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Abstract— Locomotion stability of a humanoid robot is
closely related to the capacity to regulate its Center of Mass
(CoM) motion. In this paper, the Feasible Center of Mass
Dynamic Manipulability (FCDM) is introduced and analyzed as
a measure of this capacity. The effects of posture, joint velocities
and gravity on the torque-bounded dynamic manipulability
ellipsoid are first analyzed on an n-DOF planar humanoid
robot with single-foot support. The ellipse orientation has
a linear relationship with the ankle angle, and its shape is
independent on the ankle angle. Furthermore, three common
and important ground-contact constraints - the unilateral
contact-force constraint, the friction constraint, and the Center
of Pressure constraint - are incorporated in the derivation
of FCDM. It shows geometrically how each of the three
constraints shrinks the original torque-bounded manipulability
polytope and affects the maximum achievable CoM acceleration
in different directions. Finally, a push recovery task was
simulated to show that a robot’s posture affects the feasible
range of the CoM acceleration in a specific direction.

I. INTRODUCTION

Maintaining balance of humanoid locomotion is chal-
lenging due to underactuation and various ground-contact
constraints. Different balance criteria have been proposed to
address this problem. Among them, the most frequently used
one is the Zero Moment Point (ZMP) balance criterion [1],
[2]. It requires that the ZMP should always be kept strictly
within the support polygon. Another balance criterion based
on the Foot Rotation Indicator (FRI) [3] essentially requires
no foot rotation. In addition, the balance criterion associated
with the Centroidal Moment Pivot (CMP) [4], also known as
the Zero Rate of change of Angular Momentum (ZRAM) [5],
can be used to guarantee no angular motion around a robot’s
CoM.

Locomotion stability of a humanoid robot is defined as
the ability not to fall over [6]. According to this definition,
humanoid locomotion stability is closely related to the ability
to regulate a robot’s CoM motion, and none of the above-
mentioned balance criteria indicates such the ability and thus
they may not be suitable for instability prediction. Wieber [7]
first introduced the concept of viability [8] as a necessary
and sufficient measure for humanoid locomotion stability.
Later on, capturability [9] was proposed as a computationally
less expensive approximation of viability. A state is N-step
capturable if and only if the robot is able to come to a
complete stop by taking N or fewer steps from this state.
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The argument behind capturability is that the ability to come
to a complete stop is a good approximation of the ability to
avoid falling.

Since the ability to regulate CoM motion is key to hu-
manoid locomotion stability, it is natural to analyze, evaluate
and take advantage of the CoM acceleration capacity of a
humanoid robot. Dynamic manipulability [10], an evaluation
index for the dynamic performance of a robot manipulator,
provides a geometric interpretation of the manipulator end-
effector’s acceleration capacity at a given posture. Naksuk
and Lee [11] introduced the ZMP manipulability ellipsoid of
a humanoid robot based on the concept of dynamic manipu-
lability and the ZMP balance criterion. However, necessary
ground-contact constraints such as the friction constraint
and the unilateral constraint were not considered. Hence,
the feasibility of the ellipsoid is not guaranteed. Cotton et
al. derived the CoM dynamic manipulability polytope of
a humanoid robot [12]. The ZMP balance criterion (i.e.,
the Center of Pressure (CoP) constraint) was considered
to obtain the maximal isotropic CoM acceleration within
the CoM dynamic manipulability polytope without including
other ground-contact constraints.

In this paper, we propose a new index to analyze and eval-
uate the CoM acceleration capacity of a humanoid robot at a
given posture, called Feasible CoM Dynamic Manipulability
(FCDM). The FCDM indicates the ability of a humanoid
robot to regulate its CoM motion at a given posture under
ground-contact constraints. To our best knowledge, there
seems to be no previous related research that geometrically
analyzed the effects of ground-contact constraints on the
feasible CoM dynamic manipulability of a humanoid robot.
Also, the CoM acceleration capacity of a humanoid robot
in different directions was not analyzed. In this paper,
the CoM dynamic manipulability ellipsoid is revisited in
Section II, and the effects of posture, joint velocities and
gravity on the ellipsoid are analyzed with results applicable
to both robot manipulators and humanoid robots. Section
III introduces the feasible CoM dynamic manipulability by
incorporating three common ground-contact constraints. The
effects of the ground-contact constraints on the achievable
CoM acceleration in different directions are studied, both
analytically and numerically. Moreover, the posture of a
humanoid robot is optimized to achieve the maximum CoM
acceleration along a given direction. The optimization result
is adopted as the initial configuration for a push recovery
task in Section IV.

II. COM DYNAMIC MANIPULABILITY ELLIPSOID

In this section, the CoM dynamic manipulability [11], [12]
is revisisted. Here, only the flat-footed single-support case
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is considered.
With the support foot assigned as the base link, the

dynamics of an n-DOF planar robot can be written as

A(q)q̈(t)+h(q, q̇)+ c(q) = ttt(t) (1)

where q = [q1,q2, . . . ,qn]T 2 Rn, q̇ = [q̇1, q̇2, . . . , q̇n]T 2 Rn,
and q̈ = [q̈1, q̈2, . . . , q̈n]T 2 Rn are the joint-variable vector,
the joint-velocity vector, and the joint-acceleration vec-
tor of the robot, respectively, A(q) 2 Rn⇥n is the inertia
matrix, h(q, q̇) 2 Rn is the Coriolis and centrifugal force
vector, c(q) 2 Rn is the gravitational force term, and ttt =
[t1,t2, . . . ,tn]T 2 Rn is the joint-torque vector.

The relationship between the CoM velocity and the joint
velocities via the CoM Jacobian is

ṙc = Jc(q)q̇ (2)

where rc = [xc,yc,zc]T is the CoM location and Jc(q) is
the CoM Jacobian. Taking the time derivative of Eq. (2)
and combining it with Eq. (1), the CoM acceleration can be
obtained as

r̈c = JcA�1(ttt �h� c)+ J̇cq̇ 4
= act +acv +acg ⌘ ac (3)

where ac = r̈c, act = JcA�1ttt , acv = �JcA�1h+ J̇cq̇, and
acg =�JcA�1c.

At a given posture, act , acv and acg are determined by
the joint torques, the joint velocities and the gravity term,
respectively. In the following, the effects of these three sets
of variables on the achievable set of CoM acceleration at a
given posture are analyzed.

To analyze the effect of the joint-torque limit, we consider
ttt 2 [�tttmax,tttmax], where tttmax = [tmax1,tmax2, ...,tmaxn]T ,
and JcA�1ttt can be rewritten as JcA�1WtttN , where W =
diag[tmax1,tmax2, ...,tmaxn] is a scaling matrix and tttN =
[tN1,tN2, ...tNn]T is the normalized joint-torque vector with
|tNi|  1, i = 1,2, . . . ,n. Denoting J̃ = JcA�1W and apply-
ing singular value decomposition, J̃ can be decomposed
into J̃ = USVT , where U = [u1,u2,u3] 2 R3⇥3 and V =
[v1,v2, . . . ,vn] 2 Rn⇥n are orthogonal matrices and

S =

2

4
s1 0 0
0 s2 0 03⇥(n�3)
0 0 s3

3

5

where S 2R3⇥n with singular values in a descending order.

Fig. 1: CoM Dynamic Manipulability Ellipsoid.

J̃ maps the sphere ||tttN || 1 onto an ellipsoid (see Fig. 1)
in the CoM acceleration space, which is the CoM Dynamic
Manipulability Ellipsoid. The ellipsoid semi-principal axes
are of length s1, s2 and s3 in the directions of u1, u2
and u3, respectively. Although the complete torque-bounded
set of CoM acceleration at a given posture with given

joint velocities is not an ellipsoid but a polytope, which
is bounded by |tNi|  1, i = 1,2, . . . ,n, the ellipsoid is a
reasonable approximation [10] and it shares the same center
as the polytope. From Eq. (3), it is clear that the shape and
the orientation of the ellipsoid/polytope are affected by the
robot’s posture and that the center of the ellipsoid/polytope at
a given posture is determined by joint velocities and gravity.

Fig. 2: An n-DOF Planar Robot.

A. Effects of Posture on the Shape and Orientation of the
CoM Dynamic Manipulability Ellipsoid

The posture adopted by a humanoid robot can greatly
affect its achievable maximum CoM acceleration in a spe-
cific direction. Here, a planar robot in the sagittal plane
with only revolute joints is considered (see Fig. 2). qqq =
[q1, . . . ,qn]T 2Rn is the link angle of the robot with respect

to the world coordinate frame with qi =
i

Â
k=1

qk. The CoM

dynamic manipulability ellipsoid then becomes an ellipse.
It can be proved that the ankle joint q1 does not affect
the lengths of the ellipse semi-principal axes and hence the
shape of the ellipse. Also, the orientation of the ellipse varies
linearly with the ankle joint when other joint angles are
fixed. Due to the space limitation, detailed proof is omitted.
Simulation results with zero joint velocities (see Fig. 3)
showed the independence of the ellipse shape on the first
joint angle and the linear relationship between the first joint
angle and the ellipse orientation a .

Fig. 3: Linear Effect of the Ankle Joint on the Ellipse
Orientation and Independence of the Ellipse Shape on the
Ankle Joint (black dash: q1 = 0�, a = 26�; blue solid:
q1 = 60�, a =�34�; green dot-dash: q1 = 120�, a =�94�).
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B. Effects of Joint Velocities and Gravity on the Center of
the CoM Dynamic Manipulability Ellipsoid

The center of the CoM dynamic manipulability ellip-
soid/polytope at a given posture is determined by the joint
velocities and gravity. In [13], it provides an analytic ap-
proach to evaluate the magnitude of the velocity effect. Note
that JcA�1h and J̇cq̇ can both be written in a quadratic form
as

JcA�1h =

2

4
q̇T Hv1(q)q̇
q̇T Hv2(q)q̇
q̇T Hv3(q)q̇

3

5and J̇cq̇ =

2

4
q̇T Jv1(q)q̇
q̇T Jv2(q)q̇
q̇T Jv3(q)q̇

3

5 (4)

where Hvi and Jvi (i = 1,2,3) are known and bounded
matrices of q. Hence, at a given posture acv is bounded:

||acv||2 = ||�JcA�1h+ J̇cq̇||2  b (q)||q̇||22, (5)

where b is a known function of q. The gravity effect at a
given posture q can be directly computed from

||acg||2 = ||�JcA�1c||2. (6)

III. FEASIBLE COM DYNAMIC MANIPULABILITY

Different from a fixed-based robot manipulator, humanoid
locomotion is subject to various ground-contact constraints.
These constraints decide the feasible subset of the torque-
bounded CoM dynamic manipulability polytope. This fea-
sible subset is defined as the Feasible CoM Dynamic Ma-
nipulability (FCDM) Polytope. Here, three common ground-
contact constraints in humanoid locomotion are considered,
including 1) the unilateral ground-contact constraint, 2) the
friction constraint, and 3) the CoP constraint (i.e., the ZMP
balance criterion). They are mathematically and respectively
described as: 1) Fz � 0

2)
q

F2
x +F2

y  µ|Fz| (7)

3) rp 2 {SP}\∂{SP}

where Fx, Fy and Fz are the x-, y- and z-components of
the ground reaction force FR, respectively, µ is the friction
coefficient, rp = [xp,yp,0]T is the CoP/ZMP location on the
horizontal even terrain, {SP} is the support polygon, and
∂{SP} is the boundary of {SP}.

To analyze the effects of the above constraints, a planar
humanoid robot (see Fig. 4) is considered. Combined with
the unilateral constraint, the friction constraint becomes

�µFz  Fx  µFz. (8)

Since Fx = Mẍc and Fz = Mz̈c +Mg (g = 9.81 m/s2 and M
is the total mass), the set of achievable CoM acceleration
bounded by the friction constraint is then described by

�µ(z̈c +g) ẍc  µ(z̈c +g). (9)

For a planar robot, the CoP constraint becomes x0 < xp <
x0+d f , where x0 is the heel location and d f is the length of
the support foot. The CoP location in the x-direction [14] is

xp = x0 +h f +
m f gc f � t1 �Mẍct f

M(g+ z̈c)
(10)

where m f , c f , h f and t f are the mass, ankle-CoM distance,
ankle-heel distance and height of the support foot, respec-
tively, and -t1 is the joint torque applied to the support foot
(see Fig. 4). Combined with the unilateral constraint, the
subset of the achievable CoM acceleration bounded by the
CoP constraint then becomes

0 <
m f gc f � t1 �Mẍct f

M(g+ z̈c)
+h f < d f . (11)

Fig. 4: Support Foot Geometry.

A. Effects of Ground-Contact Constraints on the Achievable
CoM Acceleration at a Given Posture

From Eq. (9), it is clear that the subset bounded by the
friction constraint only depends on the friction coefficient.
However, Eq. (11) indicates that the subset bounded by the
CoP constraint is dependent on the given posture and the
torque limit. Therefore, it is not straightforward to determine
how the CoP constraint shrinks the original torque-bounded
polytope geometrically. The FCDM polytopes for two planar
robots with zero joint velocities are shown in Fig. 5.

Figure 5 shows that the friction constraint is indeed not
affected by the torque constraint or the posture because the
corresponding boundaries in two cases are the same. Also,
the 3-DOF robot at the given posture has a relatively larger
subset bounded by the CoP constraint compared with the
2-DOF robot. It indicates that the higher DOF may have
higher capacity to regulate CoM acceleration.

From Fig. 5 we can also see that the achievable CoM
acceleration in different directions is drastically different due
to the existence of the ground-contact constraints. Previous
research on evaluation of a robot’s dynamic performance
is more focused on the global performance [15], [16]. Here,
our interest is in the maximum achievable CoM acceleration
in a specific direction. Thus, it is necessary to first analyze
the effects of ground-contact constraints on the maximum
achievable CoM acceleration in different directions. The
following analysis is based on Fig. 5(b).

1) Horizontal Direction: When the CoM acceleration is
exactly horizontal, its magnitude is at most µg due to the
friction constraint. It also indicates that the CoM acceleration
in this case may be realized by an infinite number of postures
for a redundant robot.

2) Downward Direction: The vertical downward CoM
acceleration is at most g in magnitude, which is determined
by the unilateral constraint. For general downward acceler-
ation, its magnitude is bounded by the friction constraint
(implicitly with the unilateral constraint). There may exist
infinitely many postures for CoM acceleration maximization.

5084



Fig. 5: Feasible CoM Dynamic Manipulability Polytopes
(FCMP) (black dot-dash: boundary of the subset bounded
by the joint-torque limit; red solid: boundary of the sub-
set bounded by the friction constraint (implicitly with the
unilateral constraint); blue dash: boundary of the subset
bounded by the CoP constraint (implicitly with the unilateral
constraint and the joint-torque limit); green shaded: subset
bounded by the joint-torque limit and the three ground-
contact constraints; that is, FCMP).

3) Upward Direction: The upward CoM acceleration is
bounded by the CoP constraint (implicitly with the joint-
torque constraint) and the friction constraint. For the direc-
tions bounded by the friction constraint, an infinite number
of postures may exist for maximization of CoM acceleration.
For the directions bounded by the CoP constraint, a unique
optimal posture may exist.

B. Numerical Posture Search for Maximum Feasible CoM
Acceleration in Different Directions

The optimal posture that results in the maximum CoM ac-
celeration in a specified direction can be found numerically

by solving the following optimization problem:

max||r̈c(q,ttt)|| (12)
subject to q 2 [qmin,qmax]

ttt 2 [�tttmax,tttmax]

q̇ = q̇0

r̈c = JcA�1(ttt �h� c)+ J̇cq̇
Fz � 0
q

F2
x +F2

y  µ|Fz|

rp 2 {SP}\∂{SP}
\(r̈c) = g

where g specifies the desired direction of the CoM acceler-
ation and q̇0 is the given joint velocities.

Fig. 7: Maximum Feasible CoM Acceleration at the Optimal
Postures in Fig. 6(a).

Simulation results on a planar robot confirmed the pre-
vious analysis. The maximum feasible CoM acceleration
bounded by the friction constraint can be achieved by an
infinite number of postures. For each of the other directions,
there exists a unique optimal posture. Figure 6(a) shows the
optimal postures for seven of those directions. The maximum
feasible CoM acceleration in each of those seven directions
is shown in Fig. 7 (red line). The blue line in Fig. 7 shows
the magnitude of the corresponding gravity-influenced com-
ponent acg computed based on Eq. (6). According to Eq. (5),
the magnitude of the joint-velocity induced component acv
at a given posture is bounded. Because the joint-velocity
variable q̇0 is set to zero in the optimization, the upper bound
of the joint-velocity induced component acv is computed
with ||q̇|| p rad/s (see Fig. 7 green line).

From Figs. 6-7, we discover that:
• The maximum CoM acceleration in the upward direc-

tion as shown in Fig. 6(a) seems to be achieved when
the hip joint is close to singularity;

• Because the changes of both the knee and the hip
angles are relatively small at different optimal postures
as shown in Fig. 6(a), the ellipse orientation seems to
change with the ankle angle monotonically;

• The major axis of the torque-bounded ellipse aligns
approximately with the specified CoM acceleration
direction (see Fig. 6(b));

• ||acg|| is relatively small at the optimal postures for
different directions as shown in Fig. 6(a) possibly
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Fig. 6: Optimal Postures for Achieving Maximum Feasible CoM Acceleration in Different Directions and Corresponding
Torque-Bounded CoM Dynamic Manipulability Ellipses (Specified CoM Acceleration Directions (from left to right): 45�,
60�, 75�, 90�, 105�, 120�, 135�).

because it requires relatively less actuation power to
hold the robot weight near singularity [17];

• The translational effect of the joint velocities on the
ellipse center is relatively small in magnitude compared
to ||ac||max; however, it may induce a significant change
of the achievable maximum CoM acceleration in the
specified direction [13].

IV. PUSH RECOVERY AT A STANDING POSTURE

A. Problem Formulation
In this section, a standing posture, selected by the numer-

ical optimization in Section III-B, is adopted as the initial
posture for a push recovery task. For simplicity, a planar
robot with two revolute joints is simulated. The robot is static
before the push and the instantaneous push is known. Also,
the initial CoM velocity right before the push is relatively
small so that the robot is able to recover from the push with
little posture change. The simulation results are compared
with another initial posture at which the achievable CoM
deceleration in the push direction is much smaller. A non-
linear model predictive controller (NMPC) [18] is designed.

The state and the control input are chosen to be x =
[q1,q2, q̇1, q̇2]T and ttt = [t1,t2]T , respectively. The optimal
control problem over a finite horizon N at time step k is
formulated as

min
ttt⇤

k+N�1

Â
i=k

(xT
tiPxti + ttt⇤T

i Qttt⇤i ) (13)

subject to xti 2 [qmin,qmax]

ttt⇤i 2 [�tttmax,tttmax]

f (xti,ttt⇤i ) 0

where xti is the predicted state at time step i, ttt⇤i is the ad-
missible control input at time step i, P and Q are hand-tuned

semi-positive-definite and positive-definite weighting matri-
ces, respectively, and f (xti,ttt⇤i ) 0 represents a set of linear
constraints including the full dynamics and the ground-
contact constraints. The hand-tuned parameters are chosen
as N = 3, P =diag[0,0,104,104], and Q =diag[0.1,0.1].

B. Simulation Results

Simulation results are shown in Fig. 8 and Fig. 9. The
initial CoM velocity ṙc0 after a gentle push in both cases
is horizontal in the positive x-direction, and ṙc0 = [7.85
cm/s,0]T . The maximum CoM acceleration in the negative
x-direction at Posture 1 and Posture 2 is 7.85 m/s2 and 0.74
m/s2, respectively. Simulation results show that the robot in
Example 1 is recovered from the push in 4 time steps (see
Fig. 8) while in Example 2 (see Fig. 9) the recovery time is
14 time steps. It verified that a robot’s posture can indeed
affect its maximum feasible CoM acceleration, and thus the
posture should be carefully selected.

V. CONCLUSION

In this paper, we have introduced the concept of Feasible
CoM Dynamic Manipulability for analysis and evaluation of
the CoM acceleration capacity of a humanoid robot subject
to ground-contact constraints. By analyzing the torque-
bounded CoM dynamic manipulability ellipsoid of a planar
n-DOF humanoid robot, it was analytically found that the
orientation of the ellipse is dependent on the ankle joint
linearly and that the ankle joint does not affect the shape
of the ellipse. Also, the joint velocities and the gravitational
force have a translational effect on the ellipsoid center. For
a walking humanoid robot in the single-support phase, three
common ground-contact constraints were incorporated to
generate the feasible CoM dynamic manipulability polytope
at a specific posture. The effects of the constraints on the
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Fig. 8: Example 1: Push Recovery with an initial posture
[q1,q2]T = [105�,110�]T (1 time step=0.01 s).

maximum achievable CoM acceleration in different direc-
tions were analyzed on a planar humanoid robot with results
that are extendable to a spatial humanoid robot. The best
posture to achieve the maximum CoM acceleration in a given
direction can be found by utilizing the proposed numerical
optimization. The selected optimal posture was applied to a
humanoid robot in a push recovery task. Simulation results
verified that the initial posture indeed greatly affects the
recovery time.

Results in this paper are helpful in deciding the optimal
posture of a humanoid robot to achieve maximum acceler-
ation in a specific direction. It might also provide a useful
analysis tool for the actuator design of a humanoid robot.
Most of the results applicable to planar robots in this study
can also be extended to spatial humanoid robots.
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