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Abstract— Satisfactory tracking of a planned path on the
walking surface is an important requirement for bipedal
robotic walking in many applications. In this paper, a model-
based feedback control strategy is proposed for fully actuated
three-dimensional (3-D) bipedal robots to realize exponential
tracking of a straight-line contour on the walking surface as
well as the desired periodic or aperiodic motion along the
contour. First, the full-order dynamic model of bipedal robotic
walking is presented. Second, a state feedback control law is
synthesized based on input-output linearization with the output
function designed as the tracking errors of a straight-line
contour on the walking surface, the desired position trajectory
along the contour, and the desired walking pattern. Sufficient
conditions for the exponential stability of the hybrid time-
varying closed-loop system are then established based on formal
stability analysis. Finally, simulation results had validated the
proposed contouring control strategy on a 3-D bipedal robot
with nine revolute joints.

I. INTRODUCTION

To accomplish various complex tasks such as delivery ser-
vice, disaster response, and space exploration, it is necessary
that a bipedal robot is capable of highly versatile walking,
such as satisfactorily tracking a planned path on the walking
surface as well as the desired periodic or aperiodic motion
along the path. Due to its high versatility, the Zero-Moment-
Point (ZMP) walking control framework has been widely
used to enable such position tracking capabilities [1] [2].

Another extensively studied approach of bipedal walking
control is the Hybrid-Zero-Dynamics (HZD) framework [3]–
[5]. The HZD framework realizes stable periodic bipedal
robotic walking based on full-order dynamic modeling, non-
linear control theories, and formal stability analysis. As com-
pared with the ZMP framework, the HZD framework can
formally guarantee the closed-loop stability of the walking
control system and achieve higher walking speed and energy
efficiency. Because of these advantages, the HZD framework
has enabled successful underactuated walking [6]–[9], fully
actuated walking [10]–[12], 3-D walking [7] [13] [14],
uneven terrain walking [15] [16], and running [17] [18].
However, because the HZD framework mainly addresses
periodic walking, its versatility is not as high as the ZMP
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framework. Previous work on improving the walking versa-
tility of the HZD framework includes extending the HZD
framework to aperiodic gaits for underactuated walking [19]
and realizing velocity tracking in Cartesian space for fully
actuated walking [10]. Still, position tracking in Cartesian
space and aperiodic walking stabilization have not been fully
explored under the HZD framework.

In our previous studies, we have investigated time-
dependent orbital stabilization for underactuated bipedal
robotic walking through model-based feedback control [20].
However, the time-dependent orbital stabilization strategy
cannot be used to achieve satisfactory position tracking in
Cartesian space, which generally requires aperiodic walking
stabilization for the purpose of high versatility. Therefore,
we have proposed another model-based controller design
to enable exponential position tracking in Cartesian space
for fully actuated planar bipeds [21] [22]. To our best
knowledge, it is the first time that position tracking in
Cartesian space has been addressed for bipedal robotic
walking through model-based feedback control and formal
stability analysis. Still, this previous work on planar walking
cannot be directly applied to 3-D walking.

The main objective of this study is to develop a state
feedback controller that realizes exponential tracking of the
desired position trajectory in Cartesian space. The problem
of position tracking in Cartesian space will be formulated
as a contouring control problem, which has been exten-
sively studied for machining tasks such as cutting and
milling [23] [24] but not for robotic locomotion. Here, we
adapt the concept of contouring control from machining
to bipedal robotic walking. A contour is defined as a 1-D
geometric path on the walking surface, and the contouring
control problem will be decomposed into two subproblems.
One is a stabilization problem, and the objective is to realize
exponential convergence to the shape of the desired contour.
The other is a position tracking problem, and the objective
is to realize exponential convergence to the desired periodic
or aperiodic motion along the desired contour. As the initial
step of our ongoing research, this study focuses on straight-
line paths/contours.

This paper is structured as follows. Section II presents
the full-order dynamic model of bipedal robotic walking.
The proposed time-dependent output function design is
introduced in Section III, and the input-output linearizing
controller design is explained in Section IV. In Section V,
sufficient closed-loop stability conditions are established.
Simulation results on 3-D bipedal robotic walking are given
in Section VI.
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II. HYBRID WALKING DYNAMICS

The main objective of this study is to achieve exponential
position tracking in Cartesian space for fully actuated 3-
D bipedal robotic walking through model-based feedback
control. With this goal in mind, we first present the full-
order model of bipedal walking dynamics.

A 3-D bipedal robot [13] is shown in Fig. 1. The world
coordinate frame is fixed on the walking surface and denoted
as OwXwYwZw. Assume that the walking surface is flat and
horizontal, that the biped has identical legs and massless thin
feet, and that the swing ankle is not actuated [13]. Also,
assume that the double-support phase when both feet touch
the ground is instantaneous, that the swing-foot landing
impact is modeled as a contact between rigid bodies, and,
without loss of generality, that the swing foot always lands
flat pointing towards the positive direction of the Xw-axis.

Fig. 1. A 3-D biped with the mass of each link lumped at the center. (a):
Left leg is in support. (b): Right leg is in support. (l1, l2, and l3 are lengths
of lower limb, upper limb, and trunk, respectively, and w is the hip width.)

Under these assumptions, a complete step consists of
a continuous single-support phase and a discrete land-
ing impact. Let Q ⊂ IR9 denote the configuration space
of the robot when its support foot remains full, static
contact with the walking surface and the joint position
limits are satisfied (e.g., the knee joints cannot be bent
forward). Let q =

[
q1,q2,q3,q4,q5,q6,q7,q8,q9

]T ∈ Q and
u =

[
u1,u2,u3,u4,u5,u6,u7,u8,u9

]T ∈ IR9 denote the joint
positions and torques, respectively. Definitions of qi and ui
(i = 1,2, ...,9) are illustrated in Fig. 1. Because there are
nine degrees of freedom during a continuous phase and nine
independent actuators, the biped is fully actuated.

When the left leg is in support, the full-order model of
walking dynamics during a continuous phase can be written
as [3] [13]

ML(q)q̈+ cL(q, q̇) = Buu, (1)

where ML is the inertia matrix, cL is the sum of Coriolis,
centrifugal, and gravitational terms, and Bu is the input
matrix. When the right leg is in support, the inertia matrix
MR and the vector cR can be obtained by replacing w with
−w in the expressions of ML and cL, respectively [13].

When the swing leg hits the walking surface, an impact
occurs. The variable q will experience a sudden jump
because of the coordinate swap. The variable q̇ will also
be discontinuous because of the coordinate swap and the
rigid-body impact. The reset map from the left-in-support to
the right-in-support phase can be expressed as [3] [13][

q+; q̇+
]
=
[
∆∆∆qL(q−);∆∆∆q̇L(q−)q̇−

]
:= ∆∆∆L(q−, q̇−). (2)

The right-to-left-in-support reset map, denoted as ∆∆∆R, can
be obtained by replacing w with −w in ∆∆∆L.

The moment of a swing-foot landing is determined by the
switching surface Sq(q, q̇):

Sq(q, q̇) := {(q, q̇) ∈ T Q : zsw(q) = 0, żsw(q, q̇)< 0}, (3)

where zsw is the swing foot height.
The overall hybrid system dynamics can be expressed as:
ΣL :

{
ML(q)q̈+ cL(q, q̇) = Buu, if (q−, q̇−) /∈ SL(q, q̇);
[q+; q̇+] = ∆∆∆L(q−, q̇−), if (q−, q̇−) ∈ SL(q, q̇);

ΣR :

{
MR(q)q̈+ cR(q, q̇) = Buu, if (q−, q̇−) /∈ SR(q, q̇);
[q+; q̇+] = ∆∆∆R(q−, q̇−), if (q−, q̇−) ∈ SR(q, q̇);

(4)
where the switching surfaces SL(q, q̇) and SR(q, q̇) can be
obtained from Sq(q, q̇) with the corresponding expressions
of the swing foot height zsw(q).

III. TIME-DEPENDENT OUTPUT FUNCTION DESIGN

To realize exponential tracking of the desired contour and
the desired motion along the contour on the walking surface,
the associated tracking errors will be used for output function
design, and input-output linearization will be utilized to
synthesize a feedback controller that exponentially drives
the output function to zero. In this section, the proposed
time-dependent output function design will be introduced.

Since the robot has nine independent actuators, nine
independent output functions can be designed. Two of them
will be chosen as the contour tracking error and the position
tracking error along the planned contour. The other seven
output functions will be designed as the tracking error of
the desired walking pattern such that the variables of interest
(e.g., the trunk angle and the swing foot position) can be
directly controlled with respect to a phase variable that
represents how far a step has progressed.

1) Contour and Position Tracking Error: Let Γd be the
desired contour on the walking surface. An orthogonal
coordinate frame can be established along the desired con-
tour [24]: the curvilinear coordinate rc along the normal
direction of the desired contour represents the contouring
error, and the curvilinear coordinate rm represents the po-
sition along the desired contour. As the first step of our
ongoing investigation, the desired contour Γd is chosen as
a straight line on the walking surface, which, for simplicity
and without loss of generality, is chosen as the Xw-axis, i.e.,

Γd = {(xh,yh) ∈ R2 : yh = 0}, (5)

where (xh,yh) is the horizontal hip position with respect to
(w.r.t.) the world coordinate frame and is chosen to represent
a biped’s global position in Cartesian space. Then, one has

rc = yh and rm = xh. (6)
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Let sd(t) be the desired position trajectory along the
desired contour Γd . In this study, sd(t) is defined as mono-
tonically increasing and continuously differentiable in t. For
the purpose of high walking versatility, the velocity profile
of sd(t) can be periodic or aperiodic.

From Eqs. (5) and (6), it is clear that the contour tracking
error is yh, and the position tracking error along the desired
contour is xh − sd(t). Thus, the objectives of contouring
control are: 1) to drive yh to zero; 2) to drive xh to sd(t).

2) Walking Pattern Tracking Error: A walking pattern
represents the relative evolution of configuration-based vari-
ables with respect to a phase variable [3]. Denote the desired
walking pattern as

hc(q)−φφφ(θ(q)) = 0, (7)

where θ : Q → Q f ⊂ R is a phase variable, which is
monotonically increasing during a step and represents how
far a step has progressed, hc : Q → Qc ⊂ R7 is a set
of configuration-based variables that are of interest to be
controlled and is continuously differentiable in q ∈ Q, and
φφφ(θ) : Q f → R7 is the desired trajectory of hc(q) and is
continuously differentiable in θ ∈ Q f .

From (7), it is clear that the tracking error of the desired
walking pattern is hc(q)−φφφ(θ(q)).

Here, hc(q) is designed as
hc(q) :=

[
q9,θr,h(q),θp,h(q),xh2sw(q),yh2sw(q),zsw(q),zh(q)

]
,
(8)

where the trunk joint angle q9 and the swing foot height zsw
are already defined and the rest of the elements are defined
w.r.t. the world coordinate frame as follows:
• θr,h(q) is the angle from the horizontal plane to the

vector
−−−−→
HstHsw where Hst and Hsw represent the hip

joints of the support and the swing legs, respectively
(see Fig. 1);

• θp,h(q) is the angle from the Zw-axis to the trunk link;
• (xh2sw(q),yh2sw(q)) is the swing foot’s horizontal rela-

tive position w.r.t. the pelvis H;
• zh(q) is the height of the pelvis H above the walking

surface.
The desired trajectory φφφ(θ) is encoded by the phase

variable θ and is designed as φφφ := [φ1,φ2,φ3,φ4,φ5,φ6,φ7]
T .

As forward walking along the Xw-axis is of interest in this
study, the hip’s relative position w.r.t. the support foot along
the Xw-axis will be chosen as the phase variable. Letting
x̄h : Q→ Qx ⊂ R and ȳh : Q→ Qy ⊂ R be the x- and y-
coordinates of the hip’s relative position with respect to the
support foot, respectively, one has θ := x̄h(q). Similar to
the HZD framework [4] and our previous work [20]–[22],
Bezier curves are used to parameterize the desired function
φφφ(θ) as

φφφ(θ) :=
M

∑
k=0

ak
M!

k!(M− k)!
s(θ)k(1− s(θ))M−k, (9)

where s(θ) := θ−θ0
θ∗−θ0

, θ0 and θ ∗ are the planned values of θ

at the beginning and the end of a step, respectively, and ak ∈
R7 is the unknown vector to be optimized in Section VI. For
simplicity, only symmetric gaits are discussed in this study.
Therefore, the desired function φφφ(θ) is the same for both

the left-in-support and the right-in-support phases except for
the function φ5(θ) because it defines the desired trajectory
of yh2sw. Define φ5(θ) as

φ5(θ) :=

{
φ5L(θ), (left-in-support);
φ5R(θ), (right-in-support).

(10)

Because of the left-right symmetry, φ5L(θ) = −φ5R(θ).
Hence, φφφ(θ) can be completely determined by considering
either the left- or the right-in-support phase.

3) Output Function Design: We are now ready to intro-
duce the following output function design:

y = h(t,q) :=

 xh− sd(t)
yh

hc(q)−φφφ(θ)

=

x̄h(q)
ȳh(q)
hc(q)

−
−xst,k−1 + sd(t)

−yst,k−1
φφφ(θ)

 ,
(11)

where (xst,k−1,yst,k−1) is the stance foot horizontal posi-
tion w.r.t. the world coordinate frame during the kth (k ∈
{1,2, ...}) actual step.

If the output function y is exponentailly driven to zero
through input-output linearizing control, then exponential
tracking of the desired contour, the desired motion along the
contour, and the desired walking pattern will be realized.
Remark: With the proposed design of hc(q) in Eq. (8), it
can be proved that there exists a diffeomorphism D : Qx×
Qy×Qc→Q when q9 = 0 (i.e., the joint angle of trunk is 0),
θr,h(q) = 0 (i.e., the hip link is horizontal), and θp,h(q) = 0
(i.e., the trunk link is upright).

IV. MODEL-BASED FEEDBACK CONTROL THROUGH
INPUT-OUTPUT LINEARIZATION

To drive the output function to zero, a state feedback con-
troller is designed through input-output linearization [25].

During a continuous phase, the feedback control law is
chosen as

u = ui = ( ∂h
∂q M−1

i B)−1(v+ ∂h
∂q M−1

i ci− ∂ 2h
∂ t2 − ∂

∂q (
∂h
∂q q̇)q̇) (12)

where the index i ∈ {L,R} indicates whether the left (L) or
the right (R) leg is in support.

The continuous-phase dynamics then become ÿ = v.
Choosing v as the proportional-derivative (PD) control law
v = −KPy−KDẏ, where KP ∈ R9×9 and KD ∈ R9×9 are
positive-definite diagonal matrices, one then obtains the
following linear dynamics:[

ẏ
ÿ

]
=

[
0 I
−KP −KD

][
y
ẏ

]
:= A

[
y
ẏ

]
, (13)

where 0 ∈R9×9 is a zero matrix and I ∈R9×9 is an identity
matrix.

Defining x :=
[
y; ẏ
]
∈R18, one can compactly rewrite the

closed-loop dynamics as:
ΣL :

{
ẋ = Ax, if (t,x−) /∈ SL→R(t,x);
x+ = ∆∆∆L→R(t,x−), if (t,x−) ∈ SL→R(t,x);

ΣR :

{
ẋ = Ax, if (t,x−) /∈ SR→L(t,x);
x+ = ∆∆∆R→L(t,x−), if (t,x−) ∈ SR→L(t,x);

(14)

where the expressions of ∆∆∆L→R, ∆∆∆R→L, SL→R, and SR→L
can be obtained from Eqs. (2), (3), and (11). Note that
∆∆∆L→R, ∆∆∆R→L, SL→R, and SR→L are time-dependent because
the proposed output function design in Eq. (11) is time-
dependent.
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If KP and KD are chosen such that A is Hurwitz, then
there exists a real positive-definite-symmetric matrix W such
that V (x) = xT Wx is a Lyapunov function candidate for
the continuous-phase dynamics. Also, there exist positive
constants c1, c2, and c3 such that V (x) satisfies

c1‖x‖2 ≤V (x)≤ c2‖x‖2 and V̇ (x)≤−c3V (x) (15)

for all x during each continuous phase [25].

V. CLOSED-LOOP STABILITY ANALYSIS

In this section, the closed-loop stability of the hybrid time-
varying system in Eq. (14) is analyzed. Before introducing
the main theorem on closed-loop stability, we first present
some properties of the system.

Suppose that the walking process begins with the left-in-
support continuous phase. The kth (k ∈ {1,2, ...}) switching
surface Sk is defined as

Sk(t,x) :=
{

SL→R(t,x), if k ∈ {1,3,5, ...};
SR→L(t,x), if k ∈ {2,4,6, ...}.

Let Tk−1 be the initial moment of the kth (k ∈ {1,2, ...})
actual step. Without loss of generality, define T0 = 0. Then,
Tk represents the moment of the first intersection with the kth

switching surface Sk(t,x) on t > T+
k−1, i.e., the moment of the

kth actual swing-foot touchdown. In the following, ?(T−k−1)
and ?(T+

k−1) will be denoted as ?|−k−1 and ?|+k−1, respectively.
Let τk be the kth (k ∈ {1,2, ...}) desired touchdown mo-

ment. Then, τk represents the moment of the first intersection
with the kth switching surface Sk(t,x) on t > T+

k−1 assumsing
x = 0 ∀t > T+

k−1.
Theorem 1 (Fixed Value of θ at the Desired Impact) With
properly designed φφφ(θ) and under the assumption that x = 0
∀t > T+

k−1, there exists a constant θ ∗ such that θ(τ−k ) = θ ∗

holds ∀k ∈ {1,2, ...}. �
Sketch of Proof: By the definitions of τk, Sk, and y, and
under the assumption that x= 0 ∀t >T+

k−1, one has zsw(τ
−
k )=

0 and zsw(τ
−
k ) = φ6(θ). Thus, φ6(θ(τ

−
k )) = 0 holds, which,

along with the fact that θ increases monotonically during
a step, indicates that there exists a constant θ ∗ such that
θ(τ−k ) = θ ∗ holds ∀k ∈ {1,2, ...} if φφφ(θ) is properly de-
signed [4]. �

To guarantee the fixed value of θ at the desired impact,
a proper design of φφφ(θ) should guarantee a unique solution
of [

x̄h(q); ȳh(q);hc(q)
]
=
[
θ∗;−yst,k−1;φφφ(θ∗)

]
(16)

for q ∈ Q [4]. Recall that a diffeomorphism D :
Qx × Qy × Qc → Q exists when q9,θr,h(q),θp,h(q) = 0.
Thus, the solution uniqueness can be guaranteed with
φ1(θ),φ2(θ),φ3(θ) = 0. Other requirements for a proper
design of φφφ(θ) are summarized in Theorem 2.
Theorem 2 (Hybrid Invariance under the Condition
yst,k−1 = ystd) Denote Hv(q) := [ dx̄h

dq (q);
dȳh
dq (q);

dhc
dq (q)]. Let

the desired function φφφ(θ) satisfy the following conditions:
(A1) hc(∆∆∆q(q∗)) = φφφ(x̄h(∆∆∆q(q∗)));
(A2) dx̄h

dq (∆∆∆q(q∗))∆∆∆q̇(q∗)H−1
v (q∗)

[
1;0; dφφφ

dθ
(θ∗)

]
= 1;

(A3) Hv(∆∆∆q(q∗))∆∆∆q̇(q∗)H−1
v (q∗)

[
1;0; dφφφ

dθ
(θ∗)

]
=
[
1;0; dφφφ

dθ
(x̄h(∆∆∆q(q∗)))

]
;

where q∗ is a solution of Eq. (16) with yst,k−1 = ystd :=
φ5(θ

∗) for q∈Q. Then, hybrid invariance (i.e., if x(τ−k ) = 0,
then x(τ+k ) = 0) holds under yst,k−1 = ystd := φ5(θ

∗). �
The proof of Theorem 2 can be constructed as an ex-

tension of our previous study on planar walking [21] [22],
which is omitted due to space limitations.
Remark: Although the restrictive condition yst,k−1 = ystd is
required for the hybrid invariance construction in Theorem
2, it is not required for the establishment of the closed-loop
stability conditions in Theorem 3.
Theorem 3 (Closed-Loop Stability Conditions) Let the
conditions (A1)–(A3) in Theorem 2 hold. The closed-loop
control system in Eq. (14) is locally exponentially stable if
the PD gains are chosen such that A in Eq. (14) is Hurwitz
and that the continuous-phase convergence rate of the output
function y is sufficiently fast. �
Sketch of Proof: Let V (x) be the Lyapunov function candi-
date. By stability analysis based on the construction of multi-
ple Lyapunov functions [26], the hybrid time-varying system
in Eq. (14) is locally exponentially stable if there exists a
positive number d such that V (x) is exponentially decreasing
during each continuous phase and that {V |+1 ,V |

+
2 ,V |

+
3 , ...} is

a strictly decreasing sequence for any x(0+)∈ Bd(0) := {x∈
R18 : ‖x‖ ≤ d}.

If the PD gains KP and KD are chosen such that the matrix
A in Eq. (14) is Hurwitz, then, from Eq. (15), one has

V |−k ≤ e−c3(Tk+1−Tk)V |+k−1 (17)

during the kth (k ∈ {1,2, ...}) step, i.e., V (x) is exponentially
decreasing during each continuous phase.

Next, the convergence of the sequence {V |+1 ,V |
+
2 ,V |

+
3 , ...}

will be analyzed.
At the kth (k ∈ {1,2, ...}) impact event, the corresponding

kth reset map ∆∆∆k is defined as

∆∆∆k(t,x) :=
{

∆∆∆L→R(t,x), if k ∈ {1,3,5, ...};
∆∆∆R→L(t,x), if k ∈ {2,4,6, ...}.

To explicitly discuss the effect of yst,k−1 on the reset map
of y and ẏ at the kth actual impact moment Tk, the reset map
is rewritten as ∆∆∆k(T−k ,x|−k ) = ∆∆∆k(T−k ,x|−k ,yst,k−1).

Because x|+k = ∆∆∆k(T−k ,x|−k ), one has
‖x|+k ‖= ‖∆∆∆k(T

−
k ,x|−k ,yst,k−1)‖

≤‖∆∆∆k(T
−

k ,x|−k ,yst,k−1)−∆∆∆k(τ
−
k ,x|−k ,yst,k−1)‖

+‖∆∆∆k(τ
−
k ,x|−k ,yst,k−1)−∆∆∆k(τ

−
k ,0,yst,k−1)‖

+‖∆∆∆k(τ
−
k ,0,yst,k−1)−∆∆∆k(τ

−
k ,0,ystd)‖+‖∆∆∆k(τ

−
k ,0,ystd)‖.

(18)
As the desired function φφφ(θ) satisfies the conditions (A1)–

(A3) in Theorem 2, one has
‖∆∆∆k(τ

−
k ,0,ystd)‖= 0. (19)

Because the reset map ∆∆∆k(t,x,yst,k−1) is continuously
differentiable in t, x, and yst,k−1, there exists a positive
constant r1 and Lipschitz constants L∆t , L∆x , and L∆st such
that the following inequalities hold for any x(0+) ∈ Br1(0):
‖∆∆∆k(T

−
k ,x|−k ,yst,k−1)−∆∆∆k(τ

−
k ,x|−k ,yst,k−1)‖ ≤ L∆t |Tk− τk|,

‖∆∆∆k(τ
−
k ,x|−k ,yst,k−1)−∆∆∆k(τ

−
k ,0,yst,k−1)‖ ≤ L∆x‖x|

−
k ‖,

‖∆∆∆k(τ
−
k ,0,yst,k−1)−∆∆∆k(τ

−
k ,0,ystd)‖ ≤ L∆st |yst,k−1− ystd |.

(20)

By [Theorem 1, [22]], there exists a positive constant r2
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and a Lipschitz constant LTx such that
|Tk− τk| ≤ LTx‖x̃(τk;T+

k−1,x|
+
k−1)‖ (21)

for any x(0+) ∈ Br2(0), where x̃(t; t0,λ0) denotes a solution
of ˙̃x=Ax̃ with the initial condition x̃(t0) = λ0, ∀t > t0. Then,
from Eqs. (20) and (21), one has

‖∆∆∆k(T
−

k ,x|−k ,yst,k−1)−∆∆∆k(τ
−
k ,x|−k ,yst,k−1)‖

≤ L∆t LTx‖x̃(τk;T+
k−1,x|

+
k−1)‖

(22)

for any x(0+) ∈ Bd1(0), where d1 = min{r1,r2}.
From Eqs. (20) and (21), one can also prove that there

exist positive constants d2 and βst such that
‖∆∆∆k(τ

−
k ,0,yst,k−1)−∆∆∆k(τ

−
k ,0,ystd)‖

≤ L∆st (‖x|
−
k ‖+βst‖x̃(τk;T+

k−1,x|
−
k−1)‖)

(23)

holds ∀x(0+) ∈ Bd2(0). Note that |yst,k−1−yst,d | is bounded
because the lateral support foot position is indirectly con-
trolled through the control of the lateral swing foot position.
For space consideration, the proof of Eq. (23) is omitted.

From Eqs. (18)–(23), one has, for any x(0+) ∈ Bd3(0),
‖x|+k ‖

2 ≤ L̃(‖x̃(τk;T+
k−1,x|

−
k−1)‖

2 +‖x|−k ‖
2), (24)

where L̃ := max(2(L∆t LTx + L∆st βst)
2,2(L∆x + L∆st )

2) and
d3 := min{d1,d2}.

From Eq. (15), one has
V (x̃(τk;T+

k−1,x|
−
k−1))≤ e−c3(τk−Tk−1)V |+k−1. (25)

Therefore, from Eqs. (15), (17), (24), and (25), one has

V |+k ≤ L̃
c2

c1
(1+ e−c3(Tk−τk))e−c3∆τkV |+k−1, (26)

where ∆τk := τk−Tk−1.
It can be proved that for any ε > 0 there exists a positive

constant d4 and PD gains KP and KD that coorespond to
sufficiently high continuous-phase convergence rate c3 such
that

e−c3(Tk−τk) ≤ 1+ ε (27)

hold for any x(0+) ∈ Bd4(0).
Hence, from Eqs. (26) and (27), one has

V |+k ≤ L̃
c2

c1
(2+ ε)e−c3∆τkV |+k−1 (28)

for any x(0+) ∈ Bd(0), where d = min{d3,d4}. If KP and
KD are chosen such that

L̃
c2

c1
(2+ ε)e−c3∆τk < 1 (29)

holds, then the sequence {V |+1 ,V |
+
2 ,V |

+
3 , ...} is strictly de-

creasing for any x(0+) ∈ Bd(0).
Therefore, if the PD gains are chosen such that A in

Eq. (14) is Hurwitz and that Eq. (29) is satisfied for any
x(0+) ∈ Bd(0), then the closed-loop hybrid time-varying
system in Eq. (14) is locally exponentially stable. �

VI. SIMULATION RESULTS

In this section, dynamic walking of a 3-D bipedal robot
with nine revolute joints (see Fig. 1) is simulated to evaluate
the proposed control strategy. Physical parameters of the
biped model in Fig. 1 are chosen as: m1 = 3 (kg), m2 = 6
(kg), mT = 20 (kg); l1 = l2 =

l3
2 = 0.4 (m), w = 0.3 (m).

A. Motion Planning

The desired trajectories for the biped to follow are deter-
mined by the desired contour, the desired position trajectory
along the contour, and the desired walking pattern. Without
loss of generality, the desired straight-line contour is chosen
as the Xw-axis. Also, it is assumed that the desired position
trajectory sd(t) is provided by a high-level planner and that
sd(t) is monotonically increasing and continuously differ-
entiable in t. Thus, the remaining task of motion planning
is to plan the desired function φφφ(θ), which defines the
desired walking pattern, such that necessary constraints and
conditions are satisfied.

Similar to our previous study [20]–[22], optimization is
utilized to find the desired function φφφ(θ). Besides the con-
ditions (A1)–(A3) and φ1,φ2,φ3 = 0, feasibility constraints
such as joint position limits and ground contact constraints
are also considered in the optimization. The optimization
variables are ak (k ∈ {0,1, ...,M}) as defined in Eq. (9).

B. Simulated Contouring Control of Fully Actuated 3-D
Bipedal Robotic Walking

To illustrate the high versatility of the proposed walking
strategy, a bipedal robot is commanded to track a straight-
line contour (i.e., the Xw-axis) and a desirable position
trajectory sd(t), which has an aperiodically varying velocity
profile and is chosen as sd(t) = 2.3e−0.3(t+0.5)+0.6t−2.2 (m).

The PD gains KP and KD are chosen as: KP =
KpI9×9, Kp = 841; KD = KdI9×9, Kd = 58. They yield a
pair of real closed-loop poles at p1,2 =−29 (rad/s) for the
continuous dynamics. Thus, A in Eq. (14) is Hurwitz.

Fig. 2. Exponential tracking of the desired straight-line contour Γd .
Desired contour Γd : Xw-axis. Desired position trajectory along Γd : sd(t) =
2.3e−0.3(t+0.5)+0.6t−2.2 (m).

Fig. 3. Exponential tracking of the desired position trajectory sd(t) along
the desired contour Γd . Desired contour Γd : Xw-axis. Desired position
trajectory along Γd : sd(t) = 2.3e−0.3(t+0.5)+0.6t−2.2 (m).
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As shown in Fig. 2, the biped’s global position (i.e.,
(xh,yh)) exponentially converges to the desired contour (i.e.,
Xw-axis). Fig. 3 shows that the biped also exponentially
follows the desired position trajectory sd(t) along the desired
contour. These two figures clearly illustrate that the proposed
walking strategy enables exponential contour tracking in 3-D
Cartesian space for fully actuated bipedal robots, which has
not been fully investigated in previous studies. In addition,
Fig. 4 indicates that the biped’s actual gait exponentially
converges to the desired walking pattern.

Fig. 4. Exponential tracking of the desired walking pattern hc(q)−
φφφ(θ(q))= 0. Desired contour Γd : Xw-axis. Desired position trajectory along
Γd : sd(t) = 2.3e−0.3(t+0.5)+0.6t−2.2 (m).

VII. CONCLUSIONS

Based on state feedback control and formal stability
analysis, this paper has proposed and developed a controller
design that can realize exponential tracking of a straight-
line contour for fully actuated 3-D bipedal robots. With the
output function designed as the tracking errors of the desired
straight-line contour, the desired motion along the contour,
and the desired walking pattern, an input-output linearizing
controller was synthesized to drive the output function
exponentially to zero during continuous walking phases. By
carefully selecting and encoding the desired walking pattern,
conditional hybrid invariance was constructed for the desired
motion. Sufficient closed-loop stability conditions were then
established, and simulation results on a 9-DOF, 3-D biped
validated the effectiveness of the proposed walking strategy
in achieving high walking versatility for fully actuated 3-D
bipedal robots. In future work, we will extend the proposed
contouring control strategy from straight-contour to general-
contour tracking as well as from fully actuated walking to
multi-domain walking that consists of both fully actuated
and underactuated walking.
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