
Bipedal Gait Recharacterization and Walking Encoding Generalization
for Stable Dynamic Walking

Yan Gu, Bin Yao, and C. S. George Lee

Abstract— In this paper, we propose to achieve exponentially
stable periodic bipedal walking based on recharacterization
of bipedal gait and generalization of walking encoding. To
conveniently define an asymmetric walking pattern, a gait
is characterized here in terms of the left and the right legs
instead of the support and the swing legs. Another benefit of
this characterization is that the joint positions become well-
defined and continuous throughout a walking process even
under impulse effects caused by impacts. A more general
walking encoding method is then introduced, which not only
includes walking pattern encoding but also enables upper-level
task planning and control. Walking dynamics is then rewritten
with the roles of the left and the right legs differentiated
and with the biped’s global position included. The desired
walking pattern, as well as the desired global motion, is
tracked exponentially fast through a controller designed using
the output feedback linearization method. Stability of the
hybrid dynamical control system is analyzed based on the
construction of multiple Lyapunov functions. Finally, a fully
actuated compass-gait biped is simulated to show that the
proposed framework can realize exponentially stable walking,
both symmetric and asymmetric, while satisfactorily tracking
the desired walking pattern and the planned global motion.

I. INTRODUCTION
Maintaining stability is the first priority of bipedal lo-

comotion, which is defined as the ability not to fall over
[1]. By this definition, viability [2] is the exact equivalence
of stability for bipedal locomotion and the viability kernel
contains all the states starting from which a robot never
falls [1]. Capturability is a computationally less expensive
approximation of viability [3]. A capture point is defined
as a point where the robot can come to a complete stop
by stepping on given the current state [4]. Impressive dy-
namic walking has been realized based on the concepts of
capturability and capture points [5].

However, maintaining stability is the minimum require-
ment for bipedal locomotion, besides which there can be
additional performance objectives such as following a certain
walking pattern and minimizing energy consumption. If a
biped can track the desired walking pattern satisfactorily
and the control system is stable, then walking stability is
achieved automatically. Asymptotically orbital stabilization
of underactuated periodic bipedal walking was achieved
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under finite-time convergence to the desired walking pat-
tern [6]. Later on, finite-time stabilization was relaxed to
be sufficiently fast exponential stabilization [7] [8]. The
aforementioned planning and control strategies and their
extensions have been successfully implemented on physi-
cal bipedal systems [9] [10] [11]. Instead of using output
feedback linearization and checking orbital stability through
Poincaré Map, a transverse coordinate system is constructed
along the desired orbit and orbital stabilization is achieved
by stabilizing the linearized transverse system based on
receding horizon control [12]. Another interesting study is
the sums-of-squares approach which maximizes the region of
attraction by utilizing quadratic programming [13]. Recently,
an intuitive control strategy of dynamic bipedal walking has
been successfully implemented based on energy regulation
[14].

In this study, exponentially stable bipedal walking is real-
ized based on gait recharacterization and walking encoding
generalization. Bipedal-walking dynamics has been typically
expressed in terms of the support and the swing legs. Here,
the left and the right legs are differentiated so that an
asymmetric gait can be conveniently defined. Joint positions
also become continuous and well-defined upon swing foot
landing. Moreover, a biped’s global position with respect
to the world coordinate frame is included in the dynamic
model so that the previous walking pattern encoding, known
as the Virtual Constraints [6], can be integrated with the
biped’s travel distance for upper-level planning and tracking
of desired global motion. Another potential benefit is that
various types of ground-contact constraints can be explicitly
dealt with in the controller design but this advantage will
not be explored in this study. Output feedback linearization
is utilized to synthesize controllers that enforce the desired
walking pattern and the desired global motion.

In Section II, problem formulation is presented, including
the proposed walking characterization, the bipedal-walking
dynamics, and the generalized walking pattern encoding.
Controller design based on output feedback linearization
is briefly introduced in Section III. The main theorem of
stability with a sketch of the proof is given in Section IV
based on the construction of multiple Lyapunov functions.
Simulation results are presented in Section V.

II. PROBLEM FORMULATION

A fully actuated planar biped walking on horizontal even
terrain is considered (see Fig. 1). Its two legs are identical,
and the feet are thin and massless. It is assumed that the
swing foot always lands flat with a rigid impact of an
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infinitesimal period of time and that the double-support
phases are instantaneous [6]. There are two actuators at the
hip and one at each ankle. Three of them are active at any
moment except for the actuator at the swing foot.
A. Gait Characterization

A symmetric bipedal gait is typically characterized by the
support leg and the swing leg in previous studies [6] [8]
[12]. Due to the coordinate swap, both the positions and
the velocities of the support and the swing legs experience
discontinuities upon a swing-foot landing even for soft
touchdown. In contrast, when a gait is characterized by the
left and the right legs, which is adopted in this paper, there
is no coordinate swap upon a swing-foot landing. Definition
of each state will be consistent, and joint positions upon an
impact will be continuous and well-defined. Based on this
characterization, system dynamics consists of two single-
support phases, the left-leg-in-support phase and the right-
leg-in-support phase, and two reset maps, the left-to-right-
leg-support reset map and the right-to-left-leg-support reset
map, and will be rewritten in the following subsection.

Fig. 1. A Bipedal Robot Walking in the Xw-ZW Plane. (a): left foot in
support. (b): right foot in support. Blue segment: left leg and foot. Orange
segment: trunk. Green segment: right leg and foot.

B. Bipedal-walking Dynamics
1) Continuous Dynamics during Single-support Phases:

Besides the three joint positions, two generalized coordinates
are added to represent the biped’s position in the world
coordinate frame.

Denote
q =

⇥
q1, q2, q3, q4, q5

⇤T
, (1)

where q1 represents the left-leg angle, q2 the right-leg angle,
q3 the trunk angle, q4 the left-ankle position in the Xw-
direction (i.e., the forward direction) of the world coordinate
frame, and q5 the left-ankle position in the Zw-direction (i.e.,
the upward direction) of the world coordinate frame (see
Fig. 1). Suppose that the walking direction aligns with the
positive direction of the Xw-axis and that the walking process
begins with the left foot in support.

Denote u =
⇥
u1, u2, u3, u4

⇤T
, (2)

where u1, u2, u3 and u4 are illustrated in Fig. 1.
Dynamic equations during the (k + 1)th stride (a stride

consists of two successive steps), k 2 {0,1,2, ...}, can be
written as:

M(q)q̈+h(q, q̇) = Buiu+JT
i (q)Fi, (3)

with (
left-leg-in-support: q4 = Â2k

0 s j,q5 = 0,
right-leg-in-support: xr = Â2k+1

0 s j,zr = 0,
(4)

where M(q) represents the inertia matrix, h(q, q̇) the sum of
the gravitational term, the Coriolis force and the centrifugal
force, u the joint-torque vector, the subscript i 2 {L,R} the
support leg with i = L/R for left/right-leg support, Bui the
joint-torque projection matrix, Fi = [Fix,Fiz]T the ground-
contact force applied on the support foot, s j ( j 2 {1,2, ...})
the length of the last step before the jth impact with s0
defined as the initial value of q4, i.e., s0 = q4(0), [xr,zr]T

the right-ankle position with respect to the world coordinate
frame, and Ji(q) the Jacobian matrix which is determined
by the holonomic constraints in (4).

2) Impact Dynamics during Instantaneous Double-
support Phases: When the state (q, q̇) hits the switching
surface, denoted as Si(q) (i 2 {L,R}), the support foot and
the swing foot switch their roles and the ground-contact
constraint changes. Define Si(q) (i 2 {L,R}) as [6]:(

left-to-right-leg-support: SL = {q : hL(q) = 0,dL(q)> 0},
right-to-left-leg-support: SR = {q : hR(q) = 0,dR(q)> 0},

where hi(q) is the swing-foot height and di(q) the relative
position of the swing foot with respect to the support foot.

When the swing leg passes the support leg, a compass-gait
biped with identical fixed-length legs can only avoid scuffing
the ground exactly at q1 = q2 = 0. It is thus supposed that
the swing-leg length can be adjusted to avoid scuffing the
ground [6]. Then, hL(q) = l cos(q1)� l cos(q2) and hR(q) =
l cos(q2)� l cos(q1). The switching surfaces become:(

left-to-right-leg-support: SL = {q : q1 +q2 = 0,q1 > 0},
right-to-left-leg-support: SR = {q : q1 +q2 = 0,q2 > 0}.

The double-support-phase dynamics is a reset map:(
left-to-right-leg-support: q̇+ = Dq̇L(q, q̇�),

right-to-left-leg-support: q̇+ = Dq̇R(q, q̇�).
(5)

Note that the impact map (5) does not include coordinate
reset, which will be present if the support and the swing
legs are used to characterize a gait. With the proposed
characterization, joint positions are continuous and only joint
velocities experience a sudden jump upon a rigid impact with
an infinitesimally small length of time.

C. Generalized Walking Pattern Encoding
A walking pattern [6] defines the evolution of a biped’s

relative configuration in a complete stride which can be
completely described by q1, q2 and q3. A travel path is
a geometrical contour defined on the ground surface and
cannot be completely described by q1, q2 and q3 alone.
When a biped navigates in a complex environment, it is
necessary to follow a certain travel path, for example, to
avoid obstacles, and track the desired motion on the travel
path. In previous related work [10] [15], the desired walking
speed is tracked, and thus convergence to the desired global
trajectory is not guaranteed.

Similar to contouring control [16], an orthogonal global
task coordinate frame can be constructed along the desired
travel path. In this way, the contour error and the motion
along the desired contour can be separately represented in
two sets of coordinates. Minimizing the contour error then
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becomes a stabilization problem, and following the desired
motion along the desired contour becomes a trajectory
tracking problem. For planar bipedal walking, a biped is
confined to walking along the Xw-axis, which is the only
feasible travel path. Hence, the walking control objectives
are reduced to trajectory tracking along the Xw-axis and
walking pattern following. In our future work on three-
dimensional walking, the complete problem of contouring
control will be studied as an extension of the current study.

To define the desired motion along the travel path for
planar bipedal walking, the travel distance s of the hip joint
during the (k+1)th stride (k 2 {0,1,2, ...}) is introduced:

s=

(
q4 + l sin(q1) = Â2k

0 s j + l sin(q1) (left-leg-in-support),
xr + l sin(q2) = Â2k+1

0 s j + l sin(q2) (right-leg-in-support).
(6)

The desired motion along the travel path is denoted as sd(t),
and we want s(t) to track sd(t) sufficiently well.

To integrate walking pattern encoding with a biped’s
global motion, the relative position s̄ of the hip with respect
to the support leg, which increases monotonically during a
forward step, is used as the encoding variable:

s̄ =

(
s�q4 (left-leg-in-support),
s� xr (right-leg-in-support).

(7)

Note that s̄ = lsin(qst) where qst is the support-leg angle.
The desired walking pattern is encoded as gi(s̄, q̄) = 0

(i 2 {L,R}):8
>>>><

>>>>:

left-leg-in-support: gL(s̄, q̄) :=

"
q2 �f1L(s̄)
q3 �f2L(s̄)

#
= 0,

right-leg-in-support: gR(s̄, q̄) :=

"
q1 �f1R(s̄)
q3 �f2R(s̄)

#
= 0,

(8)where q̄ := [q1,q2,q3]T , and f1L(s̄), f2L(s̄), f1R(s̄) and

f2R(s̄) should be chosen such that


q1
gL(s̄, q̄)

�
and


q2

gR(s̄, q̄)

�

are both local diffeomorphisms.
Figure 2 shows two examples of walking pattern encoding.

It is straightforward to see that both symmetric and asym-
metric gaits can be conveniently defined by differentiating
the left leg and the right leg.

Fig. 2. Encoding the Swing-leg (qsw) Pattern with Two Different Walking
Characterizations. (a): using the support-leg angle qst and the swing-leg
angle qsw. (b): using the left-leg angle q1 and the right-leg angle q2.

III. OUTPUT FEEDBACK LINEARIZATION

Assume that the dynamic model is perfectly known and
that there are no disturbances or noise. Output feedback lin-
earization is thus utilized to synthesize the needed controller.

Assume that q4(t) and xr(t) are known or measured after
each stride. Then, the desired trajectory for the support-leg
angle corresponding to sd(t) is:(

left-leg-in-support: q1d(t) = sin�1( sd(t)�q4
l ),

right-leg-in-support: q2d(t) = sin�1( sd(t)�xr
l ).

(9)

We are now ready to define the output functions as:8
>>>>>>>><

>>>>>>>>:

left-leg-in-support: yL =

2

64
q1 �q1d(t)

q2 � f̃1L(q1)

q3 � f̃2L(q1)

3

75 ,

right-leg-in-support: yR =

2

64
q1 � f̃1R(q2)

q2 �q2d(t)
q3 � f̃2R(q2)

3

75 ,

(10)

where f̃ ji(qst) = f ji(s̄) with i 2 {L,R} and j 2 {1,2}.
Then we have

ÿi = Pi(qi) ¨̄q� zi(t,qi, q̇i) , i 2 {L,R}, (11)
where Pi(qi) is a 3⇥3 invertible matrix and zi(t,qi, q̇i) is a
3⇥1 vector.

From the continuous dynamics in (3) and the holonomic
constraints in (4), we have

¨̄q = Mi(q̄)�1(Biui �hi(q̄, ˙̄q)) , i 2 {L,R}, (12)
where Mi, hi and Bi are the dynamic matrices associated
with the reduced dynamic equations and ui is the vector of
active joint torques.

Hence,
ÿi = Ni(q̄)ui �Li(t, q̄, ˙̄q) , i 2 {L,R}, (13)

where Ni = PiM�1
i Bi and Li = PiM�1

i hi + zi.
Since Ni is invertible, the linearization control law

ui = N�1
i (vi +Li) (14)

results in
ÿi = vi , i 2 {L,R}, (15)

where vi can be chosen as a PD controller:
vi =�KPiyi �KDiẏi, , i 2 {L,R}, (16)

where KPi and KDi are diagonal matrices of proportional
gains and derivative gains, respectively. The linearized dy-
namics then becomes:

ẋ = Aix , i 2 {L,R}, (17)
where

x :=


yi
ẏi

�
and Ai =


03⇥3 I3⇥3
�KPi �KDi

�
. (18)

Choose KPi and KDi such that Ai is Hurwitz. Then for any
real positive-definite-symmetric matrix Qi (i 2 {L,R}), there
exists a real positive-definite-symmetric matrix Pi, which is
the unique solution to the Lyapunov equation defined by Ai
and Qi. Vi(x) = xT Pix is then a Lyapunov function candidate
for the continuous-phase dynamics ẋ = Aix [17], and there
exist positive constants c1i, c2i, c3i > 0 (i 2 {L,R}) such that
for all x, Vi(x) satisfies

c1i||x||2 Vi(x) c2i||x||2,V̇i(x)�c3iVi(x). (19)
Then, during each continuous phase, for all x with the

initial state x0 at t = t0,
Vi(x) e�c3i(t�t0)Vi(x0), 8t > t0. (20)
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IV. STABILITY ANALYSIS
Given the previous formulation, walking dynamics can be

compactly written as:(
ẋ = Aix (single-support-phase) ,
x+ = Di(t�ik ,x

�) (double-support-phase) ,
(21)

where i 2 {L,R} , k 2 {1,2, ...}, tLk and tRk represent the
time instants when the kth left-to-right-foot-support and the
kth right-to-left-foot-support impacts occur, respectively, and
Di(t�ik ,x

�) can be derived from (5) and (10).
Theorem: There exist KDi,KPi,d > 0 (i 2 {L,R}) such

that for any x(0) 2 Bd (0) = {x : ||x|| < d} the hybrid
dynamical system (21) is exponentially stable.

Theorem proof is based on the construction of multiple
Lyapunov functions [18]. Due to the space limitation, only
the sketch of the proof is presented here.

Sketch of the proof: Let VL(x) and VR(x) be the Lya-
punov functions associated with the left-foot-in-support and
the right-foot-in-support phases, respectively. Suppose that
walking begins with the left foot in support. Let VR|+K
and VL|+K+1 (K 2 {1,3,5, ...}) denote the values of Lya-
punov functions right after the Kth and the (K + 1)th im-
pacts, respectively. By stability analysis via multiple Lya-
punov functions, the overall system is exponentially stable,
if VL(x) are VR(x) exponentially decreasing in the left-
foot-in-support and the right-foot-in-support phases, respec-
tively, and {VR|+1 ,VR|+3 ,VR|+5 ...} and {VL|+2 ,VL|+4 ,VL|+6 ...} are
strictly decreasing sequences.

Because the continuous-phase subsystems are already ex-
ponentially stabilized under the controller design in Section
III, we only need to derive stability conditions under which
the sequences {VR|+1 ,VR|+3 ,VR|+5 ...} and {VL|+2 ,VL|+4 ,VL|+6 ...}
are both strictly decreasing. This requirement can be rewrit-
ten as

VR|+K+2 <VR|+K and VL|+K+3 <VL|+K+1, (22)
where

K 2 {1,3,5, ...}. (23)
First, we prove that there exist KPi and KDi (i 2 {L,R})

such that VR|+K+2 <VR|+K .
Let DTj denote the duration of the step right after the jth

impact ( j 2 {1,2,3, ...}). From (20) we have
VR|�K+1  e�c3RDTKVR|+K and VL|�K+2  e�c3LDTK+1VL|+K+1.

(24)
Now consider the reset map Di(t�,x) (i 2 {L,R}):
kx|+K+1k= kDR(t�K+1,x|

�
K+1)k

 kDR(t�K+1,x|
�
K+1)�DR(t�0K+1

,x|�K+1)k
+kDR(t�0K+1

,x|�K+1)�DR(t�0K+1
,0)k,

(25)

where tK+1 is the time instant when the (K + 1)th im-
pact occurs, x|�K+1 and x|+K+1 denote the states right be-
fore and after the (K + 1)th impact, respectively, and
t0K+1 is the time instant when the (K + 1)th impact oc-
curs assuming that x(t) = 0, 8t. Note that DL(t�0K

,0) =
0 and DR(t�0K+1

,0) = 0 always hold if the desired gait
is designed properly. It can be further proved that there
exists r⇤ > 0 such that for any x|�K+1 2 Br⇤(0) we
have kDR(t+0K+1

,x|�K+1) � DR(t+0K+1
,0)k  LDxkx|�K+1k and

kDR(t+K+1,x|
�
K+1) � DR(t+0K+1

,x|�K+1)k  LDtkx|�K+1k where
LDx and LDt are Lipschitz constants [19]. Due to the space
limitation, detailed proof is not shown here. Therefore, we
have

kx|+K+1k  LDRkx|�K+1k, (26)
where LDR = LDt +LDx .

Similarly,
kx|+K+2k  LDLkx|�K+2k, (27)

where LDL is a Lipschitz constant.
According to (19), the following inequalities hold:

VR|�K+1 � c1Rkx|�K+1k
2,VR|+K+2  c2Rkx|+K+2k

2,

VL|+K+1  c2Lkx|+K+1k
2,VL|�K+2 � c1Lkx|�K+2k

2.
(28)

Combining the above inequalities gives us

VR|+K+2 
c2Lc2R

c1Rc1L
L2

DL
L2

DR
e�(c3LDTk+1+c3RDTK)VR|+K . (29)

Let tsL and tsR denote the durations of a step during
the left-leg-in-support and the right-leg-in-support phases
assuming that x = 0, 8t, respectively. Due to the finite-
time duration between two successive switching events, there
exist positive numbers e and l⇤ such that for all x 2 Bl⇤(0)

|DTK � tsR| etsR and |DTK+1 � tsL| etsL. (30)

Then we have,

VR|+K+2 
c2Lc2R

c1Lc1R
L2

DL
L2

DR
e�(1�e)(c3LtsL+c3RtsR)VR|+K . (31)

Similarly, it can be proved that

VL|+K+3 
c2Lc2R

c1Lc1R
L2

DL
L2

DR
e�(1�e)(c3LtsL+c3RtsR)VL|+K+1. (32)

Note that c3i is determined by KPi and KDi. Hence, if
there exist KPi, KDi, d > 0 such that Ai is Hurwitz and that

c3LtsL + c3RtsR >
1

1� e
ln(

c2Lc2R

c1Lc1R
L2

DL
L2

DR
) (33)

holds for any x(0)2 Bd (0), then for any K 2 {1,3,5, ...} we
have VR|+K+2 < VR|+K and VL|+K+3 < VL|+K+1 and the closed-
loop system is exponentially stable. ⇤

The stability condition in (33) indicates that the conver-
gence rate should be sufficiently large such that divergence
caused by the expansive impacts can be diminished.

An interesting question to ask here is, how different
walking characterizations affect the stability condition in
(33). Denote the reset map associated with the traditional
gait characterization as D̃(t�,x�). D̃(t�,x�) is related to
Di(t�,x�) through D̃(t�,x�) = HDi(t�,x�), i 2 {L,R},
where H is a projection matrix and represents the coordinate
swap caused by role switching between the swing leg and
the support leg. Because kD̃(t,x)k= kHDi(t,x)k= kDi(t,x)k
always holds, these two reset maps are equally expansive.
Thus, changing the walking characterization does not affect
the minimum rate of convergence for closed-loop stability.

V. SIMULATION RESULTS

In this section, a 3-DOF biped walker with a compass gait
is simulated to show the validity of the proposed stability
condition based on the gait characterization and the walking
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encoding method introduced in Section II. Two sets of simu-
lation results are shown. The first one simulates asymmetric
walking, and the second one shows a comparison between
the proposed gait characterization and the traditional one.

A. Desired Gait Design

The desired gait defined by s(t)� sd(t) = 0 and gi(s̄, q̄) =
0 is obtained through numerical search with the following
constraints considered:

1) joint position and velocity limits;
2) joint-torque limits;
3) ground-contact constraints;
4) average walking speed;
5) the desired walking pattern of q3 is q3 = 0;
6) DL(t�0K

,0)= 0 and DR(t�0K+1
,0)= 0 with K 2 {1,3,5, ...}.

The desired walking patterns generated through numerical
search are shown in Fig. 3.

Fig. 3. Desired Walking Patterns. (a): symmetric. (b): asymmetric.

B. Stable Asymmetric Walking

Two sets of simulated asymmetric walking results with
the walking pattern in Fig. 3(b) are presented with iden-
tical conditions except for the control parameters. Fig-
ure 4 shows the results with KPi = diag([21,28,28]) and
KDi = diag([10,11,11]), and Fig. 5 corresponds to KPi =
diag([6,6,6]) and KDi = diag([5,5,5]) (i 2 {L,R}).

Exponentially stable walking is realized in both simulation
results. From the time responses q(t) (solid lines in Fig.4(a)
and Fig.5(a)), it can be seen that the desired walking pattern
is satisfactorily tracked. Plots (b) in both figures show that
s(t) tracks sd(t) exponentially fast. By comparing Fig. 4 with
Fig. 5, we can see that the larger convergence rate during the
continuous phases results in faster closed-loop convergence
as predicted by the stability theorem in Section IV.

C. Stable Symmetric Walking: A Comparison with Tradi-
tional Walking Characterization

Symmetric walking with the walking pattern in Fig. 3(a)
is simulated with the same initial conditions and control
parameters but different walking characterizations. Figure
7 corresponds to the proposed characterization, where the
left and the right legs are differentiated. Results with the
traditional characterization are shown in Fig. 6. From Fig.
7(a), we can see that the joint positions become continuous
upon impacts with the proposed characterization. On the
contrary, the joint positions alway experience a jump when

Fig. 4. Asymmetric Walking with KPi = diag([21,28,28]) and KDi =
diag([10,11,11]). Red line: left-leg angle q1. Green line: right-leg angle
q2. Blue line: trunk angle q3. Solid line: actual responses. Dashed line:
desired trajectories determined by gi(s̄, q̄) = 0 and sd(t).

Fig. 5. Asymmetric Walking with KPi = diag([6,6,6]) and KDi =
diag([5,5,5]). Red line: left-leg angle q1. Green line: right-leg angle q2.
Blue line: trunk angle q3. Solid line: actual responses. Dashed line: desired
trajectories determined by gi(s̄, q̄) = 0 and sd(t).

the support leg and the swing leg switch their roles under
the traditional walking characterization (see in Fig. 6(a)).
As predicted in Section IV, the closed-loop convergence
rates in these two simulations are the same because walking
characterization does not affect the expansiveness of the reset
map.

VI. CONCLUSIONS

In this paper, stable dynamic walking was studied based
on recharacterization of bipedal gait and generalization of
previous walking encoding. With the left leg differentiated
from the right leg, an asymmetric walking pattern can be
conveniently characterized. A biped’s global position with
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Fig. 6. Simulation Results with Walking Characterized by Support Leg
and Swing Leg. Red line: support-leg angle qst . Green line: swing-leg angle
qsw. Blue line: trunk angle q3. Solid line: actual responses. Dashed line:
desired trajectories determined by gi(s̄, q̄) = 0 and sd(t).

Fig. 7. Simulation Results with Walking Characterized by Left Leg and
Right Leg. Red line: left-leg angle q1. Green line: right-leg angle q2. Blue
line: trunk angle q3. Solid line: actual responses. Dashed line: desired
trajectories determined by gi(s̄, q̄) = 0 and sd(t).

respect to the world coordinate frame is included in the
set of generalized coordinates. The desired global motion
can then be planned and tracked along with the desired
walking pattern, which enables planning and control of
high-level tasks such as multi-agent coordination. Controller
design based on output feedback linearization is utilized to
track the desired walking pattern and the desired global
motion. Stability conditions of the closed-loop system are
then analyzed via the construction of multiple Lyapunov
functions. Planar compass-gait periodic walking is simulated
for both an asymmetric gait and a symmetric gait. Simulation
results showed that effective tracking of both the desired
global motion and the desired walking pattern is achieved.

The results of this study can be extended to a bipedal

gait with nonzero double-support phases and similar stability
conditions still hold. The biped will be over-actuated during
the double-support phases, which offers more control design
freedoms. In our future research, the ground-contact con-
straints will be explicitly dealt with in the controller design,
and other interesting problems such as underactuation and
three-dimensional walking will be addressed.
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