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Exponential Stabilization of Fully
Actuated Planar Bipedal Robotic
Walking With Global Position
Tracking Capabilities
This paper focuses on the development of a model-based feedback controller to realize
high versatility of fully actuated planar bipedal robotic walking. To conveniently define
both symmetric and asymmetric walking patterns, we propose to use the left and the right
legs for gait characterization. In addition to walking pattern tracking error, a biped’s
position tracking error in Cartesian space is included in the output function in order to
enable high-level task planning and control such as multi-agent coordination. A feedback
controller based on input–output linearization and proportional–derivative control is
then synthesized to realize exponential tracking of the desired walking pattern as well as
the desired global position trajectory. Sufficient stability conditions of the hybrid time-
varying closed-loop system are developed based on the construction of multiple Lyapu-
nov functions. In motion planning, a new method of walking pattern design is introduced,
which decouples the planning of global motion and walking pattern. Finally, simulation
results on a fully actuated planar biped show the effectiveness of the proposed walking
strategy. [DOI: 10.1115/1.4038268]

1 Introduction

There are a variety of approaches to realize bipedal robotic
walking. One of the most frequently used methods is based on the
zero moment point (ZMP) balance criterion [1,2]. Enforcing the
ZMP criterion turns a biped into a fixed-based robot manipulator
as it requires flat-footed walking, which results in limited walking
speed.

The concept of viability has been introduced to walking control
[3,4], and capturability has been proposed as a computationally
feasible approximation of viability [5–8]. Because capturability is
defined based on the viability of walking instead of the state of
balance, the associated walking strategies may be less conserva-
tive than the ZMP-based approach.

Another approach to realizing bipedal robotic walking is based
on nonlinear control theories and the concept of hybrid zero
dynamics (HZD) [9–13]. With the HZD framework, the walking
stabilization problem becomes a stabilization problem of the
closed-loop control system. Orbitally, asymptotic stabilization of
an underactuated walking biped with hybrid dynamics was first
achieved based on feedback control under the assumption of finite
time convergence during the continuous walking phase [9]. Later
on, finite time stabilization was relaxed to sufficiently fast expo-
nential stabilization, and the concepts of virtual constraints and
HZD were introduced [12–14]. Because the HZD framework only
specifies a general structure of walking dynamics, it can be
applied to a variety of biped models. In addition to provable
closed-loop stability of the control system, another advantage of
the HZD-based approach is the achievable high walking speed.
Furthermore, the walking strategy based on HZD has been
extended to rough terrain walking [15], three-dimensional walking
[16], and neutrally stable walking [17]. Besides the HZD frame-
work, orbital stabilization of underactuated walking has also been
realized based on transverse linearization [18–20].

For fully actuated walking, the HZD framework has been
extended to achieve exponential tracking of the desired walking

pattern as well as the desired walking speed [11,21,22]. However,
because orbital stabilization cannot control a biped’s global posi-
tion trajectory in Cartesian space, only velocity tracking has been
addressed. Therefore, satisfactory position tracking in Cartesian
space is not guaranteed, and the walking versatility is limited.
Controlling a biped’s global position trajectory is desirable
because it enables high-level task planning and control such as
multi-agent coordination and obstacle avoidance.

Also, previous studies on orbital stabilization typically utilize
the traditional support-swing gait characterization that describes a
bipedal gait using the support and the swing legs. This gait charac-
terization can be used to conveniently define symmetric gaits but
not asymmetric gaits. Therefore, planning and control of asym-
metric bipedal robotic gaits have not been fully investigated in
previous studies. However, asymmetric gait tracking is potentially
meaningful for related research areas such as motion planning and
control of prosthetic devices and exoskeletons because asymmet-
ric gaits are common in injured human walking.

In this study, exponential stabilization of fully actuated planar
bipedal walking is realized with enhanced versatility as compared
with the previous studies on orbital stabilization. The left–right
gait characterization is utilized to describe a bipedal gait so as to
conveniently define both symmetric and asymmetric gaits.
Although this type of gait characterization has been previously
adopted [23], planning and control of asymmetric walking have
not been fully studied. Another benefit of the left–right gait char-
acterization is that the states representing joint positions become
continuous and well defined upon a swing-foot landing. In control
design, input–output linearization is utilized to synthesize a con-
troller to achieve exponential tracking of the desired global
motion and walking pattern, and the closed-loop stability condi-
tions are derived based on the construction of multiple Lyapunov
functions [24]. In motion planning, a new method of walking pat-
tern design is presented, which not only guarantees that the
planned motion respects the impact events but also enables
decoupled planning of the desired global position trajectory and
the desired walking pattern. The proposed walking strategy is
validated through simulated walking of a planar biped model with
three revolute joints. Simulation results show that the proposed
control design can achieve exponential tracking of the desired
global position trajectory in Cartesian space as well as the desired
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walking pattern in the configuration space. A comparison with
previous studies on orbital stabilization is also presented to vali-
date the improved versatility.

In Sec. 2, the left–right gait characterization and the full-order
hybrid walking dynamics are presented along with the tracking
error of the desired position trajectory in Cartesian space and the
desired walking pattern. A model-based feedback control law
based on input–output linearization is presented in Sec. 3. In Sec.
4, the closed-loop stability is analyzed based on the construction
of multiple Lyapunov functions. A new method of walking pattern
design is proposed in Sec. 5, which enables decoupled planning of
global motion and walking pattern. In Sec. 6, improved versatility
of the proposed walking strategy as compared with previous stud-
ies is illustrated through simulations, and the effects of control
gains on the closed-loop stability are analyzed.

Preliminary results of control design and stability analysis pre-
sented in this paper were initially reported in Ref. [25]. The pres-
ent paper includes important results of motion planning and fully
developed theorems on stability analysis, which were omitted
from Ref. [25]. Also, a comparison with previous work on versa-
tility is presented through simulations.

2 Problem Formulation

The objective of this study is to achieve exponentially stable
walking with high versatility so that a fully actuated planar
bipedal robot can exponentially track the desired walking pattern,
both symmetric and asymmetric, as well as the desired global
position trajectory in Cartesian space. In order to reach this goal, a
bipedal gait is characterized by the left and the right legs instead
of the traditional characterization by the support and the swing
legs, the full-order hybrid walking dynamics are modeled under
the left-right gait characterization, and the expressions of the
walking pattern tracking error and the global position tracking
error are derived.

2.1 Gait Characterization. The traditional gait characteriza-
tion describes a bipedal gait using the support and the swing legs
[9,20,21]. Under the support-swing gait characterization, the
states that represent positions and velocities of the support and the
swing legs are always discontinuous at the end of a step because
of the role switching of the support and the swing legs. Here, we
utilize the left–right gait characterization to describe a bipedal
gait. There are two main advantages of using the left and the right
legs for gait characterization. First, the states that represent joint
positions will be continuous and well defined upon an impact
[23,26,27]. Although the states that represent joint velocities may
still experience sudden jumps due to landing impacts, the defini-
tion of these states is at least consistent. Second, the left–right gait

characterization enables planning and control of asymmetric gaits,
which will be detailed in Secs. 3 and 5.

With the left–right gait characterization, the full-order walking
dynamics are presented in Secs. 2.2–2.4.

2.2 Hybrid Walking Dynamics With Impulse Effects. In
this study, a fully actuated planar biped with three revolute joints,
identical legs, and massless thin feet is considered (see Fig. 1).
There are two actuators at the hip and one at each ankle, and three
of them are active at any moment except for the one at the swing
ankle. Assume that the swing foot always lands flat and remains
in static, full contact with the walking surface until the next land-
ing occurs. Under this assumption, the biped is considered fully
actuated during continuous phases because it has three degrees-of-
freedom during continuous phases and three independent active
actuators. Also, assume that the landing impact is a rigid-body
contact with an impulse effect and that the double-support phase
is instantaneous [9]. Without loss of generality, suppose that the
swing leg length is adjustable. Otherwise, when the swing leg
passes the support leg, the planar biped with a compass gait can
only avoid scuffing the walking surface exactly at the vertical con-
figuration of both legs [9].

Let Q � R3 be the configuration space of the biped when its
support foot is in static, full contact with the walking surface and
the joint position limits are satisfied. As shown in Fig. 1, let q
denote the joint position vector of the bipedal robot

q ¼ ½ q1; q2; q3 �T 2 Q (1)

where q1, q2, and q3 represent the joint angles of the left leg, the
right leg, and the trunk with respect to the world coordinate frame
OwXwZw, respectively.

Let u denote the joint torque vector

u ¼ ½ u1; u2; u3; u4 �T 2 R4 (2)

where u1, u2, u3, and u4 are defined as in Fig. 1.
Based on the left–right gait characterization introduced in Sec.

2.1, a complete walking cycle (or, a stride) consists of two succes-
sive steps, which include two single-support phases (SSP) and two
swing-foot landings. The two SSPs are the left-in-support SSP and
the right-in-support SSP. The two swing-foot landings are the left-
to-right-support landing and the right-to-left-support landing. Sys-
tem dynamics during the two SSPs are continuous time, but the
swing-foot landings are modeled as impulse effects.

When the swing foot hits the walking surface, a landing impact
occurs. This switching event can be defined by a switching surface
Siðq; _qÞ (i � {L, R}) as

Fig. 1 A bipedal robot walking in the Xw-Zw plane: (a) left leg in support and (b) right leg
in support
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left-to-right-support :

SL q; _qð Þ :¼ q; _qð Þ 2 TQ : hL qð Þ ¼ 0;
dhL

dq
_q < 0

� �
right-to-left-support :

SR q; _qð Þ :¼ q; _qð Þ 2 TQ : hR qð Þ ¼ 0;
dhR

dq
_q < 0

� �

8>>>>>><
>>>>>>:

(3)

where the subscript i � {L, R} indicates whether the left (L) or
the right (R) leg is in support, hLðqÞ :¼ l cos ðq1Þ � l cos ðq2Þ is
the swing foot height when the left leg is in support, and hRðqÞ :¼
l cos ðq2Þ � l cos ðq1Þ is the swing foot height when the right leg is
in support (l is the leg length).

Under the assumption that the support foot is in static, full con-
tact with the walking surface, that a double-support phase is
instantaneous, and that the landing impact is a rigid-body contact
with an infinitesimally small period, the hybrid walking dynamics
can be compactly expressed as

RL :
MLðqÞ€q þ hLðq; _qÞ ¼ BLuL; ifðq�; _q�Þ 62 SLðq; _qÞ

½qþ; _qþ� ¼ DLðq�; _q�Þ; ifðq�; _q�Þ 2 SLðq; _qÞ

8<
:

RR :
MRðqÞ€q þ hRðq; _qÞ ¼ BRuR; ifðq�; _q�Þ 62 SRðq; _qÞ

½qþ; _qþ� ¼ DRðq�; _q�Þ; ifðq�; _q�Þ 2 SRðq; _qÞ

8<
:

8>>>>>>>><
>>>>>>>>:

(4)

where Mi : Q! R3�3 is the inertia matrix, hi : TQ! R3 is the
sum of the Coriolis, centrifugal, and gravitational terms, Bi 2
R3�3 is a nonsingular input matrix, ui 2 R3 is the torque vector
of the active joints, and the reset map Di : TQ! R6 represents
landing impact dynamics. The expression of Diðq; _qÞ can be
obtained as

Diðq; _qÞ :¼ q

IiðqÞ _q

� �
; i 2 fL;Rg (5)

where the derivation of Ii : Q! R3�3 is given in Ref. [28]. Equa-
tion (5) indicates that the states representing joint velocities may
experience a sudden jump at the switching event, but the states
representing joint positions are always continuous because of the
left–right gait characterization.

2.3 Tracking Error of the Desired Global Position Trajectory.
To accomplish complex tasks such as multi-agent coordination
and obstacle avoidance, it is necessary for a biped to follow the
desired travel path with the desired motion in Cartesian space,
which can be formulated as a contouring control problem in gen-
eral. By constructing an orthogonal global task coordinate frame
along the desired travel path, the contour error and the motion
along the desired travel path can be separately represented in two
sets of coordinates, based on which contour error minimization
and desired motion following along the contour can be decoupled
into a stabilization problem and a trajectory tracking problem
[29]. In this study, we want to solve this contouring control prob-
lem for the fully actuated planar biped model in Fig. 1, which
reduces to the problem of position trajectory tracking along the
Xw-axis because the Xw-axis is the only feasible travel path for the
planar biped. The complete problem of contouring control will be
considered in our future work on three-dimensional walking of
fully actuated bipedal robots.

Suppose that the walking direction aligns with the positive
direction of the Xw-axis of the world coordinate frame (see
Fig. 1). Let (xl, zl) and (xr, zr) be the left foot and the right foot
positions in the world coordinate frame, respectively. Let the
biped’s hip position s along the Xw-axis represent its global posi-
tion in Cartesian space. With reference to Fig. 1, s can be
expressed as

s ¼ xl þ l sin ðq1Þ ðleft-in-supportÞ
xr þ l sin ðq2Þ ðright-in-supportÞ

�
(6)

Let sd(t) denote the desired trajectory of s along the Xw-axis.
Then, the tracking error of the desired global position trajectory
sd(t) can be expressed as s� sd(t).

Let

qst :¼
q1 ðleft-in-supportÞ
q2 ðright-in-supportÞ

�

be the support-leg angle. Under the assumption that the support
foot position is known, the desired position trajectory of the sup-
port leg can be obtained from sd(t) as

qstd tð Þ :¼
q1d tð Þ :¼ sin�1 sd tð Þ � xl

l

� �
left-in-supportð Þ

q2d tð Þ :¼ sin�1 sd tð Þ � xr

l

� �
right-in-supportð Þ

8>>>><
>>>>:

(7)

Then, the tracking error of qst� qstd(t) can be used to indicate the
global position tracking error s� sd(t). If a control law is synthe-
sized such that qst� qstd(t) is driven to zero exponentially, then
the exponential tracking of the desired global position trajectory
sd(t) is realized.

2.4 Tracking Error of the Desired Walking Pattern. A
walking pattern is defined as the relative evolution of a biped’s
joint positions with respect to a reference (or, encoding) variable
in a complete walking cycle [9]. Tracking a preplanned walking
pattern is desirable partly because the joint motion can be
synchronized with respect to the reference variable. Furthermore,
a proper walking pattern design can be utilized to construct the
hybrid invariance of the desired motion, which will be detailed in
Sec. 5.

Let

�s ¼
s� xl ðleft-in-supportÞ
s� xr ðright-in-supportÞ

(
(8)

be the relative position of the hip with respect to the support foot
along the Xw-axis. Note that �sðtÞ increases monotonically in t dur-
ing forward walking.

With �s chosen as the reference variable, the desired walking
pattern is introduced as

gið�s; qsw; q3Þ ¼ 0; i 2 fL;Rg

where qsw :¼ q2 ðleft-in-supportÞ
q1 ðright-in-supportÞ

�
represents the swing leg

position and gið�s; qsw; q3Þ is defined as

left-in-support : gLð�s; qsw; q3Þ :¼
q2 � /1Lð�sÞ
q3 � /2Lð�sÞ

" #

right-in-support : gRð�s; qsw; q3Þ :¼
q1 � /1Rð�sÞ
q3 � /2Rð�sÞ

" #

8>>>>>><
>>>>>>:

(9)

where the functions /jið�sÞ ði 2 fL;Rg; j 2 f1; 2gÞ will be deter-
mined with a new method of walking pattern design in Sec. 5.

Hence, the tracking error of the desired walking pattern is sim-
ply gið�s; qsw; q3Þ. If gið�s; qsw; q3Þ is exponentially driven to zero
with a controller design, then exponential tracking of the desired
walking pattern is realized.
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Now, we will use an example to illustrate why the left–right
gait characterization can be utilized to conveniently define an
asymmetric gait. From Eqs. (6) and (8), one has

�s ¼ l sin ðqstÞ (10)

From Eq. (10), a function of qst is introduced to represent /jið�sÞ as

~/jiðqstÞ :¼ /jið�sÞ ¼ /jiðl sin ðqstÞÞ (11)

for i � {L, R} and j � {1, 2}. Thus, under the left–right gait char-
acterization, the desired walking pattern of the swing-leg angle
qsw with respect to the support-leg angle qst can be expressed as

left-in-support : q2 � ~/1Lðq1Þ ¼ 0

right-in-support : q1 � ~/1Rðq2Þ ¼ 0

8<
: (12)

Such a walking pattern is illustrated in Fig. 2. From the solid lines
in Fig. 2, one can see that an asymmetric gait can be conveniently
defined by differentiating the left and the right legs because
~/1LðqstÞ and ~/1RðqstÞ can be chosen independently. However, as
shown by the dashed line in Fig. 2, the traditional walking charac-
terization based on the support and the swing legs can at most

represent a symmetric walking pattern where ~/1LðqstÞ ¼ ~/1RðqstÞ
¼ ~/1ðqstÞ.

3 Feedback Control Based on Input–Output

Linearization

The control objective of this study is to realize exponential
tracking of the desired walking pattern in the configuration space
as well as the desired position trajectory in Cartesian space. As
the first step of our ongoing research, it is assumed that there are
no modeling errors or disturbances, and input–output linearization
is utilized to synthesize the needed controller to achieve the con-
trol objectives. Specifically, the swing leg and the trunk are driven
to exponentially converge to the desired walking pattern encoded
by the support leg angle, and the support leg is driven to realize
exponential tracking of the desired motion in Cartesian space.

With this goal in mind and from Eqs. (7), (9), and (11), the out-
put function is designed as the tracking error of the desired global
position in Cartesian space and the desired walking pattern

left-in-support : yL :¼ q� qLdðt; q1Þ
right-in-support : yR :¼ q� qRdðt; q2Þ

(
(13)

where

qLdðt; q1Þ :¼
q1dðtÞ

~/1Lðq1Þ
~/2Lðq1Þ

2
664

3
775 and qRdðt; q2Þ :¼

~/1Rðq2Þ
q2dðtÞ

~/2Rðq2Þ

2
664

3
775

Note that the output function yi (i � {L, R}) can be designed as
three-dimensional because the biped has three independent active
actuators. By exponentially driving the output function yi (i � {L,
R}) to zero, exponential tracking of the desired global motion
sd(t) and the desired walking pattern gið�s; qsw; q3Þ ¼ 0 (i � {L,
R}) can be realized simultaneously.

From Eq. (13), one obtains

€yi ¼ PiðqstÞ€q � ziðt; qst; _qstÞ; i 2 fL;Rg (14)

during continuous phases, where

PL :¼

1 0 0

� d~/1L

dq1

1 0

� d~/2L

dq1

0 1

2
6666664

3
7777775
; zL :¼

€q1d tð Þ

d2 ~/1L

dq2
1

_q2
1

d2 ~/2L

dq2
1

_q2
1

2
66666664

3
77777775

PR :¼

1 � d~/1R

dq2

0

0 1 0

0 � d~/2R

dq2

1

2
666664

3
777775; zR :¼

d2 ~/1R

dq2
2

_q2
2

€q2d tð Þ

d2 ~/2R

dq2
2

_q2
2

2
66666664

3
77777775

(15)

From Eq. (15), it can be known that Pi(qst) is always invertible.
From Eqs. (4) and (14), one has

€yi ¼ NiðqÞui � Liðt; q; _qÞ; i 2 fL;Rg (16)

where Ni ¼ PiM
�1
i Bi is proved to be invertible and

Li ¼ PiM
�1
i hi þ zi.

Therefore, the feedback control law based on input–output lin-
earization is defined as

ui ¼ N�1
i ðvi þ LiÞ (17)

which results in a linear system

€yi ¼ vi; i 2 fL;Rg (18)

If vi is chosen as a proportional–derivative (PD) controller

vi ¼ �KPiyi �KDi _yi; i 2 fL;Rg (19)

where KPi 2 R3�3 and KDi 2 R3�3 are both nonsingular diagonal
matrices, one then obtains a linear system

_x ¼ Aix; i 2 fL;Rg (20)

with

x :¼ ½ x1; x2; x3; x4; x5; x6 �T :¼ yi

_yi

� �
2 v (21)

and

Ai :¼ 03�3 I3�3

�KPi �KDi

� �
2 R6�6 (22)Fig. 2 Encoding the swing-leg pattern using the support-leg

angle qst and the swing-leg angle qsw
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where v is the full state space, 03�3 2 R3�3 is a zero matrix, and
I3�3 2 R3�3 is an identity matrix.

If KPi and KDi are chosen such that Ai is Hurwitz, then there
exists a real positive-definite-symmetric matrix Wi such that
ViðxÞ ¼ xTWix is a Lyapunov function candidate for the
continuous-phase dynamics in Eq. (20) and there exist positive
constants c1i, c2i, and c3i (i � {L, R}) such that Vi(x) satisfies

c1ikxk2 � ViðxÞ � c2ikxk2
and _ViðxÞ � �c3iViðxÞ (23)

for all x during continuous phases [30].

4 Stability Analysis

Based on previous analysis, the closed-loop walking dynamics
can be compactly written as

RL :
_x ¼ ALx; if ðt�; x�Þ 62 SL!Rðt; xÞ
xþ ¼ DL!Rðt�; x�Þ; if ðt�; x�Þ 2 SL!Rðt; xÞ

(

RR :
_x ¼ ARx; if ðt�; x�Þ 62 SR!Lðt; xÞ
xþ ¼ DR!Lðt�; x�Þ; if ðt�; x�Þ 2 SR!Lðt; xÞ

(
8>>>>><
>>>>>:

(24)

where the expressions of DL!R and DR!L can be derived from Di

and yi and the expressions of the switching surfaces SL!R(t, x)
and SR!L(t, x) can be obtained from Si and yi.

Without loss of generality, suppose that the walking process
begins with the left leg in support and the right leg in the air at
t¼ t0. Without loss of generality, suppose t0¼ 0. Let TLk

and
TRk

; k 2 f1; 2;…g represent the actual moments of the kth left-to-
right-support and the kth right-to-left-support impacts, respec-
tively. Without loss of generality, assume TR0

¼ t0. Let sLk

and sRk
; k 2 f1; 2;…g denote the desired moments of the kth

left-to-right-support impact assuming xðtÞ ¼ 08t > TRk�1
and the

kth right-to-left-support impact assuming xðtÞ ¼ 08t > TLk
,

respectively.
Properties of TLk

and TRk
are summarized in Theorem 1, which

is introduced based on Lemma 2 in Ref. [31].
THEOREM 1. Consider the fully actuated walking system in

Eq. (24). Let the following conditions hold:

(A1) There is no beating effect at impacts.
(A2) The desired global position trajectory sd(t) is continuously

differentiable and monotonically increasing for t> 0.
(A3) The function ~/jiðqstÞ ði 2 fL;Rg; j 2 f1; 2gÞ in Eq. (11) is

continuously differentiable in qst.

Then, there exists a small neighborhood U of the point
ðsik ; 0Þ; i 2 fL;Rg; k 2 f1; 2;…g such that Tik ðsik ;pik ðsik

ÞÞ is a
unique continuously differentiable function in U, where pLk

ðtÞ is
the solution of _x ¼ ALx with initial condition pLk

ðTþRk�1
Þ ¼

xðTþRk�1
Þ for t 2 ðTRk�1

;þ1Þ and pRk
ðtÞ is the solution of _x ¼ ARx

with initial condition pRk
ðTþLk
Þ ¼ xðTþLk

Þ for t 2 ðTLk
;þ1Þ. Also,

Tik has the following properties:

(P1) TLk
ðsLk

; 0Þ ¼ sLk
; TRk
ðsRk

; 0Þ ¼ sRk
; and

(P2) there exists a positive number Ls such that jTik ðs;wÞ
�Tik ðs;uÞj � Lskw� uk; 8ðs;wÞ; ðs;uÞ 2 U.

Proof. By the definitions of Tik
and sik ði 2 fL;Rg;

k 2 f1; 2;…gÞ, the property (P1) holds. From the conditions
(A1)–(A3) and Eqs. (3), (13), and (24), it can be known that the
functions that define the continuous dynamics, the reset maps, and
the switching surfaces are all continuously differentiable in t
and x. Then, by the implicit function theorem, the property (P2)
holds. �

We are now ready to present the main theorem.
THEOREM 2. Let the conditions (A1)–(A3) hold. Assume that

DL!Rðs�Lk
; 0Þ ¼ 0 and DR!Lðs�Rk

; 0Þ ¼ 0 hold for any k � {1,
2,…}. Then, there exist positive-definite diagonal matrices KPi

and KDi (i � {L, R}) and a positive number d such that the hybrid
time-varying closed-loop system in Eq. (24) is locally exponen-
tially stable for all xð0Þ 2 Bdð0Þ :¼ fx 2 v : kxk < dg.

Proof. Without loss of generality, suppose that the walking pro-
cess begins with the left-in-support continuous phase.

Let VL(x) and VR(x) be the Lyapunov functions associated with
the left-in-support and the right-in-support phases, respectively.
When the walking process begins with the left-in-support continu-
ous phase, the Kth step (K �{1, 3, 5…}) is a left-in-support phase
and the Kth switching is a left-to-right-support switching. Let
VRjþK and VLjþKþ1 (K � {1, 3, 5,…}) denote the values of Lyapu-
nov functions right after the Kth and the (Kþ 1)th switchings,
respectively. By stability analysis via multiple Lyapunov func-
tions [24], the overall system is exponentially stable if VL(x) and
VR(x) are exponentially decreasing in the left-in-support and the
right-in-support phases, respectively, and if fVRjþ1 ;VRjþ3 ;VRjþ5 …g
and fVLjþ2 ;VLjþ4 ;VLjþ6 …g are both strictly decreasing sequences.

As explained in Sec. 3, if KPi and KDi (i � {L, R}) are chosen
such that Ai is Hurwitz, then the continuous-phase subsystems are
exponentially stabilized. Therefore, the remaining task is to derive
stability conditions to guarantee that the sequences
fVRjþ1 ;VRjþ3 ;VRjþ5 …g and fVLjþ2 ;VLjþ4 ;VLjþ6 …g are both strictly
decreasing. This requirement can be rewritten as

VRjþKþ2 < VRjþK and VLjþKþ3 < VLjþKþ1 (25)

where K is defined as

K 2 f1; 3; 5;…g

for the rest of this proof.
First, we prove that there exist positive-definite diagonal matri-

ces KPi and KDi (i � {L, R}) and a positive number dR such that
VRjþKþ2 < VRjþK for any xð0Þ 2 BdR

ð0Þ.
From Eq. (23), one has

VRðxÞ � e�c3Rðt�TKÞVRjþK (26)

during the continuous-phase right after the Kth impact and

VLðxÞ � e�c3Lðt�TKþ1ÞVLjþKþ1 (27)

during the continuous-phase right after the (Kþ 1)th impact.
Because of the assumption DR!Lðs�Kþ1; 0Þ ¼ 0, one has

kxjþKþ1k ¼ kDR!LðT�Kþ1; xj
�
Kþ1Þk

� kDR!LðT�Kþ1; xj
�
Kþ1Þ � DR!Lðs�Kþ1; xj

�
Kþ1Þk

þkDR!Lðs�Kþ1; xj
�
Kþ1Þ � DR!Lðs�Kþ1; 0Þk (28)

where TKþ1 is the moment of the actual (Kþ 1)th impact, xj�Kþ1

and xjþKþ1 represent the values of x right before and after the
(Kþ 1)th impact, respectively, and sKþ1 is the moment of the
desired (Kþ 1)th impact assuming x(t)¼8t> TK.

Because the reset map DR!Lðt; xÞ is continuously differentiable
in t and x, it is locally Lipschitz continuous in t and x. Hence,
there exists r�R > 0 such that for any xð0Þ 2 Br�R

ð0Þ, one has

kDR!Lðs�Kþ1; xj
�
Kþ1Þ � DR!Lðs�Kþ1; 0Þk � LDRx

kxj�Kþ1k (29)

and

kDR!LðT�Kþ1; xj
�
Kþ1Þ � DR!Lðs�Kþ1; xj

�
Kþ1Þk � LDRt

jTKþ1 � sKþ1j
(30)

for some Lipschitz constants LDRx
and LDRt

.
Define

~xRðtÞ :¼ eARðt�TKÞxjþK ; 8t > TK (31)
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By Theorem 1, there exist h�R > 0 and Ls> 0 such that

jTKþ1 � sKþ1j ¼ jTKþ1ðsKþ1; ~xðsKþ1ÞÞ � TKþ1ðsKþ1; 0Þj
� Lsk~xRðsKþ1Þk (32)

for any xð0Þ 2 Bh�R
ð0Þ.

From Eqs. (28)–(30), and (32), one has

kxjþKþ1k
2 � LDR

ðkxj�Kþ1k
2 þ k~xRðsKþ1Þk2Þ (33)

where LDR
:¼ maxð2L2

DRx
; 2L2

DRt
L2

sÞ.
Similarly

kxjþKþ2k
2 � LDL

ðkxj�Kþ2k
2k~xLðsKþ2Þk2Þ (34)

where LDL
is a constant that can be obtained similarly to LDR

, and
~xLðtÞ is defined as

~xLðtÞ :¼ eALðt�TKþ1ÞxjþKþ1; 8t > TKþ1 (35)

According to Eq. (23), the following inequalities hold:

VRj�Kþ1 � c1Rkxj�Kþ1k
2; VRð~xRðsKþ1ÞÞ � c1Rk~xRðsKþ1Þk2

VLj�Kþ2 � c1Lkxj�Kþ2k
2; VLð~xLðsKþ2ÞÞ � c1Lk~xLðsKþ2Þk2

VLjþKþ1 � c2LkxjþKþ1k
2; VRjþKþ2 � c2RkxjþKþ2k

2

(36)

Furthermore, from Eqs. (26), (27), (31), and (35)

VRð~xRðskþ1ÞÞ � e�c3Rðskþ1�TKÞVRjþK (37)

and

VLð~xLðskþ2ÞÞ � e�c3Lðskþ2�TKþ1ÞVLjþKþ1 (38)

hold.
Combining Eqs. (32), (34), and (36)–(38), one obtains

VRjþKþ2 �
c2Lc2R

c1Rc1L
LDL

LDR
e� c3LDsKþ1þc3RDsKð Þ

� 1þ e�c3L TKþ2�sKþ2ð Þð Þ 1þ e�c3R TKþ1�sKþ1ð Þð ÞVRjþK (39)

where DsK :¼ sKþ1 � TK and DsKþ1 :¼ sKþ2 � TKþ1. Note that
DsK is the desired duration of the (Kþ 1)th step, which is known
right after the Kth actual impact occurs.

From Eqs. (23) and (31),

k~xR skþ1ð Þk �
ffiffiffiffiffiffiffi
c2R

c1R

r
e
� c3R

2c2R
DskkxjþKk (40)

holds, and thus from Eqs. (32) and (40), one has

jTKþ1 � sKþ1j � Ls

ffiffiffiffiffiffiffi
c2R

c1R

r
e
� c3R

2c2R
DsKkxjþKk (41)

Similarly

jTKþ2 � sKþ2j � Ls

ffiffiffiffiffiffi
c2L

c1L

r
e
� c3L

2c2L
DsKþ1kxjþKþ1k (42)

Hence, for any e> 0, there exist sufficiently large c3L and c3R and
a positive number l* such that

e�c3LðTKþ2�sKþ2Þ � 1þ e and e�c3RðTKþ1�sKþ1Þ � 1þ e (43)

hold for all xð0Þ 2 Bl� ð0Þ.

Then, it can be obtained from Eqs. (39) and (43) that

VRjþKþ2 �
c2Lc2R

c1Lc1R
LDL

LDR
1þ eð Þ2e� c3LDsKþ1þc3RDsKð ÞVRjþK (44)

holds for any xð0Þ 2 BdR
ð0Þ where dR :¼ minðr�R; h�R; l�Þ.

Similarly

VLjþKþ3 �
c2Lc2R

c1Lc1R
LDL

LDR
1þ eð Þ2e� c3LDsKþ3þc3RDsKþ2ð ÞVLjþKþ1 (45)

holds for any xð0Þ 2 BdL
ð0Þ where dL can be obtained similarly to

the above analysis.
Note that c3i (i � {L, R}) is determined by KPi and KDi. Hence,

if the PD gains are sufficiently large such that Ai is Hurwitz and
that there exists a positive number d ¼ minðdL; dRÞ such that

c3LDsKþ1 þ c3RDsK > 2 ln
c2Lc2R

c1Lc1R
LDL

LDR
1þ eð Þ

� �
(46)

and

c3LDsKþ3 þ c3RDsKþ2 > 2 ln
c2Lc2R

c1Lc1R
LDL

LDR
1þ eð Þ

� �
(47)

hold for any xð0Þ 2 Bdð0Þ and any K � {1, 3, 5,…}, then
VRjþKþ2 < VRjþK and VLjþKþ3 < VLjþKþ1 hold for any xð0Þ 2 Bdð0Þ
and any K � {1, 3, 5,…}; i.e., the closed-loop system in Eq. (24)
is locally exponentially stable. �

The stability conditions in Eqs. (46) and (47) indicate that the
output function should converge to zero sufficiently fast so as to
diminish the possible divergence caused by reset maps. In previ-
ous studies, rapidly exponential convergence of output function
has been proposed to deal with the possible expansiveness of a
landing impact [21], which can also be applied here to further
increase the convergence rate.

In Sec. 5, it will be shown that the assumption of
DL!Rðs�K ; 0Þ ¼ 0 and DR!Lðs�Kþ1; 0Þ ¼ 0 in Theorem 2 will
always hold for any K � {1, 3, 5,…} if the desired walking pat-
tern is designed properly.

5 Desired Walking Pattern Design

The desired walking motion qid(t, qst) (i � {L, R}) in Eq. (13)
is completely defined by the desired global position trajectory and
the desired walking pattern. Suppose that the desired global posi-
tion trajectory sd(t) is determined by the high-level task planner,
which is continuously differentiable and monotonically increasing
for t> 0. Then, the remaining task of motion planning is walking
pattern design, which should guarantee that the desired motion
qid(t, qst) will satisfy the following conditions:

(C1) DL!Rðs�K ;0Þ¼ 0 and DR!Lðs�Kþ1;0Þ¼ 0; 8K 2f1;3;5;…g
(C2) forward walking direction;
(C3) ground-contact constraints including the friction cone and

the unilateral constraint;
(C4) joint position and velocity limits; and
(C5) joint torque limits.

Since the last four conditions (C2)–(C5), can be easily met
through trajectory optimization, they are not further discussed in
this paper. The first condition (C1) essentially states that the
desired gait should respect the reset map; i.e., if xðs�K Þ ¼ 0, then
xðsþK Þ ¼ 0 should always hold. As presented in Sec. 4, the first
condition (C1) is important because it can greatly simplify the sta-
bility analysis of the hybrid time-varying closed-loop control sys-
tem. However, the satisfaction of (C1) is not straightforward as it
involves both the desired global position trajectory and the desired
walking pattern.

In this section, a new method of walking pattern design is pro-
posed, which guarantees that (C1) is always satisfied for any
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feasible sd(t) that is continuously differentiable and monotonically
increasing for t> 0. This is advantageous because the high-level
planning of the desired global position trajectory sd(t) and the
low-level planning of the desired walking pattern represented by
~/jiðqstÞ are decoupled for the satisfaction of (C1).

5.1 Hybrid Invariance of Desired Motion. The condition
(C1) can be decomposed into two parts. One part requires that the
desired walking pattern should respect the reset map, which can
be satisfied based on the same method of walking pattern design
for constructing HZD [13]. The other part is tricky to meet, which
requires that the desired position trajectory of the support leg
should respect the reset map. As indicated in Eq. (7), the desired
support-leg trajectory is updated at the beginning of each actual
step, and thus it depends on when and where the last actual swing-
foot touchdown occurs.

When the walking process begins with the left-in-support con-
tinuous phase, the Kth step (K � {1, 3, 5…}) is a left-in-support
step starting at t ¼ TþK�1, and the Kth desired switching is a left-
to-right-support switching at t ¼ s�K . Suppose that the desired
walking pattern gLðl sin ðq1Þ; q2; q3Þ ¼ 0 has at least one intersec-
tion with the switching surface SLðq; _qÞ. Also, suppose that one of
these intersections has left leg position at q�1. In the following, we
will develop the conditions on q�1 and the desired walking pattern
giðl sin ðq1Þ; q2; q3Þ ¼ 0 (i � {L, R}) such that DL!Rðs�K ; 0Þ ¼ 0 in
condition (C1) is satisfied for any K � {1, 3, 5,…}.

From Eq. (7), the desired support-leg trajectory q1d(t) will
increase monotonically within the Kth step if sd(t) is planned as
feasible and monotonically increasing. Then, the Kth desired land-
ing moment t ¼ s�K , if exists, can be uniquely determined from the
equation q1dðs�K Þ ¼ q�1.

Assuming xðs�K Þ ¼ 0, one has

qðs�K Þ ¼ HqLðq�1Þ and _qðs�K Þ ¼ H _qLðq�1Þ _q1dðs�K Þ (48)

where

HqL q1ð Þ :¼

q1

~/1L q1ð Þ
~/2L q1ð Þ

2
6664

3
7775 and H _qL q1ð Þ :¼

1

d~/1L q1ð Þ
dq1

d~/2L q1ð Þ
dq1

2
66666664

3
77777775

(49)

Then, at t ¼ sþK , one can obtain the following equations from
Eq. (5)

qðsþK Þ ¼ qðs�K Þ ¼ HqLðq�1Þ;
_qðsþK Þ ¼ ILðqðs�K ÞÞ _qðs�K Þ ¼ ~ILðq�1ÞH _qLðq�1Þ _q1dðs�K Þ

(50)

where ~ILðq�1Þ :¼ ILðHqLðq�1ÞÞ ¼ ILðqðs�K ÞÞ.
Assuming xðsþK Þ ¼ 0, one has

qðsþK Þ ¼ HqRðq2dðsþK ÞÞ and _qðsþK Þ ¼ H _qRðq2dðsþK ÞÞ _q2dðsþK Þ
(51)

where

HqR q2ð Þ :¼
~/1R q2ð Þ

q2
~/2R q2ð Þ

2
64

3
75 and H _qR q2ð Þ :¼

d~/1R q2ð Þ
dq2

1

d~/2R q2ð Þ
dq2

2
666664

3
777775 (52)

Because sd(t) is continuously differentiable for t> 0, one has

sdðsþK Þ ¼ sdðs�K Þ and _sdðsþK Þ ¼ _sdðs�K Þ (53)

Also, s(t) is continuous for t> 0. Then, one obtains

q2dðsþK Þ ¼ ~/1Lðq�1Þ (54)

and

_q2d sþK
	 


¼ cos q�1ð Þ
cos ~/1L q�1ð Þ
� � _q1d s�Kð Þ :¼ cL q�1

	 

_q1d s�Kð Þ (55)

Therefore, if ~/ji ði 2 fL;Rg; j 2 f1; 2gÞ can be designed to
satisfy

HqLðq�1Þ ¼ HqRð~/1Lðq�1ÞÞ (56)

and

~ILðq�1ÞH _qLðq�1Þ ¼ H _qRð~/1Lðq�1ÞÞcLðq�1Þ (57)

then xðsþK Þ ¼ DL!Rðs�K ; 0Þ ¼ 0 holds for any K � {1, 3, 5,…}.
We will now derive conditions to guarantee that

DR!Lðs�Kþ1; 0Þ ¼ 0 in the condition (C1) holds for any K � {1, 3,
5,…}. Similarly, suppose that the desired walking pattern
gRðl sin ðq2Þ; q1; q3Þ ¼ 0 has at least one intersection with the
switching surface SRðq; _qÞ and that one of these intersections has
right leg position at q�2. If ~/ji ði 2 fL;Rg; j 2 f1; 2gÞ is designed
to satisfy

HqRðq�2Þ ¼ HqLð~/1Rðq�2ÞÞ (58)

and

~IRðq�2ÞH _qRðq�2Þ ¼ H _qLð~/1Rðq�2ÞÞcRðq�2Þ (59)

with ~IRðq�2Þ:¼IRðHqRðq�2ÞÞ and cRðq�2Þ:¼ðcosðq�2Þ=cosð~/1Rðq�2ÞÞÞ,
then DR!Lðs�Kþ1;0Þ¼0 holds for any K � {1, 3, 5,…}.

5.2 Walking Pattern Parameterization With Bezi�er
Curves. Similar to the previous study [12], the functions
~/ji ði 2 fL;Rg; j 2 f1; 2gÞ, which define the desired walking pat-
tern, can be parameterized by the Mth-order Bezi�er curves as

~/1L q1ð Þ :¼ �/1L kLð Þ ¼
XM

p¼0

aLp
M!

p! M � pð Þ! k
p
L 1� kLð ÞM�p

~/2L q1ð Þ :¼ �/2L kLð Þ ¼
XM

p¼0

bLp

M!

p! M � pð Þ! k
p
L 1� kLð ÞM�p

~/1R q2ð Þ :¼ �/1R kRð Þ ¼
XM

p¼0

aRp
M!

p! M � pð Þ! k
p
R 1� kRð ÞM�p

~/2R q2ð Þ :¼ �/2R kRð Þ ¼
XM

p¼0

bRp

M!

p! M � pð Þ! k
p
R 1� kRð ÞM�p

(60)

where aip and bip (i � {L, R}, p � {0, 1,…, M}) are unknown
parameters to be determined, and the variables kL(q1) and kR(q2)
are defined as

kL q1ð Þ ¼
q1 � q10

q�1 � q10

and kR q2ð Þ ¼
q2 � q20

q�2 � q20

(61)

where q10 and q20 are the initial support-leg angles of the left-in-
support and the right-in-support phases, respectively, determined
by the desired walking pattern and the switching surfaces.

The functions �/jiðkiÞ ði 2 fL;Rg; j 2 f1; 2gÞ have the follow-
ing properties [12]:
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(1) �/1i ð0Þ ¼ ai0; �/2ið0Þ ¼ bi0;
(2) �/1ið1Þ ¼ aiM; �/2ið1Þ ¼ biM;
(3) d�/1i=dki 0Þ ¼ Mai1 � ai0; d�/2i=dki 0Þ ¼ Mbi1 � bi0ð

	
; and

(4) d�/1i=dkið1Þ¼MaiM�aiðM�1Þ;d�/2i=dki 1Þ¼MbiM�biðM�1Þ
	

.

These properties can be utilized to construct hybrid invariance
of the desired motion.

5.3 An Example of Walking Pattern Design With Third-
Order Bezi�er Curves. In this subsection, the procedure of obtain-
ing the unknown parameters aip and bip (i � {L, R}, p � {0, 1,…,
M}) of ~/ji ði 2 fL;Rg; j 2 f1; 2gÞ in Eq. (60) is explained. Sup-
pose M¼ 3. From Eqs. (56)–(61) and the properties of
~/ji ði 2 fL;Rg; j 2 f1; 2gÞ, one has

q�1 ¼ aR0; q�2 ¼ aL0; q10 ¼ aR3; q20 ¼ aL3 (62)

kL q1ð Þ ¼
q1 � aR3

aR0 � aR3

; kR q2ð Þ ¼
q2 � aL3

aL0 � aL3

(63)

bL3 ¼ bR0; bL0 ¼ bR3 (64)

cL aR0ð Þ

3aR1 � aR0

aL0 � aL3
1

3bR1 � bR0

aL0 � aL3

2
6664

3
7775 ¼ ~IL aR0ð Þ

1
3aL3 � aL2

aR0 � aR3
3bL3 � bL2

aR0 � aR3

2
66664

3
77775 (65)

cR aL0ð Þ

1
3aL1 � aL0

aR0 � aR3
3bL1 � bL0

aR0 � aR3

2
66664

3
77775 ¼ ~IR aL0ð Þ

3aR3 � aR2

aL0 � aL3
1

3bR3 � bR2

aL0 � aL3

2
6664

3
7775 (66)

The function ~/ji ði 2 fL;Rg; j 2 f1; 2gÞ should also satisfy the
following switching conditions obtained from Eq. (3) (forward
walking direction is assumed):

l cos aR0ð Þ � l cos aL3ð Þ ¼ 0

�l sin aR0ð Þ þ l sin aL3ð Þ
3aL3 � aL2

aR0 � aR3

< 0

l cos aL0ð Þ � l cos aR3ð Þ ¼ 0

�l sin aL0ð Þ þ l sin aR3ð Þ
3aR3 � aR2

aL0 � aL3

< 0 (67)

There are 16 unknown parameters of the four third-order Bezi�er
curves, and there are ten equations and two inequality constraints

in Eqs. (64)–(67). Therefore, the function ~/ji ði 2 fL;Rg; j 2
f1; 2gÞ can be determined through numerical search in order to
satisfy the first condition (C1).

6 Simulation Results

In this section, a fully actuated planar biped with three revolute
joints is simulated to show the validity of the proposed walking
strategy. We first compare our proposed walking strategy with
previous studies to show that we can achieve exponential position
tracking in Cartesian space but the previous study can only
achieve exponential velocity tracking. Then, a symmetric walking
pattern is simulated with two different desired global position tra-
jectories sd(t)–one with a constant walking speed and the other
with a time-varying walking speed—to show the versatility of the
proposed walking strategy. The simulation results also show that
the desired gait respects the reset map regardless of the choice of
sd(t) when the desired walking pattern is designed as introduced in
Sec. 5. Furthermore, exponential tracking of an asymmetric walk-
ing pattern is illustrated through simulations. Finally, effects of
the continuous-phase convergence rate on the closed-loop stability

are analyzed through simulations, which validates the stability
conditions in Sec. 4.

The simulated biped model is shown in Fig. 3. The definitions
of l and r are illustrated in Fig. 3, and the masses m, MH, and MT

are lumped at the center of each link.
With the walking pattern design proposed in Sec. 5, a symmet-

ric walking pattern and an asymmetric walking pattern are gener-
ated, which will be utilized in the following simulations. The
obtained swing-leg patterns are shown in Fig. 4 (the trunk patterns
are omitted).

6.1 Comparison With Previous Work on Orbital Stabilization.
In the previous work on orbital stabilization [11], the bipedal gait
is characterized by the support and the swing legs. Thus, only a
symmetric walking pattern can be exponentially tracked. Besides
walking pattern tracking, another control objective of the previous
work is velocity tracking in Cartesian space.

In order to compare our proposed walking strategy with the pre-
vious orbital stabilization [11], the desired walking pattern is cho-
sen as the symmetric walking pattern in Fig. 4(a). The desired
global position trajectory sd(t) is defined as monotonically increas-
ing with a constant speed. Because the previous walking strategy
focuses on velocity tracking in Cartesian space, its desired global
motion is defined as _sdðtÞ.

The simulation results corresponding to the previous work are
shown in Fig. 5. From Fig. 5, it is clear to see that exponential
tracking of the desired symmetric walking pattern is achieved.
However, there is always a nonzero steady-state tracking error of
the desired global position trajectory sd(t), although the desired
global velocity trajectory _sdðtÞ can be exponentially tracked.

In contrast, with our proposed walking strategy, we can realize
exponential walking pattern tracking and exponential global posi-
tion tracking, as shown in Fig. 6.

This comparison clearly illustrates that our proposed walking
strategy can greatly improve walking versatility as compared with
the previous work on orbital stabilization.

6.2 Exponential Tracking of Different Global Position
Trajectories. In this subsection, we will show two sets of simu-
lated bipedal walking with the same desired symmetric walking
pattern (see Fig. 4(a)) but different desired hip trajectories sd(t).
Without loss of generality, the control gains are chosen the same
for both cases: KPL¼KPR¼ diag[28, 28, 28] and KDL¼KDR

¼ diag[11, 11, 11]. These control gains are chosen such that the
matrices AL and AR in Eq. (20) are both Hurwitz and that the

Fig. 3 A planar biped with lumped masses, massless thin
feet, and identical legs. (m 5 10 kg, MH 5 5 kg, MT 5 5 kg, and
l 5 (r /2) 5 0:5 m.)
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conditions in Eqs. (46) and (47) are met under relatively large ini-
tial tracking errors. The two sets of bipedal walking share the
same initial conditions

s 0ð Þ � sd 0ð Þ ¼ �0:1 mð Þ; _s 0ð Þ � _sd 0ð Þ ¼ 0:1 m=sð Þ
q2 0ð Þ � ~/1L q1 0ð Þ

	 

¼ 0:1 radð Þ

q3 0ð Þ � ~/2L q1 0ð Þ
	 


¼ �0:1 radð Þ

_q2 0ð Þ � d~/1L

dq1

q1 0ð Þ
	 


_q1 0ð Þ ¼ �0:1 rad=sð Þ

_q3 0ð Þ � d~/2L

dq1

q1 0ð Þ
	 


_q1 0ð Þ ¼ 0:1 rad=sð Þ

(68)

Due to the identical control gains, one has A¼AL¼AR. Then,
without loss of generality, the Lyapunov functions during the left-
in-support and the right-in-support phases are chosen the same

VLðxÞ ¼ VRðxÞ ¼ xTWx (69)

where W is the solution of the Lyapunov equation AWþWAT

þQ¼ 0 with Q¼ I6� 6 [30].
Figure 7 shows the results with sd(t)¼ 0.6t� 0.1(m), and Fig. 8

corresponds to sdðtÞ ¼ 2:3e�0:3ðtþ0:5Þ þ 0:6t� 2:1ðmÞ. From the
plots, we can see that exponential tracking of the desired hip

Fig. 5 Simulation results of previous work based on orbital
stabilization and support-swing gait characterization. Green
(blue) dashed: desired swing-leg (trunk) trajectory determined
by the desired walking pattern.

Fig. 6 Simulation results of proposed walking strategy
under the left-right gait characterization. Dashed lines: desired
joint trajectories generated by gi (�s ;qsw;q3) 5 0 (i‰fL;Rg) and
sd(t).

Fig. 7 Symmetric walking with sd(t) 5 0.6t 2 0.1 m, KPi 5 diag
[28, 28, 28], and KDi 5 diag[11, 11, 11]. Dashed lines: desired
joint trajectories generated by gi (�s ;qsw ;q3) 5 0 (i‰fL;Rg) and
sd(t).

Fig. 4 Desired walking patterns of swing-leg angle qsw with respect to support-leg angle qst:
(a) symmetric and (b) asymmetric
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trajectory sd(t) with either a constant or a time-varying walking
speed is achieved under the same desired walking pattern. It
shows that a walking pattern generated through the proposed gait
design method in Sec. 5 can be automatically incorporated with
an arbitrary hip trajectory sd(t) that is differentiable and monotoni-
cally increasing. Note that the Lyapunov function plot in Fig. 7
shows a relatively large jump at the first impact at t¼ 0.5 s while
the one in Fig. 8 shows no significant jump at the first landing
impact at t¼ 2 s. Because the desired global position trajectory in
Fig. 8 has a much lower velocity in the first few seconds than that
in Fig. 7, the duration of the first step is much longer in Fig. 8,
which results in the much smaller trajectory tracking error right
before the first impact and the much smaller jump of the Lyapu-
nov function right after the first impact in Fig. 8.

6.3 Stable Asymmetric Walking. As stated earlier, the left-
right gait characterization enables planning and tracking of an
asymmetric walking pattern, which is illustrated with simulation
results in this subsection. Figure 9 shows simulated bipedal walk-
ing with the initial conditions in Eq. (68), the desired asymmetric
walking pattern in Fig. 4(b), and the desired global position trajec-
tory sd(t)¼ 0.6t� 0.1(m). The control parameters are chosen as

KPL¼KPR¼ diag[12, 12, 12] and KDL¼KDR¼ diag[7, 7, 7], and
the Lyapunov functions are defined as Eq. (69).

As shown in Fig. 9, the desired asymmetric walking pattern as
well as the desired global position trajectory is exponentially
tracked, which validates the high versatility of our proposed walk-
ing strategy.

6.4 Effects of Continuous-Phase Convergence Rate on
Closed-Loop Stability. Theorem 2 introduced in Sec. 4 indicates
that the continuous-phase convergence rate determined by the PD
gains should be sufficiently fast to guarantee the stability of the
closed-loop hybrid dynamical system in Eq. (24). In this subsec-
tion, two sets of simulated bipedal walking (see Figs. 10 and 11)
are presented under different PD gains. They share the same initial
conditions, desired walking pattern, desired hip trajectory, and
Lyapunov function definitions as in Fig. 9. However, the PD gains
corresponding to Fig. 10 are larger than those in Fig. 9, and the
PD gains corresponding to Fig. 11 are less than those in Fig. 9.
Accordingly, it can be seen from Figs. 9–11 that the actual motion
converges to the desired motion faster in Fig. 10 but slower in
Fig. 11 as compared with Fig. 9. Therefore, this comparison

Fig. 9 Asymmetric walking with sd(t) 5 0.6t 2 0.1 m, KPi 5 diag
[12, 12, 12], and KDi 5 diag[7, 7, 7]. Dashed lines: desired joint
trajectories generated by gi (�s ;qsw;q3) 5 0 (i‰fL;Rg) and sd(t).

Fig. 10 Asymmetric walking with sd(t) 5 0.6t 2 0.1 m, KPL 5 KPR

5 diag[28, 28, 28], and KDL 5 KDR 5 diag[11, 11, 11]. Dashed
lines: desired joint trajectories generated by gi (�s ;qsw;q3)
5 0 (i‰fL;Rg) and sd(t).

Fig. 8 Symmetric walking with sd (t) 5 2:3e20:3(t10:5)10:6t
22:1(m); KPi 5 diag[28; 28;28], and KDi 5 diag[11, 11, 11]. Dashed
lines: desired joint trajectories generated by gi (�s ;qsw;q3)
5 0 (i‰fL;Rg) and sd(t).

Fig. 11 Asymmetric walking with sd(t) 5 0.6t 2 0.1 m, KPi

5 diag[6, 6, 6], and KDi 5 diag[5, 5, 5]. Dashed lines: desired
joint trajectories generated by gi (�s ;qsw;q3) 5 0 (i‰fL;Rg) and
sd(t).
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validates Theorem 2 and shows that a higher convergence rate
during the continuous phases results in faster closed-loop
convergence.

7 Conclusion

In this paper, provably stable, fully actuated, planar bipedal
robotic walking has been achieved with improved versatility as
compared with previous studies. In order to define both symmetric
and asymmetric walking patterns, the left and the right legs were
used to characterize a bipedal gait. Under the left–right gait char-
acterization, the full-order hybrid walking dynamics were mod-
eled. With the output function designed as the global position
tracking error and the walking pattern tracking error, an
input–output linearizing controller was then synthesized to expo-
nentially drive the output function to zero. Closed-loop stability
conditions were analyzed based on the construction of multiple
Lyapunov functions, which essentially requires that the
continuous-phase convergence rate of the output function should
be sufficiently fast in order to overcome the possible divergence
caused by landing impacts. A new method of walking pattern
design was proposed, which guarantees that the low-level plan-
ning of the desired walking pattern can be decoupled from the
high-level planning of the desired global motion. Provable expo-
nential stabilization and high versatility of the proposed walking
strategy were validated with simulated bipedal walking.
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