed-loop stability conditions are
established, which can be used to guide the specific design
of the adaptive robust controller. Simulation results on 3-D
bipedal robotic walking are given in Section V.

II. HYBRID WALKING DYNAMICS

This section presents the full-order dynamics of fully-
actuated bipedal robotic walking. This model serves as a
basis for the proposed adaptive robust controller design.

Bipedal robotic walking is an inherently hybrid dynamical
process [10]. The robot’s dynamics are described by ordinary
differential equations during the continuous phases when the
swing foot moves in the air. The robot’s joint velocities
can experience a suddent jump when the swing foot strikes
the group, which are referred to as state-triggered jumps or
impulse effects.

A 3-D bipedal robot [17] is shown in Fig. 1. The biped
has identical legs and nine revoluate joints. It is assumed that
the double-support phase when both legs are in contact with
the ground is instantaneous and that the foot landing impact
is a contact between rigid bodies. Also, it is assumed that
the walking surface is flat and horizontal. Then, a complete
walking step consists of a continuous phase and a discrete
foot-landing impact .

Let Q ⇢ R9 be the configuration space of the robot.
Let U ⇢ R9 be the set of admissible joint torques.
Let q =

⇥
q1,q2,q3,q4,q5,q6,q7,q8,q9

⇤T 2 Q and u =⇥
u1,u2,u3,u4,u5,u6,u7,u8,u9

⇤T 2 U be the vectors of joint
positions and torques, respectively. Figure 1 illustrates the
definitions of qi and ui (i = 1,2, ...,9). The biped is fully

Fig. 1. A 3-D biped with nine revoluate joints. (a): Left leg is in support.
(b): Right leg is in support. l1, l2, and l3 are lengths of the lower limb,
upper limb, and trunk, respectively. w is the hip width.

actuated because the number of degrees of freedom matches
that of the actuators during a continuous phase,

During continuous phases, the full-order dynamic model
can be expressed as

M(q,bbb )q̈+C(q, q̇,bbb )q̇+G(q,bbb )+ f̃(t,q, q̇) = Buu, (1)

where bbb 2 Wb is the vector of model parameters with
uncertain values, M : Q⇥Wb ! R9⇥9 is the inertia matrix,
C : T Q⇥Wb !R9⇥9 is the Coriolis matrix, G : Q⇥Wb !R9

is the gravitational term, f̃ : R+⇥T Q ! W
f̃

is the sum of
unmodeled uncertainties such as joint friction, disturbances,
and measurement noise, and Bu 2 R9⇥9 is a nonsingular
input matrix. T Q is the tangential space of Q. Wb ⇢ Rnp

and W
f̃
⇢ R9 are known bounded sets.

The continuous-phase dynamics in Eq. (1) has the follow-
ing properties [18], [19]:
(P1) The inertia matrix M is symmetric positive definite,

and for any q 2 Q there exist positive numbers km and
kM such that

kmIn⇥n  M  kMIn⇥n, (2)

where In⇥n 2 Rn⇥n is an identity matrix.
(P2) The Coriolis matrix C can be chosen such that N :=

Ṁ�2C is skew-symmetric.
The vector bbb considered in this study consists of unknown

parameters that can be used to linearly parameterize M, C,
and G as:

M(q,bbb )q̈r +C(q, q̇,bbb )q̇r +G(q,bbb )
=: f0(q, q̇, q̇r, q̈r)+Y(q, q̇, q̇r, q̈r)bbb ,

(3)

where f0 2 Rn, Y 2 Rn⇥np , and qr 2 Rn is any reference
vector. An example of bbb is a vector of the robot’s link
masses.

Given that uncertainties, such as unmodeled joint frictions
and unknown link masses, are typically bounded during real-
world robot operations [20], it is reasonable to assume the
model uncertainties are bounded:
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(A1) The true value of bbb is bounded by known vectors,
bbb min and bbb max, as:

bbb 2 [bbb min,bbb max]. (4)

(A2) The nonlinear function f̃ is bounded by a known scalar
function h f (t,q, q̇) as:

kf̃(t,q, q̇)k  h f (t,q, q̇). (5)

An impact occurs when the swing leg strikes the walking
surface. Because the swing and the support leg switch roles,
their joint positions will experience a sudden jump. Also,
the joint velocities will experience a sudden jump due to
both the coordinate swap and the rigid-body impact. This
state-triggered discrete behavior can be expressed as:


q
+

q̇
+

�
= DDD(q�, q̇�,bbb ) (6)

where ?+ and ?� represent the values of ? right before or
after an impact, respectively. The derivation of DDD is given
in [21].

The occurence of a swing-foot landing is determined by
the following switching surface:

Sq(q, q̇,bbb ) := {(q, q̇,bbb ) 2 T Q :zsw(q,bbb ) = 0,
żsw(q, q̇,bbb )< 0},

(7)

where zsw is the swing foot height. Note that the switching
surface is not a function of bbb because the swing foot height
zsw is not dependent on the robot’s masses.

The overall hybrid system dynamics can be expressed as:
8
><

>:

Mq̈+Cq̇+G+ f̃ = Buu, if (q�, q̇�) /2 Sq(q, q̇,bbb );"
q
+

q̇
+

#
= DDD, if (q�, q̇�) 2 Sq(q, q̇,bbb ).

(8)

III. CONTINUOUS-PHASE ADAPTIVE ROBUST CONTROL

This section introduces a continuous adaptive robust con-
trol approach that mitigates parametric uncertainties and
unmodeled nonlinearitie during continuous phases.

The control law is chosen as continuous because only
continuous phases can be directly affected by control action.
The duration of the state-triggered jump is infinitesimally
short, and thus they cannot be directly controlled. Due to the
uncontrolled jumps, a continuous control law cannot auto-
matically guarantee the stability and tracking perfrmance of
the overall hyrbrid systems ever if it can provably guarantee
the stability and trakcing performance for the continuous
dynamics. Therefore, in Section IV, we will incorporate the
construction of multiple Lyapunov functions into control
Lyapunov functions to derive sufficient conditions under
which a continuous-phase adaptive robust control law can
provably guarantee the stability and tracking performance
of the overall hybrid system even in the presence of
parametric modeling uncertainties and unmodeled nonlinear
uncertianties.

With the model assumptions in Section I, the robot shown
in Fig. 1 is fully actuated because it has n revolute joints and

n independent actuators. Therefore, n independent variables
of interest can be commanded to track n desired trajectories.
Let qd(t) be the desired trajectories of q. Let e := q�qd be
the joint trajectory tracking errors. The control objective is to
design a continuous control law such that the overall hybrid
closed-loop system is stable and that the tracking error e is
bounded at the steady state for the hybrid dynamical system
with model uncertainties as shown in Eq. (1).

A. Deterministic Robust Control

As shown in Fig. 2, a continuous adaptive robust control
law consists of four components [22]. The forward term is
used to compensate for the nonlinear dynamics. The linear
stabilzing feedback term is used to stabilize the system.
The parameter adaptation law is used to estimate the true
values of the uncertain model parameters, thus improving
the steady-state tracking accuracy. The nonlinear robust
feedback term is needed to mitigating the negative effects of
uncertain disturbances on the system stability and tracking
performances. Without this robust feedback term, a control
law consisting of the other three terms may not be able to
guarantee stability and transient tracking performance even
under small measurement noise and disturbances.

We choose to use sliding mode control (SMC) [22] to
form the robust feedback term as previous work [23] has
validated its enhanced performance in rejecting uncertainties
for legged locomotion.

To guarantee satisfactory tracking performance while the
state is reaching or within the sliding mode, a dynamic
compensator is introduced: where Ac ⇢Rnc⇥nc , Bc ⇢Rnc⇥nc ,
Cc ⇢ Rn⇥nc and Dc ⇢ Rn⇥n. The matrices are chosen such
that (Ac, Bc, Cc, Dc) is controllable and observable.

Introduce a variable xxx :

xxx = ė+yc =: q̇� q̇r, (9)

where q̇r := q̇d � yc. The objective of the sliding mode
controller is to ensure that xxx remains zero.

Define z :=


xc

e

�
. Then,

(
ż = Azz+Bzxxx ;
yz = Czz,

(10)

where Az :=


Ac Bc

�Cc �Dc

�
, Bz :=


0

In⇥n

�
, and Cz :=

⇥
0 In⇥n

⇤
.

Therefore, the transfer function matrix from xxx to e is

G
�1
x (s) := (sIn⇥n +Gc(s))

�1,

where Gc(s) := Cc(sInc
� Ac)�1

Bc + Dc. By carefully as-
signing the poles of Gx , the desired response during the
transient reaching phase can be achieved.

The robust feedback term can be expressed as:

ur = h̄(�hs

xxx
kxxxk ), (11)

where h̄(�hs

xxx
kxxxk ) is a continuous approximation of the ideal
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Fig. 2. Block diagram of a continuous adaptive robust control law.

sliding mode control, hs

xxx
kxxxk , with a known approximation

error e(t).
Various forms of h̄ could be used as continuous approxi-

mations of the ideal sling mode control. Here, we choose to
adopt the following definition of h̄ among others [1], [24]
because it is relatively easy to implement thanks to its simple
expression:

h̄(�hs

xxx
kxxxk )=

8
>><

>>:

�Ksxxx ifkxxxk  fh

�(1� c1)Ksxxx � c1hs
xxx

kxxxk iffh  kxxxk  (1+ e2)fh

�hs
xxx

kxxxk ifkxxxk � (1+ e2)fh

(12)
where Ks 2 R9⇥9 is any symmetric positive definite matrix,
and e1 and e2 are any positive scalars. fh := f

hs(t,q,q̇,q̇r ,q̈r)+e1
,

where f(t) is any positive scalar function on t > 0. c1 =
kxxxk�fh

e2fh

. With this choice of h̄, the approximation error e
becomes e(t) = (1+ e2)fh(t).

Since the initial condition of the dynamic compensator
during a walking step can be arbitrarily designed, we can
choose the initial value of z such that xxx is reset to zero at
the initial moment of a walking step. Let Tk be the initial
moment of the k

th walking step (k 2 {1,2, ...}). Then, to
ensure xxx (T+

k
) = 0, z(T+

k
) is chosen as

Ccz(T+
k
) =�ė(T+

k
)�Dce(T+

k
). (13)

B. Parameter Adaptation Law

The parameter adaption law estimates the unknown model
parameters bbb . The estimated model parameters are then
used to form a feedforward term that compensates for the
nonlinear dynamics. The main advantage of using parameter
adaptation is that: it reduces the modeling error and thus
improves the steady-state tracking accuracy without replying
on high-gain feedback control.

Let b̂bb 2 Wb be the estimated value of bbb . The parameter
adaptation law is defined as:

˙̂bbb =�GGGttt, (14)

where the adaptation function ttt is

ttt = Y
T (q, q̇, q̇r, q̈r)xxx . (15)

The parameter estimation law in Eq. (14) can lead to an
unbounded parameter estimation error in the presence of

unmodeled uncertainty f̃. However, boundedness of the pa-
rameter estimation error is necessary as the robust feedback
term introduced in Section III-A requires the knowledge of
the bound of the parameter estimation error. To resolve this
conflict, the key is to modify the parameter estimation b̂bb
into a bounded vector.

Various modifications of the parameter estimation b̂bb have
been introduced [22]. We choose to adopt a smooth projec-
tion so that the convergence of b̂bb can be explicitly analyzed
based on Lyapunov function theory in Section V.

Let eeeb 2 Rnp be a known vector of small positive num-
bers. Let ppp(b̂bb ) be a smooth projection of b̂bb that has bounded,
sufficiently smooth derivatives and satisfies the following
conditions:
(C3) ppp(b̂bb ) = b̂bb if b̂bb 2 Wb .
(C4) ppp(b̂bb ) 2 Wb̂ := [bbb min � eeeb bbb max + eeeb ] if b̂bb 2 Rnp .

For notational simplicity, define b̂bb p := ppp(b̂bb ). Let b̃bb p be the
parameter estimation error, b̃bb p := b̂bb p �bbb .

From the assumption (A1), the following inequality holds:

kY(q, q̇, q̇r, q̈r)b̃bb pk  hb (q, q̇, q̇r, q̈r), (16)

where the bound can be chosen as

hb := kY(q, q̇, q̇r, q̈r)kbM := kY(q, q̇, q̇r, q̈r)kkbbb max �bbb min +eeeb k.
(17)

C. Overall Control Law

With the robust feedback and the parameter adaptation
law designed, the overall continuous ARC can be expressed
as:

u = B
�1
u
(ur + f0(q, q̇, q̇r, q̈r)+Y(q, q̇, q̇r, q̈r)b̂bb p �Kx xxx ),

(18)

where Kx 2Rn⇥n is any symmetric positive definite matrix,
the robust feedback term ur is given in Eq. (11), and the
adaptation law for b̂ is given in Eq. (14).

IV. CLOSED-LOOP STABILITY ANALYSIS

This section analyzes the stability of the uncertain hybrid
systems with state-triggered jumps in Eq. (8) under the
proposed continuous ARC. The outcome of the analysis is
a set of sufficient conditions that can be used to guide the
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selection and tuning of control gains for guaranteeing the
closed-loop stability and tracking performance.

The key in the proposed stability analysis is to explicitly
analyze the effects of state-triggered jumps on the system
stability and tracking performance. Such an explicit analysis
is necessary because the jumps cannot be directly controlled
due to their infinitesimally short period of duration. Yet, the
analysis is intricate for two main reasons: a) the occurrence
timing of these state-triggered jumps is an implicit function
of system state and b) uncertainties affect the dynamics of
the state-triggered jumps.

Let the system state be

x :=


z

xxx

�

with kxk :=
p
kzk2 +kxxxk2.

The closed-loop hybrid system under the continuous ARC
can be expressed as:
8
>>>>>>>><

>>>>>>>>:

8
><

>:

Mẋxx +(C+Kx )xxx = h̄(�hs
xxx
kxxxk )+Yb̃bb p � f̃

ż = Azz+Bzxxx
˙̃bbb =�GGGttt

if (t,x�) /2 Sx;

2

64
xxx+

z
+

b̃bb+

3

75=

2

64
0

DDDz

b̃bb�

3

75 if (t,x�) 2 Sx,

(19)
where b̃bb p := b̂bb p �bbb . The expression of DDDz(t,z�,xxx�,bbb ) can
be obtained from Eqs. (6), (??) and (??). The expression
of Sx can be obtained from Eqs. (7) and (??). Note that DDDz

is explicitly time-dependent because the reference trajectory
qd is explicitly time-dependent.
Theorem 1: The proposed continuous-phase control law in
Eq. (18) locally stabilizes the hybrid system in Eq. (19) if
the control gains are chosen such that

(C5) the matrix Az is Hurwitz and
(C6) the continuous-phase convergence rate of x is suffi-

ciently fast.

Proof: Let Vx (xxx ) and Vz(z) be the control Lyapunov function
candidates associated with xxx and z, respectively:

Vx =
1
2

xxx T
Mxxx and Vz = z

T
Pzz. (20)

By the condition (C5), the matrix Az is Hurwitz. Thus, the
matrix Pz 2Rnc⇥nc can be obtained by solving the following
Lyapunov equation [13]:

A
T

z
Pz +PzAz =�Qz, (21)

where Qz 2Rnc⇥nc is any symmetric positive definite matrix.
The total control Lyapunov function is defined as:

Vt(x) =Vx (xxx )+Vz(z). (22)

To derive the stability conditions, we incorporate the
construction of multiple Lyapunov functions into the control
Lyapunov functions. According to the stability theory based
on the construction of multiple Lyapunov functions [25], a
hybrid system is stable if the Lyapunov function decreases

during continuous phases and if the values of the Lyapunov
function right after each switching event form a strictly
decreasing sequence.

Following these criteria, we first derive sufficient stability
conditions for continuous phases. Let Tk (k 2 {1,2, ...}) be
the initial moment of the k

th walking step. Define

k1 := lmin(Pz), k2 := lmax(Pz), and k3 :=
lmin(Qz)

k2
, (23)

with lmin(?) and lmin(?) being the largest and the smallest
eigenvalues of ?, respectively. From (24), it is guaranteed
that for any z(0) 2 Rnc+n

k1kzk2 Vz  k2kzk2 (24)

and
V̇z �k3Vz (25)

during the continuous phase of the k
th walking step (i.e.,

t 2 (Tk,Tk+1]).
From Eqs. (2) and (20), there exists a positive number rx

such that
1
2

kmkxxxk2 Vx  1
2

kMkxxxk2 (26)

holds for all xxx (0) 2 {xxx : kxxxk  rx}.
From the property (P2), we know that Ṁ� 2C is skew

symmetric. Thus,
1
2

xxx T
Ṁxxx = xxx T

Cxxx . (27)

From Eqs. (19), (22), and (27),

V̇x = xxx T
Mẋxx +

1
2

xxx T
Ṁxxx

= xxx T (Mẋxx +Cxxx )

= xxx T (Yb̃bb p � f̃�Kx xxx + h̄(�hs

xxx
kxxxk ))

 kxxxk(kYb̃bb pk+kf̃k)�xxx T
Kx xxx +xxx T

h̄(�hs

xxx
kxxxk )).

(28)

Then, from the condition (C2) and Eqs. (5), (??), and (16),
we have

V̇x �xxx T
Kx xxx + e(t)�lxVx + e(t), (29)

where
lx :=

2lmin(Kx )

kM

. (30)

Therefore, for all x(0)2Brx (0) := {x : kxk rx}, the total
control Lyapunov function Vt satisfies

kt1kxk2 Vt(x) kt2kxk2 (31)

and
V̇t �kt3Vt + e(t) (32)

within the continuous phase of the k
th walking step, where

kt1 := min(k1,
km

2
), kt2 := max(k2,

kM

2
),

and kt3 := min(k3,lx ).
(33)

Second, we analyze the evolution of Vt across the uncon-
trolled state-triggered jumps. Because xxx is reset to zero at
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the beginning of each walking step, Vx is accordingly also
reset to zero. Thus, we focus on analyzing the evolution of
Vz across the jump DDDz.

In the following analysis, ?(T�
k
) and ?(T+

k
) are denoted

as ?|�
k

and ?|+
k

, respectively, for notational simplicity.
The norm of z after an impact at T

�
k+1 can be estimated

as:
kz|+

k+1k=kDDDz(Tk+1,x|�k+1,bbb )k
 kDDDz(Tk+1,x|�k+1,bbb )�DDDz(tk+1,x|�k+1,bbb )k
+kDDDz(tk+1,x|�k+1,bbb )�DDDz(tk+1,0,bbb )k
+kDDDz(tk+1,0,bbb )�DDDz(tk+1,0, b̂bb p)k
+kDDDz(tk+1,0, b̂bb p)k,

(34)

where tk+1 (k 2 {1,2, ...}) is the planned initial moment of
the (k+1)th walking step.

Suppose that the reference trajectories are planned to
respect the estimated reset map, i.e.,

DDDz(tk+1,0, b̂bb p) = 0,

which can be guaranteed through the planning of the refer-
ence trajectory [10].

Note that the reset map DDDz is continuously differentiable
in t, x, and bbb . Thus, there exists a positive number r1 such
that DDDz is Lipschitz continuous in these variables for any
x(0) 2 Br1(0). Accordingly, the approximation of kz|+

k+1k
becomes:
kz|+

k+1k=kDDDz(Tk+1,x|�k+1,bbb )k
 LT |Tk+1 � tk+1|+Lxkx|�

k+1k+Lbkbbb � b̂bb pk,
(35)

where the positive numbers LT , Lx, and Lb are Lipschitz
constants.

From Eq. (17),

kbbb � b̂bb pk= kb̃bb pk  bM. (36)

Since h̄(�hs

xxx
kxxxk ) and Yb̂bb p are continuous in t, x, and b̂bb p ,

there exist positive numbers kT and r2 such that

|Tk+1 � tk+1| kT kx|�
k+1k (37)

for any x(0) 2 Br2(0) [26].
Therefore, from Eqs. (35)-(37),

kz|+
k+1k  (LT kT +Lx)kx|�

k+1k+Lb bM. (38)

Accordingly,

kz|+
k+1k

2  LDxkx|�
k+1k

2 +2L
2
b b 2

M
, (39)

where LDx := 2(LT kT +Lx)2.
Because xxx |+

k+1 = 0, we have Vx |+k+1 = 0. Therefore, from
Eqs. (22), (24), (26), and (39),

Vt |+k+1 
kt2LDx

kt1
Vt |�k+1 +2kt2L

2
b b 2

M
. (40)

From Eq. (32),

Vt |�k+1 
Z

Tk+1

Tk

e
�kt3(Tk+1�n)e(n)dn + e

�kt3(Tk+1�Tk)Vt |+k .
(41)

Therefore,

Vt |+k+1 
kt2LDx

kt1
e
�kt3(Tk+1�Tk)Vt |+k

+
kt2LDx

kt1

Z
Tk+1

Tk

e
�kt3(Tk+1�n)e(n)dn

+2kt2L
2
b b 2

M
.

(42)

Let emax be the bound of e(t). Then,

e(t) emax (43)

holds for all t. Thus,
Z

Tk+1

Tk

e
�kt3(Tk+1�n)e(n)dn  emax

kt3
(1� e

�kt3DTk), (44)

where DTk := Tk+1 �Tk is the duration of the k
th step.

Combining Eqs. (42)-(44) yields

Vt |+k+1  dkVt |+k +bk, (45)

where
dk :=

kt2LDx

kt1
e
�kt3DTk

and
bk := 2kt2L

2
b b 2

M
+

kt2LDxemax

kt1kt3
(1� e

�kt3DTk).

From Eq. (37), we know that DTk is bounded. Hence, there
exist positive numbers DTmin and DTmax such that DTmin 
DTk  DTmax holds for all k 2 {1,2, ...}. Then,

dk  dmax :=
kt2LDx

kt1
e
�kt3DTmin (46)

and

bk  bmax := 2kt2L
2
b b 2

M
+

kt2LDxemax

kt1kt3
(1� e

�kt3DTmax). (47)

By the condition (C6), the continuous-phase convergence
rate kt3 is sufficiently fast and thus can be chosen to satisfy

kt3 >
1

DTmin
ln(

kt2LDx

kt1
). (48)

Then, from Eq. (46), we have

dmax < 1. (49)

Therefore, for any k 2 {1,2, ...}, we have

Vt |+k+1  d k+1
max Vt |+0 +

1�d k+1
max

1�dmax
bmax (50)

for any x(0) 2 Br(0) where r = min(rx ,r1,r2). Accordingly,
when k ! •, i.e., when t ! •, we have

Vt |+• ! bmax

1�dmax
, (51)

which indicates that kxk exponentially converges to a final,
bounded value for the overall hybrid dynamical process.

6



V. SIMULATIONS

This section presents simulation results of 3-D bipedal
robotic walking for validating the effectiveness of the pro-
posed controller design method in guaranteeing stability
and tracking performance under parametric uncertainties and
unmodeled uncertainties.

A. Simulation Setup

As stated in Section III, the control objective are to
stabilize the uncertain hybrid system with state-triggered
jumps in Eq. (8) and to drive the actual joint trajectory q to
the desired one qd(t) with a bounded final tracking error.

To achieve the control objective, it is necessary to properly
tune the controller parameters for stabilizing the closed-loop
system and for achieving a reliable tracking performance.
These controller parameters include: a) the gain of the
linear stabilizing feedback term, Kx ; b) the gain of the
parameter adaptation law, GGG; c) and the parameters of the
robust controller, including the matrices of the dynamic
compensator (i.e., Ac, Bc, Cc, and Dc) and the parameters
of the SMC (i.e., Ks, f , e1, and e2).

The general rules for tuning these controller parameters
include: a) a larger Kx generally increases the rate of
convergence of the tracking error; b) a larger GGG can result in
faster convergence of the estimated parameters to their true
values; c) faster poles of the dynamic compensator (i.e., the
poles of (sIn⇥n +Gc(s))�1) can lead to faster convergence
of the tracking error; d) a smaller f , a lager e1, or a smaller
e2 can all expand the range of states that the ideal SMC (i.e.,
�hs

xxx
kxxxk ) acts on.

The parameters of the controllers are chosen as follows.
The control law is formed as in Section V. The dynamic
compensator is set as: Ac = 09⇥9, Bc = 100I9⇥9, Cc =
I9⇥9, and Dc = 2wI9⇥9 (wc = 10), which render the corner
frequency of the sliding mode as wc = 10. The parameters
of the SMC are chosen as: f = 30, e1 = 1, and e2 = 0.5.
The adaptation gain is chosen as GGG = 40I3⇥3. The linear
stabilizing feedback gains for xxx are chosen as Kx = 40I9⇥9
and Ks = 20I9⇥9. These gains produce an overall feedback
gain for xxx as Kx +Ks = 60I9⇥9.

The following settings are used in the simulations:
(a) the maximum norm of the unmodeled uncertainty is 30,

i.e., h f = 30;
(b) the initial position and velocity tracking errors of each

joint are 0.2 rad (about 11�) and 0.3 rad/s (about 17�/s),
respectively;

(c) the unknown parameters are the robot’s link masses,
i.e., bbb = [m1 m2 mT ]T = [0.4 0.8 4.8]T ;

(d) the lower and the upper bounds of the parameter
estimation are set as bbb min = [�1.1 � 0.4 � 1.2]T kg
and bbb max = [3.4 2.3 16.8] kg, respectively. This setting
allows us to assess the performance of ARC under
relatively large bounds of parameter estimation;

(e) the initial parameter estimation is b̂bb 0 = b̂bb p0 =
[2.7 2.1 10.8]T kg, corresponding to an initial estima-
tion error of b̃bb 0 = b̃bb p0 = [2.3 1.3 6]T kg.

B. Simulation Results

The simulation results are shown in Figs. 3 and 4. The
control performance is analyzed as follows:
Final tracking error and convergence rate: To evaluate

the transient tracking performance and the final tracking
accuracy of the controllers, we assess the rate of the
actual trajectory converges to the desired trajectory as
well as the magnitude of the tracking error close to the
steady state. Thanks to the nonlinear robust feedback
term, the RC and As shown in the figures, the ARC
is able to achieve good final tracking accuracy and
relatively fast transient convergence.

Control effort demanded: Simulations results show that
ARC demands a reasonable level of control effort for
stabilization even under uncertainties, which illustrates
the advantage of enforcing a finite bound to the pa-
rameter estimation, which is missing in the design of
AC.

Control chattering: Due to the use of aggressive nonlinear
robust feedback, i.e., the modified SMC, the ARC
may be subject to certain amount of control chattering,
especially at the initial period of each walking step,
as shown in the figures. During these initial periods,
the idea SMC is activated to reject the tracking error
divergence caused by the uncontrolled state-triggered
jumps upon foot-landing events. However, the chatter-
ing effect is not significant thanks to the incorporation
of parameter estimation.

Parameter estimation boundedness: Simulation results
show that the ARC achieves a small estimation error
without causing an overly large joint torque thanks
to the smooth projection of parameter estimation, as
shown in Fig. 3.

Robustness: To evaluate the robustness of the RC and the
ARC, the nonlinear function f̃ is modified to include
an additional term, 10 · (�1)

t

0.2 . Simulation results are
shown in Fig. 4. As shown in the figures, the tracking
performance is close to the cases where the additional
nonlinear function term is absent (i.e., Fig. 3), which
validates the robustness of the ARC in rejecting un-
modeled uncertainties.

VI. CONCLUSIONS

An adaptive robust control law has been proposed to
achieve accurate joint position tracking in the presence of
unknown modeling errors and disturbances. The control
law was proposed based on the full-order nonlinear, hybrid
dynamcis of bipedal robotic walking with full actuation.
Simulated walking experiments showed that the proposed
ARC can effectively guarantee the tracking performance
under model parametric errors and unmodeled uncertainties.
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