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Abstract— In this paper, we propose to study the orbitally
exponential stabilization of underactuated bipedal robotic
walking with an impulse effect through time-dependent output
feedback control. In gait characterization, symmetric periodic
gaits are considered and defined. Input-output linearization
is then utilized to synthesize an output feedback controller,
which drives the directly controlled joints to track some desired
time functions that are defined based on the desired periodic
symmetric gait. Due to the underactuation, nonautonomous
internal dynamics exists and determines the closed-loop sta-
bility of the control system. By introducing a new state, the
nonautonomous closed-loop system can be transformed into an
equivalent autonomous system with an augmented set of states.
Stability conditions of the original nonautonomous closed-loop
system are then established based on the stability analysis of
the equivalent autonomous system. Finally, simulation results
showed that the proposed time-dependent output feedback
control can indeed realize orbitally exponential stabilization of
underactuated bipedal robotic walking if the proposed stability
conditions are satisfied.

I. INTRODUCTION

There are multiple approaches to solving the challenging
problem of stabilizing bipedal robotic walking, among which
the most extensively studied one is based on the concept
of Zero Moment Point (ZMP). If the ZMP is kept strictly
within the support polygon, the support foot will remain in
full contact with the ground and thus tipping over around
the foot edge can be avoided [1] [2] [3]. Disadvantages of
the ZMP-based approach include high energy consumption
and conservative walking speeds.

Instead of focusing on a specific ground-reference point,
previous studies on underactuated bipedal walking achieve
walking stabilization by orbitally stabilizing the closed-loop
system based on nonlinear control theories [4] [5]. Virtual
constraints are introduced as the desired walking pattern,
which defines the desired relative evolution of the directly
controlled joints with respect to a parameterization vari-
able and is enforced through output feedback control. The
paramerization variable can be chosen as joint position [4],
angular momentum [6], or joint velocity [7]. If there is only
one degree of underactuation and the desired walking pattern
is designed properly, hybrid zero dynamics (HZD) exists;
that is, the continuous-phase zero dynamics will be invariant
with respect to a landing impact [8]. For higher degrees

†Yan Gu and Bin Yao are with the School of Mechanical Engineering,
and C. S. George Lee is with the School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907, U.S.A. Email:
{gu49, byao, csglee}@purdue.edu. Bin Yao, the corresponding author,
is also a Chang-Jiang Chair Professor at Zhejiang University, China.

This work was supported in part by the National Science Foundation
under Grant IIS-0916807. Any opinion, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

of underactuation, HZD exists if the definitions of output
functions are updated each time upon an impact [9]. Stability
of the autonomous HZD can be conveniently evaluated
numerically, and it indicates the stability of the original
closed-loop system, which significantly reduces the dimen-
sion of stability analysis [9]. Specifically, if there exists an
exponentially stable orbit in the hybrid invariance manifold
and if the convergence rate to the hybrid invariance manifold
is sufficiently fast, then the closed-loop system is orbitally
exponentially stable. In comparison with the ZMP-based
approach, faster walking speed and higher energy efficiency
are inherent features associated with the orbital stabilization
approach.

In the above-mentioned previous work on orbital stabi-
lization, the virtual constraints are defined as functions of
states (i.e., joint position, angular momentum, and joint
velocity) alone. When some of the virtual constraints are
defined as explicit functions of time, implementation issues
caused by sensor noise, which is associated with the state-
based approach, can be effectively solved [10]. However,
the resulting closed-loop system becomes nonautonomous,
and its stability is not straightforward to evaluate. Time-
dependent orbital stabilization of underactuated walking
was previously investigated, but no sufficient conditions for
orbitally exponential stabilization were provided [10] [11].
This study focuses on orbitally exponential stabilization
of underactuated bipedal walking based on time-dependent
output feedback control. During the continuous phases, the
directly controlled joints of a biped are driven to follow
some desired time functions, which are defined base on the
planned periodic gait, and all of the joints will converge
to the corresponding periodic orbit exponentially fast if the
proposed stability conditions are satisfied.

In Section II, we present the problem formulation includ-
ing dynamic modeling, gait definition, and output feedback
control. The main theorem is introduced in Section III,
which provides sufficient conditions for orbitally exponential
stabilization. A planar biped with five revolute joints and
point feet is simulated to show the validity of the proposed
walking strategy in Section IV.

II. PROBLEM FORMULATION

The main objective of this study is to achieve orbitally
exponential stabilization of underactuated bipedal walking
through time-dependent output feedback control. The walk-
ing process is modeled as a hybrid dynamical system with
impulsive landing impacts, and the desired time functions
to be tracked are defined based on the modification of the
desired periodic symmetric gait. Output feedback control is
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then utilized to drive the directly controlled joints to follow
the desired time functions exponentially fast during each
continuous phase. However, due to the underactuation, the
closed-loop system is not necessarily stable under such a
control law without satisfying additional conditions. Based
on the problem formulation in this section, conditions for
the closed-loop stability will be introduced in Section III.

A. Hybrid Dynamics of Bipedal Walking

Similar to previous studies, the double-support phase dur-
ing walking is assumed to be instantaneous, and the swing-
foot landing is modeled as a rigid impact of an infinitesimal
period of time [4] [5] [12]. Suppose that the ground-contact
constraints are satisfied including the friction cone and the
unilateral constraints, dynamics of bipedal walking on an
even flat terrain can be written as:{

M(q)q̈+h(q, q̇) = Buu, if q /∈ Sq(q, q̇);
[∆∆∆qT ,∆∆∆q̇T ]T = Iq(q, q̇), if q ∈ Sq(q, q̇);

(1)

where q, q̇, q̈ ∈ IRn represent the joint positions, velocities,
and accelerations, respectively, M(q) ∈ IRn×n is the inertia
matrix, h(q, q̇) ∈ IRn is the sum of Coriolis, centrifugal,
and gravitational terms, u ∈ IRn×m (n > m) is the joint-
torque vector, Bu ∈ IRn×n is the input matrix, Sq(q, q̇)
is the switching surface, ∆∆∆q(t) = q(t+)− q(t−), ∆∆∆q̇(t) =
q̇(t+)− q̇(t−), and Iq(q, q̇) ∈ IRn represents the reset map
determined by a rigid impact with an impulse effect and
the coordinate swap. Here, left continuity at an impact is
assumed and q(t) = q(t−). The switching surface Sq(q, q̇),
which determines the moments of swing-foot landings, is
defined as

Sq(q, q̇) := {q, q̇ ∈ IRn : h(q) = 0,
∂h
∂q

q̇ < 0}, (2)

where h(q) represents the swing-foot height.
Consider a planar bipedal robot in the sagittal plane (see

Fig. 1). The biped has point feet and five revolute joints. The
masses are assumed to be lumped at the center of each link.
The two legs are identical. The lengths of the lower limbs,
the upper limbs, and the trunk are l1, l2, and r, respectively.
Denote

q =
[
q1,q2,q3,q4,q5

]T ∈ IR5,

where q1 and q5 represent the lower-limb joint positions
of the support and the swing legs, respectively, q2 and q4
represent the upper-limb joint positions of the support and
the swing legs, respectively, and q3 represents the trunk joint
position.

As illustrated in Fig. 1, there are four actuators, one at
each knee and two at the hip. Denote

u =
[
u1,u2,u3,u4

]T ∈ IR4.

During the continuous phase, which is the single-support
phase (SSP), there is only one foot touching the ground, and
thus the biped has five degrees of freedom (DOF). The biped
is considered underactuated because only four of its five
joints can be directly controlled. Without loss of generality,
the lower limb of the support leg, q1, is chosen to be not
directly controlled. Let

qa :=
[
q2,q3,q4,q5

]T ∈ IR4

denote the directly controlled joints.

Fig. 1. A planar biped in the sagittal plane. Lumped masses: m1 = 3 kg,
m2 = 6 kg, mT = 20 kg. Link lengths: l1 = l2 = r/2 = 0.4 m.

B. A Periodic Symmetric Gait

Before the controller design is introduced, the desired
periodic symmetric gait to be tracked is described, which
corresponds to a periodic orbit in the state space. A sym-
metric gait can be conveniently characterized by the support
and the swing legs, while an asymmetric gait can be more
conveniently characterized by the left and the right legs [13].
Since this paper focuses on controller design and stability
analysis, only symmetric gaits, which are characterized by
the support and the swing legs, are considered. However, the
results of this study can be readily extended to asymmetric
gaits.

Let τ > 0 denote the time between two successive swing-
foot landings of a periodic symmetric gait. Then, τ is
the least gait cycle. Let q̄d(t) denote the joint trajectories
generated by the desired periodic symmetric gait with the
initial condition [q̄T

d (0), ˙̄qT
d (0)]

T :

q̄d(t) :=
[
q̄1d(t), q̄2d(t), q̄3d(t), q̄4d(t), q̄5d(t)

]T (3)

:=
[

q̄1d(t)
q̄ad(t)

]
. (4)

An example of the lower-limb joint trajectories q̄1d(t) and
q̄5d(t) is illustrated in Fig. 2.

Fig. 2. An illustration of q̄d(t) and ˙̄qd(t). Red: the support-leg lower limb
angle q̄1d(t). Green: the swing-leg lower limb angle q̄5d(t).

Note that
q̄d(t) = q̄d(t + kτ), t > t0, (5)

with discontinuities caused by the swing-foot landing at t =
τk := τ1 +(k−1)τ , where τk > t0 (k ∈ {1,2, ...}) represents
the kth moment of swing-foot landing. Without loss of
generality, assume τ0 = t0 = 0, and thus τk = kτ for k ∈
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{0,1,2, ...}. Both joint positions and velocities experience a
sudden jump upon a swing-foot landing due to the coordinate
swap and the rigid impact with an impulse effect.

C. Output Feedback Control

In previous related studies on controlling underactuated
bipedal walking [4], the desired walking pattern is chosen to
be tracked through output feedback control. Since a walking
pattern is defined as a function of states alone, the resulting
closed-loop system is autonomous, and the walking can be
orbitally (exponentially) stabilized [14]. Here, we want to or-
bitally stabilize the walking process through time-dependent
output feedback control. This problem is challenging partly
due to the underactuation and the nonautonomous hybrid
dynamics with internal dynamics. In this study, an output
feedback controller is designed to directly drive the actuated
joints qa(t) to follow some desired time functions during
each continuous phase. The unactuated joint q1(t) will
automatically converge to the desired orbit exponentially fast
if certain stability conditions, which will be introduced in the
next section, are met.

Because the support and the swing legs switch their
roles at the landing events during walking, the desired time
functions qd(t) that are used to define the output functions
should be accordingly updated upon swing-foot landings.
During the (k+ 1)th step, k ∈ {0,1,2, ...}, the desired time
functions qd(t) are defined as

qd(t) :=
[

q1d(t)
qad(t)

]
:= q0(t−Tk), t ∈ (Tk,Tk+1], (6)

where T0 = t0 = 0 and Tk (k ∈ {1,2, ...}) is the moment of
the kth actual landing and q0(t) is a smooth extension of
q̄d(t) from t ∈ (0,τ1] to t ∈ (−∞,+∞).

Assuming that there are no disturbances or modeling
errors, input-output linearization is utilized to synthesize a
controller. Defining the output functions as

y(t) = qa(t)−qad(t), (7)
one has

ÿ(t) = q̈a(t)− q̈ad(t) (8)

during each continuous phase. Then, from (1) and (4),

q̈a = HM−1(Buu−h), (9)

where

H :=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .
Substituting (9) into (8), one obtains

ÿ = HM−1Buu− (HM−1h+ q̈ad). (10)

Therefore, the control law

u = (HM−1Bu)
−1(v+HM−1h+ q̈ad) (11)

with
v =−KPy−KDẏ (12)

results in a linearized system[
ẏ
ÿ

]
=

[
04×4 I4×4
−KP −KD

][
y
ẏ

]
:= A(KP,KD)

[
y
ẏ

]
, (13)

where HM−1Bu is supposed to be globally invertible [4],
04×4 ∈ IR4×4 is a zero matrix, I4×4 ∈ IR4×4 is an identity
matrix, and KP ∈ IR4×4 and KD ∈ IR4×4 are positive defi-
nite diagonal matrices to be designed. If the proportional-
derivative (PD) gains in KP and KD are chosen such that A
is Hurwitz, then the output functions y(t) will converge to
zero exponentially fast during each continuous phase [14].

Note that the periodic trajectories q̄d(t) will need to be
first determined before qd(t) and y(t) can be defined. Due
to the underactuation, an arbitrary set of periodic functions
may not be a solution of the control system in (1), (11)
and (12). However, searching of the desired periodic solution
q̄d(t) will not be discussed here, as the focus of this study is
on controller design and stability analysis. In the following
section, the stability of q̄d(t) as a periodic solution of the
closed-loop control system will be examined.

III. CLOSED-LOOP STABILITY ANALYSIS

It is challenging to analyze the stability of a closed-
loop system that is hybrid and nonautonomous with internal
dynamics and an impulse effect. Also, the stability analysis
results should be useful for gait motion planning.

Define the state as:

x :=
[

x1
x2

]
:=
[

q
q̇

]
∈ IR10. (14)

Accordingly, denote

x̄d(t) :=
[

q̄d(t)
˙̄qd(t)

]
∈ IR10 (15)

and
xd(t) :=

[
qd(t)
q̇d(t)

]
∈ IR10. (16)

From (1), (7), (8), (11), and (12), the closed-loop system
can be rewritten as{

ẋ = f(t,x), if x /∈ S(x);
∆∆∆x = I(x), if x ∈ S(x);

(17)

with the switching surface

S(x) := {x ∈ IR10 : h(x1) = 0,
∂h
∂x1

x2 < 0}, (18)

where the expression of I(x) can be derived based on Iq(q, q̇)
and the expression of

f(t,x) :=
[

f1(t,x)
f2(t,x)

]
(19)

is obtained as:
f1(t,x) : = x2,

f2(t,x) : = [M−1Bu(HM−1Bu)
−1H− I5×5]M−1h

+M−1Bu(HM−1Bu)
−1[q̈ad(t)−KP(Hx1−qad(t))

−KD(Hx2− q̇ad(t))].
(20)

In the following, a new state variable ρ is introduced, and
the nonautonomous closed-loop dynamics in (17) will be
transformed into an equivalent autonomous system with an
augmented set of states. The new state variable ρ is defined
as

ρ = t−Tk, t ∈ (Tk,Tk+1], (21)
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during the (k+1)th step (k ∈ {0,1,2, ...}). By this definition,
ρ is reset to zero at the beginning of a step and indicates
how long a step has taken. Also, when a biped travels on
the desired periodic solution x̄d(t), Tk coincides with τk for
all k ∈ {0,1,2, ...}, and ρ varies periodically and is denoted
as ρ̄d(t),

ρ̄d(t) = t− τk, t ∈ (τk,τk+1], (22)

for k ∈ {0,1,2, ...}.
From (21), the dynamics associated with ρ can be ob-

tained as: {
ρ̇ = 1, if x /∈ S(x);
ρ+ = 0, if x ∈ S(x).

(23)

From (6) and (21), one has qd(t) = q0(ρ), and thus there
exists a function g(ρ,x) that coincides with f(t,x) during
the continuous phases.

Now, define the augmented state xe as:

xe :=
[

ρ

x

]
∈ IR11. (24)

Correspondingly, denote

x̄ed(t) :=
[

ρ̄d(t)
x̄d(t)

]
∈ IR11. (25)

Then, an autonomous system that is equivalent to (17) can
be obtained as{

ẋe = ge(xe), if xe /∈ Se(xe);
∆∆∆xe = Ie(xe), if xe ∈ Se(xe);

(26)

with

Se(xe) := {xe ∈ IR11 : ψe(xe) = 0,
∂ψe

∂xe
(xe)ge(xe)< 0},

where

ge(xe) :=
[

1
g(ρ,x)

]
, Ie(xe) :=

[
−ρ

I(x)

]
, ψe(xe) := h(x1).

Since the original nonautonomous closed-loop system
in (17) is equivalent to the autonomous augmented system
in (26), the main theorem of closed-loop stability is pre-
sented as follows.
Theorem 1: If the following conditions are satisfied:

(A1) ∂h
∂x (x̄d(τk)) ˙̄xd(τk) 6= 0;

(A2) There is no beating at a landing impact;
(A3) The monodromy matrix of the following linear peri-

odically varying system has only one unity-modulus
eigenvalue, and the maximum modulus of all the other
eigenvalues is strictly less than one:

dz
dt

=
∂ge

∂xe
(x̄ed(t))z, if t 6= τk;

∆∆∆z = Mkz, if t = τk;
(27)

where

Mk =
∂ Ie

∂xe
+[g+e −ge−

∂ Ie

∂xe
ge]

∂ψe
∂xe

∂ψe
∂xe

ge
(28)

and
ge = ge(x̄ed(τk)), g+e = ge(x̄ed(τ

+
k )),

∂ Ie

∂xe
=

∂ Ie

∂xe
(x̄ed(τk)),

∂ψe

∂xe
=

∂ψe

∂xe
(x̄ed(τk)).

(29)

Then, x̄d(t) is a locally orbitally exponentially stable solution

of the closed-loop system in (17). �
Skecth of Proof: The linear system in (27) is the variational
equation of the augmented autonomous system in (26) [15].
It is straightforward to verify that the biped model in (17)
satisfies the following conditions:

1) During the continuous phase of the kth step (k ∈
{1,2, ...}), the function f : IR+× IR10→ IR10 coincides
with the function fk : IR+× IR10→ IR10 that is contin-
uously differentiable on IR+× IR10.

2) The function I : IR10 → IR10 is continuously differen-
tiable on IR10;

3) h : IR10→ IR is continuously differentiable on IR10.
Then, by Theorem 1 in [15], Condition (A3) guarantees
that there exists a positive number δ > 0 such that for any
xe(0)∈Bδ (Γ), where Γ := {xe ∈ IR11 : xe = x̄ed(t), t∈ (0,τ]},
xe(t) will converge to the periodic orbit Γ exponentially fast.
Because the original system in (17) is equivalent to (26)
and by the definition of x̄ed in (25), x̄d(t) is a locally
orbitally exponentially stable solution of the original closed-
loop system in (17). �

Conditions (A1) and (A2) are straightforward to verify,
but evaluation of Condition (A3) requires numerical compu-
tation. Note that the monodromy matrix in Condition (A3)
always has an eigenvalue of zero because ρ is reset to zero
upon a swing-foot landing. Also, due to the facts that we
are dealing with orbital stabilization and that the augmented
system in (26) is autonomous, the monodromy matrix in
Condition (A3) always has a unity-modulus eigenvalue [16],
denoted as λ1. Thus, the one with the maximum modulus
among all the other eigenvalues determines the stability of
the desired orbit Γ and is denoted as λs.

IV. SIMULATION RESULTS

In this section, a planar biped with five revolute joints
(see Fig. 1) is simulated to show the validity of the proposed
time-dependent orbital stabilization.

Fig. 3. Desired joint position trajectories q̄d(t) during a complete step.

The desired periodic symmetric joint trajectories q̄d(t) are
obtained through optimization-based motion planning, and
the stability conditions in Theorem 1 are included as one of
the constraints with the PD gains prespecified as:

KP = diag(10000,10000,10000,10000);
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and
KD = diag(200,200,200,200).

Details of motion planning can be found in our related
work [17]. The desired joint trajectories q̄d(t) are given in
Fig. 3.

A. Time-dependent Orbitally Exponential Stabilization

The desired periodic trajectories q̄d(t) as shown in
Fig. 3 are used to test the proposed controller design
and stability conditions. When the PD gains are cho-
sen as KP = diag(10000,10000,10000,10000) and KD =
diag(200,200,200,200), λs is computed as λs = 0.97 < 1.
Therefore, q̄d(t) is an orbitally exponentially stable solution
of the closed-loop system under the chosen control gains.
Also, from (12), the closed-loop poles associated with the
directly controlled joints are all at −100 (rad/s), which is
reasonable because the step frequency of q̄d(t) is 9.73 (Hz)
(i.e., 61 (rad/s) ).

Fig. 4. The actual joint trajectories q(t) and the desired time
functions qd(t) during the first 5 steps. Control gains: KP =
diag(10000,10000,10000,10000); KD = diag(200,200,200,200). Initial
conditions: q(0) − qd(0) = q(0) − q̄d(0) = [−0.1,0.1,−0.1,0.1,−0.1]T ;
q̇(0)− q̇d(0) = ˙̄q(0)− ˙̄qd(0) = [0.1,0.1,0.1,0.1,0.1]T .

Fig. 5. Exponential convergence of the actual joint trajectories q5(t) and
q̇5(t) to the desired orbit during the first 15 steps. Control gains: KP =
diag(10000,10000,10000,10000); KD = diag(200,200,200,200). Initial
conditions: q(0) − qd(0) = q(0) − q̄d(0) = [−0.1,0.1,−0.1,0.1,−0.1]T ;
q̇(0)− q̇d(0) = ˙̄q(0)− ˙̄qd(0) = [0.1,0.1,0.1,0.1,0.1]T .

Simulation results in Fig. 4 show the actual joint trajecto-
ries q(t) and the desired time functions qd(t) during 5 steps

of underactuated bipedal walking under the proposed time-
dependent output feedback control. As shown in Fig. 4, the
directly controlled joints qa(t) converge to the desired time
functions qad(t) exponentially fast within each continuous
phase, but the unactuated joint q1(t) does not converge to
the desired time function q1d(t) during each continuous
phase. However, all of the joints converge to the desired
orbit exponentially fast, which is confirmed by the results
in Figures 5 and 6. Figure 5 shows the first 15 steps of
walking and indicates the exponential convergence of the
actual motion to the desired orbit. From Fig. 6, it can be
seen that all of the actual joint trajectories exponentially
converge to the desired periodic orbit, where the desired joint
trajectories q̄d(t) reside in, instead of q̄d(t) themselves.

B. Effects of PD Control Gains on Closed-loop Stability

The convergence rate of the directly controlled joints
qa(t) to their desired trajectories qad(t) can be ad-
justed by the PD control gains in KP and KD.
Therefore, KP and KD affect the closed-loop stabil-
ity. With KP = diag(6400,6400,6400,6400) and KD =
diag(160,160,160,160), λs is computed as λs = 1.00, which
indicates that the desired periodic trajectories q̄d(t) are
orbitally stable rather than orbitally exponentially stable.
Figure 7 shows the corresponding simulated walking for 20
steps. One can see that the actual joint trajectories in Fig. 7
do not converge to the desired orbit. In fact, they converge
to an orbit that is within a small neigborhood of the desired
orbit. By comparing the two cases as shown in Fig. 6 and
Fig. 7, it is clear that the PD gains indeed affect the closed-
loop stability as well as the convergence rate of the actual
motion to the desired gait.

V. CONCLUSIONS

Orbitally exponential stabilization of underactuated
bipedal walking has been studied based on time-dependent
output feedback control. Under the assumption that dis-
turbances and modeling errors do not exist, the output
feedback linearization method was utilized to synthesize
the control law that drives the directly controlled joints to
track some desired time functions exponentially fast during
each continuous phase. However, the closed-loop stability
also depends on the nonautonomous internal dynamics.
In order to establish the closed-loop stability conditions,
the nonautonomous closed-loop system was equivalently
transformed into an augmented autonomous system. Then,
the orbitally exponential stability of a periodic solution of
the original closed-loop system was evaluated based on the
eigenvalues of the monodromy matrix that is associated
with the variational equations of the augmented system.
Simulation results showed that the proposed walking strategy
can effectively guarantee exponential tracking of the desired
orbit and that the design parameters of the output feedback
controller affect the closed-loop stability.
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Fig. 6. The actual joint trajectories q(t) and the desired periodic symmetric joint trajectories q̄d(t) during the first 20 steps. Control gains: KP =
diag(10000,10000,10000,10000); KD = diag(200,200,200,200). Initial conditions: q(0)−qd(0) = q(0)− q̄d(0) = [−0.1,0.1,−0.1,0.1,−0.1]T ; q̇(0)−
q̇d(0) = ˙̄q(0)− ˙̄qd(0) = [0.1,0.1,0.1,0.1,0.1]T .

Fig. 7. The actual joint trajectories q(t) and the desired periodic symmetric joint trajectories q̄d(t) during the first 20 steps. Control gains: KP =
diag(6400,6400,6400,6400); KD = diag(160,160,160,160). Initial conditions: q(0)−qd(0) = q(0)− q̄d(0) = [−0.1,0.1,−0.1,0.1,−0.1]T ; q̇(0)− q̇d(0) =
˙̄q(0)− ˙̄qd(0) = [0.1,0.1,0.1,0.1,0.1]T .
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