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Abstract: This paper introduces a hybrid invariant extended Kalman filtering (HInEKF)
method for a class of nonlinear hybrid dynamical systems with state-triggered jumps and group
affine continuous-time subsystems. The method is derived based on the provable extension of the
existing InNEKF design for group affine systems without state-triggered jumps. Sufficient stability
conditions are provided to guarantee the asymptotic error convergence for the hybrid system.
Furthermore, the complete characterization of nonlinear jump maps whose associated error
jump maps are identity on the matrix Lie group is provided along with the greatly simplified
observer design for such systems. Simulation results of bipedal walking on a dynamic rigid
surface (i.e., rigid surfaces that move in the inertial frame) validate the theoretical results.
Comparative simulations demonstrate the effectiveness of the proposed HInEKF methodology
over the existing salted extended Kalman filtering (SEKF) for hybrid systems with state-

triggered jumps.

1. INTRODUCTION

Various critical real-world applications demand accurate,
provably stable estimator designs for hybrid systems with
state-triggered jumps. Such systems include legged robot
locomotion systems, which have the potential to benefit a
wide range of tasks such as delivery and carrier services
and emergency response. Yet, state estimation for these
systems remains a challenging problem mainly due to their
complex dynamics that involve continuous-time subsys-
tems and state-triggered jumps (e.g., sudden changes in a
walking robot’s suppot-foot positions at foot touchdowns).
In particular, these jumps may cause sudden increases
in the estimation errors, and their occurrence is state-
dependent (Saccon et al.| (2014])); Igbal et al.| (2020, |2021)).

1.1 Related Work

Observer designs for linear hybrid systems with state-
triggered jumps have been recently introduced to achieve
provable error convergence (Bernard and Sanfelice| (2018]);
Rios et al| (2020)). Real-time observers for nonlinear
hybrid dynamical systems with periodic solutions (e.g.,
legged locomotion systems) have been created to provably
guarantee the error convergence based on the orbital sta-
bility conditions (Hamed et al|(2018)). Yet, this method
cannot be used to estimate nonperiodic state trajectories
of general nonlinear hybrid systems. To estimate general
(periodic or nonperiodic) state trajectories, the Salted Ex-
tended Kalman Filter (SEKF) has been introduced (Kong
et al.| (2020)), which expands the extended Kalman filter
(EKF) from systems without jumps to nonlinear hybrid
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dynamical systems. The key novelty of this approach is
to propagate the estimated covariance matrix through
the saltation matrix (Saccon et al| (2014)) at a jump
event. Still, it suffers from the common disadvantage of
the EKF in handling nonlinear systems; that is, the fil-
ter is built upon a system linearization whose accuracy
cannot be controlled and thus adversely affects the gain
computation (Barrau and Bonnabel (2017)). Thus, the
SEKF cannot provably guarantee the error convergence
for a deterministic nonlinear hybrid system.

For systems with invariant dynamics on Lie groups
and without state-triggered jumps, invariant extended
Kalman filters (InEKF') have been introduced (Barrau and
Bonnabel (2017); |de Ruiter and Forbes| (2017))). Because
the linearized error dynamics during the propagation step
of filtering are independent from the group configuration,
the InEKF is an asymptotic observer for deterministic
group affine systems. Its guarantee on asymptotic er-
ror convergence is in sharp contract to the conventional
EKF that cannot ensure such provable convergence. Re-
cently, the InEKF has been applied and experimentally
implemented for bipedal walking on stationary surfaces
under the assumption that the jump events (i.e., foot
touchdowns) are instantaneously detected (Hartley et al.
(2020)). The InEKF achieves significant improvement in
state estimation performance (e.g., convergence rate) over
existing EKF-based methods (Bloesch et al.| (2013)); Bledt
et al| (2018)). However, this method is created largely
based on the continuous-time subsystem of the hybrid
walking dynamics. In particular, the error convergence is
not provably analyzed for the hybrid model of bipedal
walking.



1.2 Contributions

This study aims to introduce a provably convergent hy-
brid invariant extended Kalman filtering (HInEKF) ap-
proach for a class of nonlinear hybrid dynamical systems
with state-triggered jumps under the assumption that the
jumps are instantaneously detected. To our best knowl-
edge, this is the first time that InEKF has been provably
extended to explicitly address nonlinear hybrid systems
with state-triggered jumps.

The main contributions of this study are: a) provably
extending the INEKF method to a general class of nonlin-
ear hybrid systems with state-triggered jumps under the
assumption of instantaneous jump detection. b) Charac-
terizing a class of hybrid dynamical systems whose deter-
ministic error jump map on Lie groups is identity. Such
systems enjoy the rare property for hybrid systems with
state-triggered jumps that the error on Lie groups does not
expand when the true state jumps. ¢) Validating the con-
vergence of the proposed filter design through simulations
of a new locomotion task of bipedal walking on nonsta-
tionary surfaces. d) Demonstrating through simulations
the improved convergence performance of the proposed
HInEKF over the existing SEKF for hybrid systems.

This paper is organized as follows. Section 2 explains a
brief mathematical background on Lie groups. Section 3
presents the problem formulation. Section 4 introduces
the proposed HInEKF algorithm for state-triggered jumps.
Section 5 discusses the Lyapunov-based stability analysis
of the proposed estimator. Section 6 provides the complete
characterization of a particular class of hybrid dynamical
systems whose estimation error jump maps under the
HInEKF are identity. Section 7 reports the simulation
setup and results that validate the proposed filter design.
Section 8 gives the concluding remarks.

2. PRELIMINARIES

The matrix Lie group, denoted as G, is a subset of
N x N invertible square matrices possessing the following
properties: Iy € G; VX € G, X! € G; and VX;,X, €
G,X1X5 € G, where Iy is an N x N identity matrix. The
associated Lie algebra g with a dimension of dimg is a
set of N x N square matrices. The linear operator (-)"
maps any vector £ € RY™8 onto g. The exponential map,
exp : RIm8 _ G is defined as: exp(€) = expm(£”), where
expm is the usual exponential of N x N matrices. The
inverse operator of ()" is denoted as (-)V : g — Rdim8,
The adjoint matrix of any vector & € R4™8 at X € G is
defined as Adx& = (X&"X~1)V.

3. PROBLEM FORMULATION

3.1 Hybrid Systems with State-Triggered Jumps on Matriz
Lie Groups

This study considers the following deterministic, nonlinear

hybrid dynamical system on the matrix Lie group G:
4X, =1,,(Xy), if X;€D\S; 1)
X+ = AXy), if X e85,

where X; € G is the state, u; € RP? is the input, and

A(X:) : G — G is the jump map. £,,(X;) : G —» Tx M is
2

the vector field of the continuous-time subsystem, where
Tx M is the tangent space at X with M the Lie group’s
manifold. The variable X;+ represents the value of X just
after the jump at ¢. The domain D is a closed subset of G.
The guard S is a co-dimension one submanifold of D. The
domain and guard are defined as:

D:={XeG : ¢t X) >0} and (2)
S:={XeG : ¢t,X)=0and ¢(t,X) <0}. (3)

Note that the state dependence of the scalar function
¢ : Rt x G — R causes the jump to be state-triggered.

Assumption 1. This study considers the following as-
sumptions on the system model:

(A1) The wvector field f,,, the jump map A, and the
function ¢ are locally Lipschitz in their arguments.

(A2) No state trajectories undergo infinite jumps within a
finite period (i.e., Zeno behavior is excluded).

(A3) The continuous-time subsystem is group affine as
defined next.

3.2 Group Affine Continuous-Time Subsystem

As this study focuses on filter design for hybrid systems
with group affine continuous-time subsystems, this subsec-
tion explains the definition and property of group affine
systems (Barrau and Bonnabel| (2017))).

Definition 2. (Group affine condition) A continuous-
time system %Xt = f,,(X:) on a matriz Lie group G is
group affine if £, satisfies f,,(ab) = f,,(a)b + af,,(b) —
af,,(In)b for allt € RY, where a,b € G.

Definition 3. (Invariant estimation errors on Lie groups)
Let Xy € G be the state estimate. Then the left- and right-
invariant estimation errors of the system %Xt = £, (Xy)
are respectively defined as n} := X;7'X; and = X, X;*
with superscripts | (and r) indicating the left (and right)
tnvariance.

Proposition 4. (Continuous-time error dynamics inde-
pendent from state trajectories on Lie groups): Consider a
group affine continuous-time system %Xt =f,,(X¢). The
dynamics of the left- and right-invariant errors of the sys-
tem are independent from the state trajectory Xy; that is,
&t = g, (nh) and Gnp = gy, (n7) with gl,, = £,,(n') —
fut (IN)Ul and gzt = fuf, (nr) - T’rfuf, (IN)

Proposition 5. (Linear continuous-time dynamics of
logarithmic errors): Consider a group affine continuous-
time system %Xt = f,,(Xt). For any initial values of
the invariant error my € G with i € [l,r], let the vector
€ € R¥S be defined such that emp(fio) = n%o and
%Ei = AIE! for t > to, where the matriz Al is defined
as &, (emp(&;)) = A, + O(|€1]1°). Then, for any t > to
and arbitrarily large ¢, the correspondence ni = exp(€L)
always holds.

By Proposition 5, the equation of the logarithmic error
&, for a group affine system %Xt = f,,(X;) is exactly
linear, which is the key to the provable error convergence of
InEKF as a stable observer for deterministic, group affine
systems without state-triggered jumps.



8.8 Filter Design for the Continuous-Time Subsystem

The proposed HInEKF directly utilizes the existing InEKF
methodology (Barrau and Bonnabel (2017); [Barrau and
Bonnabel (2018)) to handle the group affine continuous-
time subsystem in Eq. (1), as explained next.

For brevity, only the right-invariant EKF (RInEKF) al-
gorithm is presented, and the corresponding superscript
r is dropped for notational simplicity. The left-invariant
counterpart is given in (Barrau and Bonnabel| (2017)).

Process and measurement models. The process model
of the continuous-time subsystem in Eq. (1) is %Xt =
f,,(X;). The j*" element of a class of measurement mod-
els that satisfies the right-invariant form (Barrau and
Bonnabel (2017)) is Y., = X; 'd;, j € {1,2,...k}, where
tn (n € NT) is the timing of the n'" measurement update,
k is the number of outputs, Y, € RY is the j** output
at time step ¢, and d; € RY is a known vector.

Filter design for continuous-time subsystems. The
propagation and the right-invariant measurement update
are respectively given by:

d_ _
%Xt = f,,(X:) (Propagation)

X|, = exp(Ly, %)Xy, (Update)
with Zt_n = [(thYLtn - dl)T7 ooy (thYk,tn - dk)]T,
where Xln is the updated state estimate at time step %,
and L;, € RImM8xEN is the gain to be designed next.

(4)

Gain computation based on a noisy system. To de-
sign the filter gain L, for the continuous-time subsystem,
we first associate a fictitious noisy system with the process
and measurement models (Barrau and Bonnabel| (2017));
Barrau and Bonnabel (2018)); |Grizzle and Song| (1995)).
Design the gain based on a noisy system could help inform
the filter tuning for real-world stochastic systems. The
noisy system and measurements are expressed as:

d
axt = fut (Xt) + Xt’UJt and (5)
Y, =X (dj + Vi) + Bja,, (6)

where w; € g represents a continuous white noise with
covariance matrix Q, and the vectors V;, and Bj;,
are noises with known characteristics. Accordingly, during
the propagation step, the linear error dynamics in R4™8
becomes:

d

%ﬁt = A&, + wy, (7)
where the noise w; = —Adg, (w)’) is zero-mean Gaussian.

During the update step, linearized error equation can be
obtained through a first-order Taylor expansion of the
update in Eq. (4) with the noise V;, and B, ;, in Eq. (6)
incorporated. The resulting linearized error equation is:

EI,L =(I-L,H)¢, +L;, (Vy,+By,), (8)

where I is an identity matrix with an appropriate di-
mension. The matrix H € RFNXdm8 and the vectors
V., € R*N and B;, € R* are defined as H¢ =
[((©)"d)T,.... (&) dp)T]", Vi, = [V, ... Vi, ]",
.y thBk:,tn]T-

and Btn = [thBLtn’ ..

The gain Ly, is computed through the following Riccati
equation of the matrix P, € Rdmexdimg which is built
upon the linearized error equations in Eqgs. (7) and (8):

d _
P = AP+ P,AT +Q, and P{ = (I-L, H)P;,
B (9)
with S; = HP; H” + N; and L; = PthTS;l. The
matrix 151” is the updated value of P; at time step t,,, and
Qt and Ntn_are the covariance matrices of the noise w;
and Vy, + By, , respectively. The initial value Py of the

matrix P, is set to be symmetric, positive definite, i.e.,
Py = Pg; and Py > 0.

Asymptotic error convergence for the continuous-
time subsystem. The following proposition provides the
sufficient stability conditions of the proposed HInEKF for
the continuous-time group affine subsystem, which is a
direct adaptation of the existing INEKF theory for systems
without state-triggered jumps.

Assumption 6. Consider the group affine continuous-
time subsystem %X, = £,,(X;) and the associated filter

design in Egs. (4) and (9). Let ®; denote the square

matriz defined by <I>§g =1 %@io = At‘I’zt:07 and ‘I'g =
(I— L, H)®; . Assume that there exist positive numbers
ay, ag, B1, B2, 01, 02, and 03 and a positive integer M such
that following conditions are satisfied about the system’s

true state trajectory X;:

(B1) (®,"+)T®," > §,L

(B2) 3¢ € N*, vt > t,,3G, € RP*?, Q; = G,QG/,
where Q > 451

(B3) Ny, > 051

(34) O[QI Z fttniM (I)ZHQS((I)ZH)TdS Z OélI.

(B5) Bo1 > 300, (@), )THTN, 'HE{:

tit1

> p1LL

Note that the conditions in Assumption 6 are analogous
to the sufficient conditions (Deyst and Price| (1968))) that
guarantee a Kalman filter to be a stable observer for linear
deterministic systems without state-triggered jumps.

Proposition 7. (Asymptotic stability of HInNEKF for the
continuous-time subsystems) Consider the group affine
continuous-time subsystem %X, = f,,(X;) and the asso-
ciated filter design in Eqs. (4) and (9). Suppose the initial
value Py, is chosen as symmetric, positive-definite. If there
exist positive numbers ay, as, (1, B2, 01, 02, and 03 and
a positive integer M such that the conditions in Assump-
tion 6 are satisfied about the system’s true trajectory X,
then by the existing InEKF theory (Barrau and Bonnabel
(2017)), the proposed HInEKF is an asymptotically stable
observer for the continuous-time subsystem.

3.4 Problem Statement

The proposed HINEKF for the continuous-time subsystem
has been introduced based on the direct extension of the
existing InEKF for group affine systems without state-
triggered jumps. The remaining tasks of the proposed filter
derivation is: a) to explicitly handle the state-triggered
jumps in filter design; b) to provide sufficient stability
conditions of the resulting hybrid error system; and c) to
completely characterize a class of nonlinear jumps whose



error jump maps are identity on the Matrix Lie groups,
thus greatly simplifying the observer designs for systems
with such jump maps.

4. FILTERING AT STATE-TRIGGERED JUMPS

This section introduces the proposed filtering algorithm
that provides state and covariance estimates on the matrix
Lie group across a jump event. The proposed algorithm,
in conjunction with the design (Egs. (4) and (9)) for the
continuous-time subsystems, form the complete HInEKF
framework.

Assumption 8. The following assumptions on the jump
events are considered in the proposed filter design:

(C1) The occurrence of jumps is instantaneously detected;
that is, the jump times are directly sensed (Hartley
et al.| (2020)).

(C2) Measurement updates are not available at jumps.

(C3) Without loss of generality, the timings of measure-
ment updates for the continuous-time subsystem do
not coincide with the jumps events.

As it is assumed in this study that there is no measurement
update at a jump (Assumption 8), the focus of the filter
design at a jump event is to propagate the state estimate
X; and covariance estimate P; across the jump. Similar
to the filtering of the continuous-time subsystem, the
proposed propagation for the jump event is synthesized by
considering the true state as a random variable, with the
objective of closely reflecting the statistic distribution of
the true state across a jump event. This will help ensure
that the computation of the filter gain in Eq. (9) would
minimize the error variance for the linearized, Gaussian
continuous-time subsystem in Eqgs. (7) and (8).

4.1 HInEKF Algorithm for State-triggered Jumps

The key to the proposed propagation step is to form
the linearization of a jump event based on its saltation
matrix. Such linearization has been utilized for a filter
design in Euclidean space (i.e., SEKF), and the proposed
algorithm extends it to matrix Lie groups. This lineariza-
tion is theoretically more accurate than the one adopted
in previous InEKF design for legged locomotion (Hartley
et al.| (2020)), which is constructed based on the Jacobian
matrix of the jump map.

Process model. Under the assumption that the jumps
are instantaneously detected (Assumption 8), it is rea-
sonable to let the state and covariance estimates jump
simultaneously as the true state jumps. By the hybrid
system dynamics in Eq. (1), the process model of a jump
at time ¢ is given by X+ = A(Xy).

Jump map linearization. The propagation of the state
and covariance estimates is based on the following first-
order approximation of the true state at the linearization
point Xj:

X+ = AXy) + E(Xp)E, + O(€, %), (10)
with , 2(X¢) := J(Xe)+((£F .
DA [ % (Xe) + X
ﬁ(xt» .gitp(xtDigid)(xt)fw) where fut - fu‘ (A(Xt)) ’

4

£, =1£,,(X;), and the left Jacobian J(X;) : g — g is de-
fined as J(X;) := 82 (X;). The expression of the saltation
matrix is obtained by extending the usual expression in
Euclidean space (Kong et al.[(2020])) to matrix Lie groups,
by applying the chain rule of differentiation and computing
Jacobian matrices on matrix Lie groups.

Propagation through the jump. Analogous to the filter
design of the continuous-time subsystem, we consider the
logarithmic error &, at the jump time ¢ to be a Gaussian
random variable with zero mean and covariance P¢. Then,
the proposed propagation of X; and Py is expressed as:

X+ = A(X;) and Py = E(X,)P,E"(X) (11)
which accurately reflects the mapping of the mean and
covariance of the state across a jump for the linearization
at X; in Eq. (10). For non-Gaussian systems, this algo-
rithm serves as an approximation of the propagation of the
essential features of the true state’s conditional probability
density function at a jump event.

4.2 Summary of HInEKF
The complete algorithm of the proposed Right-HInEKF is

summarized in Algorithm 1. The Left-HInEKF is analo-
gous to this algorithm and omitted for brevity.

Algorithm 1 Right-HInEKF for Hybrid Systems with
State-Triggered Jumps
Initialize X;, € G. Initialize Py € Rdii“Wdimg as sym-
metric, positive-definite. Define Q; and N, as covariance
matrices of w,; and V;, + By, respectively.
while True do
if a jump is detected then
Propagation at a jump

Xf=ARX;-), P{=JrP-(IMT+QP

else
Propagation for continuous-time subsystem
%Xt = £, (X4), %Pt =AP, +PAT +Q
Update for continuous-time subsystem
S, =HP, H" + N, , L, =P, H'S;!

PIH = [I - Lth]Ptn7 in = exp(Ly, Ztn)th

end
end

5. CONVERGENCE ANALYSIS

This section introduces the convergence analysis of the
proposed HINEKF design for deterministic nonlinear hy-
brid dynamical systems with state-triggered jumps and
group affine continuous-time subsystems. The analysis
produces a set of sufficient conditions under which the fil-
ter is an asymptotically stable observer for the considered
deterministic hybrid dynamical system.

Because the jump times are directly sensed (Assump-
tion 8), the state estimate jumps simultaneously with the
true state. Thus, intermittent error divergence caused by
the mismatch between their jump times (Bernard and San-
felice| (2018))) do not exist, which allows Lyapunov-based

(A™H(X )V =J(X,)(F X 1)V —stability theory to be exploited to analyze the closed-loop

stability of the hybrid filter.



Theorem 9 (Sufficient stability conditions.). Consider
Assumptions 1, 6, and 8. Let 1., be the m*" jump time with
m € {0,1,2,...} and 79 = to. Assume that there exists a
positive integer kr such that T,11 — T > k: MAT, where
AT is the sampling interval of the measurement update for
the continuous-time subsystem and the positive integer M
is defined in Assumption 6. Then, the proposed HInEKF in
Eqgs. (4), (9), and (11) is a (locally) asymptotically stable
observer for the overall hybrid system in Eq. (1) if there
exists sufficiently large k. or if there exist appropriately
chosen Q; and N; that guarantee a sufficiently high con-
vergence rate for the continuous-time error dynamics.

Sketch of proof. The key to the proof of Theorem 9 is the
stability analysis of the hybrid closed-loop error system
based on the multiple Lyapunov function (MLF) the-
ory (Branicky| (1998)). According to the MLF stability
theory, a hybrid system is asymptotically stable if there
exists a Lyapunov function candidate that asymptotically
decreases with each domain and their values right after
each switching form a strictly decreasing sequence. Guided
by the MLF stability conditions, Theorem 9 can be proved
by designing the Lyapunov function candidate as V;(&,) =
§tTP; 1575 and by exploiting the provable error convergence
of the continuous-time subsystem (Proposition 7). The full
proof is omitted for space consideration. O

6. IDENTITY ERROR JUMP MAP ON LIE GROUPS

This section introduces a set of conditions that character-
ize a class of hybrid dynamical systems whose error jump
maps are identity on the matrix Lie group G, as well as
the attractive convergence property of their error systems
under the proposed HInEKF.

Theorem 10. (Identity error jump map on matriz Lie
groups) Consider the jump map X+ = A(Xy). The jump
maps of the right- and left-invariant (logarithmic) errors
are respectively identity, if and only if for any t € RT and

a,b € G the following conditions respectively hold:
A(ab) = aA(b) (right-invariant); (12)
A(ab) = A(a)b (left-invariant).

Proof. This proof focuses on the right-invariant case and
the superscript r is dropped for brevity. The proof for the
left-invariant error can be derived analogously.

Combining X; = 1,X;, X+ = A(Xy), and X4+ = A(X;)
yields

Ner = By(ny) o= A(th)(A(Xt))_l- (13)
Equation (13) has to hold for any X; and n,. Thus,
choosing X; = Iy, the equation becomes

Ay(my) = A(n)(AN)) (14)
Substituting Eq. (14) into Eq. (13) gives
A1, Xe) = A(n,)(A(Iy)) T A(Xy). (15)

From Eq. (13), we know that to obtain A, (n,) = 7, the
following equation needs to hold

A(n,) = n,A(Ly), (16)
which, combined with Eq. (15), leads to
AN Xy) = 0, A(Xy). (17)

O

A real-world estimation problem that involves an identity
error jump map on the matrix Lie group is formulated and
simulated in Section 7.

Corollary 11. (Jump map Jacobian): If the jump map
A satisfies the identity error jump condition in Eq. (12),
Its Jacobian matriz J(X) = B2(X,) is always ezactly
identity for any arbitrary estimation error &,.

The proof of Corollary 11 is omitted for brevity.

Proposition 12. (Simplified filter design and sufficient
stability conditions) For a deterministic hybrid dynamical
system with form (1), the saltation matriz in the covari-
ance propagation in Eq. (11) can be replaced with the Jaco-
bian matriz J(X;). Then, the proposed HInEKF design is
an asymptotically stable observer for a hybrid system with
identity error jump maps, if the stability conditions for
the continuous-time subsystem alone (i.e., the conditions
in Assumption 6) are met.

Proposition 12 is valid essentially because the determinis-
tic hybrid error system becomes a system without state-
triggered jumps under the proposed identity error jump
condition. The proof is omitted for brevity.

7. CASE STUDY: BIPEDAL WALKING ON A
DYNAMIC RIGID SURFACE

This section presents simulation results that validate the
stability and convergence performance of the proposed
HInEKF through simulations of planar bipedal robot
walking on a rigid surface with a vertical motion (e.g.,
an elevator). Comparative simulations of the SEKF are
also presented to illustrate the enhanced performance of
the proposed HInEKF.

Note that in this case study some details of the filter design
for the continuous-time subsystem (e.g., state representa-
tion and process and measurement models) are analogous
to previous work (Hartley et al. (2020))). The main dif-
ferences from the previous design lies in the treatment
of the jump event, including the process model of the
jump map and accordingly the propagation step at the
jump event. Also, the surface is nonstationary instead of
static, thus resulting in a time-varying rather than time-
invariant guard GG, which allows us to validate the proposed
theoretical method under a more general form of hybrid
transitions.

7.1 Simulation Setup

This subsection explains the simulation setup for the
validation of HInEKF and SEKF.

‘Walking robot. The simulated planar robot has six revo-
lute joints (Fig. 1 a). The walking robot is a single-domain
hybrid dynamical system (Gao and Gul(2019)). The aver-
age walking speed is 0.35 m/s. The length and height of
one walking step are 0.8 m and 0.17 m, respectively. The
duration of this simulation is 80 s.

Dynamic rigid surface. A rigid surface (Fig. 1 b), with
vertical displacement y, = 0.3cos(2¢) m, is simulated to
emulate common real-world platforms such as elevators.



Sensors. Sensors commonly installed on legged robots
are simulated, including: a) an inertial measurement unit
(IMU) that measures the linear acceleration and angular
velocity of the base frame with respect to (w.r.t.) the
base frame; b) encoders that measure the joint angles
a: = [q1,-.-,q6)7; ¢) LiDAR that measures the relative
distance between the robot and known landmarks in the
world frame; and d) a contact sensor that detects the
occurrence of jump events.

In addition, we assume the surface velocity at the support-
foot location is directly measured, which would be realistic
for real-world application of legged robot locomotion on
moving platforms such as ships whose motion monitoring
system measures the surface motion. All sensors return
data at 500 Hz except for the LiDAR that runs at 5 Hz.

To assess the filters’ performance in a relatively realistic
scenario, sensor noises are simulated. To reflect the typical
noise characteristics of real-world sensors on legged robots,
the sensors’ noise standard deviations are: 0.2 m/s? (base
linear acceleration), 0.04 rad/s (base angular velocity),
1.0° (joint angle), 0.1 m (LiDAR), and 0.1 m/s (surface
velocity).

a) [llustration of
planar robot

b) System setup

Landmark Landmark
I Walking
Y, direction
0 X
w W —
World qF
frame

[ 1

Fig. 1. An illustration of the simulated planar bipedal
walking on a dynamic rigid surface.

State representation. The variables to be estimated are
chosen as those commonly used in the planning and control
of legged locomotion: base position p: = [ps,py]|7, base
velocity vy = [vaj,vy]T7 base orientation 6, and support-
foot position d; = [d,, d,]", which are all expressed in the
world frame.

The state representations in HInEKF and SEKF are:
R(0) vi pt dy

1012 100
Xe:= |72 o 1 (| €SEs(2) (HINEKF) 18)
01,0 0 0 1

x; = [pt,vi,d!,6,]7 € R” (SEKF)

where Ry (0;) := [Z?sgf)) _czlsrz(ﬁ%)} is a rotation matrix.

Covariance matrices. The matrices Q; and N, are
set to represent the true uncertainty of the process and
measurement noises.

Initial errors. Initial base-position errors are 0.33 m (X,,-
direction) and 0.7m (Y,-direction); initial base velocity
errors are uniformly distributed within [1, 0.5] m/s (X,,-
direction) and [1.3, 1.3] m/s (Yi-direction); and initial
orientation errors are uniformly distributed within [1.3,
1.3] rad. These relatively large initial estimation errors

allow us to assess the regions of attraction of HInEKF
and SEKF.

7.2 HInEKF Design for Continuous-time Subsystems

Associated noisy system. The input u; is defined as
u; = [@,al, (vHT]T, where the scalar variable ©; and
the vector a; € R? are the raw data returned by the IMU’s
gyroscope and accelerometer, respectively, and v§ € R? is

the sensed surface velocity at the support-foot location.

The continuous-time process model augmented with noise
is expressed as:

p Ry () x Reay +g vy v
01x2 0 0 0
—X; = X
at’ O1x2 0 0 0| T ()
01x2 0 0 0
= fu, (X¢) + Xowy
with w; = ([wf, (wH)7T,01x2, (wd)T]T)", where wi, w?,

and w¢ are continuous Gaussian white noises of the gyro-

scope, accelerometer, and contact-velocity measurement,
respectively, and g is the gravitational acceleration.

Note that f,,(X;) satisfies the group affine condition in
Definition 2 (Hartley et al.| (2020)). Thus, from Proposi-
tion 5, the matrix A; in the linear error dynamics during
a propagation step can be obtained as:

O2x2 0O2x2 02x2 O2x2
(8)x 0O2x2 02x2 022
0252 Iax2 O2x2 O2x2
(V) x 0gx2 O2xa O2x2

Measurement model. The measurement includes the leg
odometry and the landmark positions relative to the robot.
The first right-invariant measurement for the continuous-
time subsystem is chosen as the support-foot position
relative to the base w.r.t the base frame as computed
through the encoder measurement:

h, gflt) 020x1 Jp(tiot)wil
_~—1
1 =X 1 + 0 (21)
-1 -1 0
Y d; By

where w{ is a continuous white noise in encoder raw data,

q: € RS is the joint angle data returned by encoders, h,,
is the support-foot position relative to the base w.r.t. the

- dhy, 1~ \ - .
base frame, and Jp(q:) := 75" (q:) is the contact-point
Jacobian matrix.

The second right-invariant measurement for the continuous-
time subsystem is chosen as the position of the two known

landmarks relative to the robot’s base:
~LID pPLM LiD

Yizie -1t Wit
_x-1 0 0
1 =X 1 + 0 (22)
0 0 0
N—— —_— Y
Yt d; Bj

where j € {2,3}, §415 ; € R? is the raw data returned by
the LiDAR, P?E/Iu € R? is the known (j — 1)** landmark



position w.r.t the world frame, and w?i_[{ . € R? is the

continuous Gaussian white noise of the LiDAR data.

Observability. Under the proposed formulation, it can
be obtained based on the evaluation method in (Barrau
and Bonnabel| (2017))) that the continuous-time subsystem
is fully observable and fully controllable. That is, the
conditions in Assumption 6 are met. The derivation is
omitted for brevity.

7.8 HInEKF Design for State-triggered Jumps

Process model. The process model of the jump map is:
R: vi pr dt + Rihg(ar)
O1x2 1 0 0
O1x2 0 1 0
0142 0 O 1

where w# € RY™8 is the noise vector induced by the en-
coder noise. The joint angle data q; returned by encoders
serves as the input to the jump map. The variable hy is the
new support-foot position just after a jump relative to the
previous support-foot position w.r.t. the base frame. Note
that the only variable that jumps at a foot touchdown is
the support-foot location due to foot switching.

X+ = exp(th)7 (23)

Propagation across a jump event. The jump map A
in Eq. (23) satisfies the identity jump map condition for
right-invariant errors in Theorem 10. Thus, the logarithmic
error &, does not jump at a foot touchdown event; that is,
&+ = &, exactly holds. Thus, the Jacobian matrix J(X),
which is used to form the saltation matrix E(X) for the
propagation of the matrix P; through the jump, is identity.
This greatly simplifies the computation of the saltation
matrix. In fact, as the rank one update of the saltation
matrix is significantly smaller than the Jacobian matrix in
our case study, we choose to use the Jacobian to propagate
the jump map instead of the full expression of the saltation
matrix. This also helps to assess the robustness of the
proposed filter design.

7.4 Salted Extended Kalman Filter (SEKF) Design

To compare the performance of the proposed HInEKF
with the state-of-the-art filter design for hybrid dynamical
systems, the SEKF [Kong et al. (2020) is formulated and
simulated for the system setup in Section 7.1 under the
assumptions of instantaneously detected jumps and no
measurement, updates at jumps.

Process and measurement models. The SEKF han-
dles the continuous-time subsystem exactly the same
as the conventional EKF. The process model of the
continuous-time subsystem is : %pt = vy, %vt =Ri(a; +
wi) +g, td, = v+ wf, and L0, = &y +wf.

The measurements for the continuous-time subsystem are:
a) the support-foot location w.r.t the base hy(q;) =
RT(6;)(d: — pt) + Jp(@:)w! and b) the relative position
between robot and the two known landmarks y%iP

Vit
R (6,)(PLY — py) +wliP with j € {1,2}.

At jumps, the SEKF propagates the state estimate based
on the process model: py+ = p¢, Vi+ = V¢, dp+ = di +
R(6;)hy(q, —w}) and 6,+ = 6;. At each jump, the solution
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Fig. 2. Results of 63 simulation trials with bipedal
robot walking on the vertically moving surface under
HInEKF and SEKF. The shaded area includes simu-
lation results of 63 tests. The solid red line represents
the group truth. The jump times are indicated by the
edges of different background colors. Subplots a) - g)
are the HInEKF estimation results of the biped’s base
position p; = [ps,py]T, base velocity v, = [vs,v,]7T,
orientation #;, and the biped’s contact foot position
d; = [d,,d,]". Subplots h) - n) are the corresponding
SEKF estimation results.

to the associated Riccaiti equation, PPPEF ¢ R7*T
is propagated through (PYEKF)T = SPYEKFST  where
S : R™7 — R7%7 is the saltation matrix expressed in
Euclidean space. In contrast to HInKEF, the estimation
error of d; in Euclidean space is not continuous across a
jump event. Thus, the error may suddenly expand just
after the jump, and the Jacobian matrix associated with
S will generally be nonidentity.

7.5 Simulation Results

In total, 100 trials are simulated under each of HInEKF
and SEKF. The HInEKF converges during all 100 trials
whereas the SEKF diverges for 37 trials. Figure 2 displays
the 63 successful trials of the SEKF and the corresponding
HInEKF results. Figure 3 shows the error norm and
Lyapunov function under the HInEKF during one trial.

Validation of identity error jump map condition.
As the jump map A in Eq. (23) meets the identity jump
map condition in Theorem 10. Thus, as shown in Fig. 3,
the logarithmic error &, shows negligible discontinuity at
each jump event, which are only induced by sensor noise.

Validation of sufficient stability conditions. The
sufficient stability conditions in Theorem 9 are met for
the overall hybrid error system, because the walking step
duration (i.e., 2.3 s), which is the time interval between
two consecutive jumps, is significantly larger than the
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Fig. 3. One trial of bipedal robot walking on the vertically
moving surface under HInEKF: a) Lyapunov function
and b) norm of logarithmic error ||£,||. The jump times
are indicated by the edges of different background col-
ors. The black dashed lines highlight the timings when
the LiDAR reading is used to update the estimates.
Initial base-position errors are 0.33 m (X,,-direction)
and 0.7m (Y,,-direction); initial base velocity errors
are 1 m/s (X,,-direction) and 1.3 (Yy,-direction); and
initial orientation error is —1.3 rad.

filter’s sampling period (i.e., 2 ms). This theoretical result
is supported by the evolution of the Lyapunov function
V, = &/ P; 1€, in Fig. 3, as well as by the convergence of
the logarithmic errors in the subplots a)-g) in Fig. 2.

Error convergence comparison of HInEKF and
SEKF. As explained earlier, among the 100 simulation
trials, SEKF diverges for 37 trials while HInEKF converges
for all trials. During the 63 successful trials as shown
in Fig. 2, the proposed HInEKF outperforms the SEKF
in terms of convergence rate. Despite the relatively large
initial estimation errors, the HInEKF drives the estimation
error to rapidly convergence to a small number within
0.8 s. In contrast, it takes roughly 3.5 s for the errors to
converge to a similar value under the SEKF.

The differences in error convergence rate are due to: a)
for the continuous subsystem, the SEKF is synthesized
based on inaccurate linearizations of the process and
measurement models, whereas the HInEKF is built upon
an exactly linear error equation during the propagation
step and b) for the state-triggered jump, the error under
the SEKF suddenly expands while the logarithmic error
under the HINEKF barely changes.

8. CONCLUSION

This paper has introduced an HInEKF method for a class
of hybrid dynamical systems with state-triggered jumps
and group affine continuous-time subsystems under the
assumption that the jumps are instantaneously detected.
Sufficient conditions were provided to guide the design
of the HInEKF to ensure the asymptotic convergence
of the hybrid error system. Also, a particular class of
hybrid dynamical systems whose error jump map under
the proposed HInEKF is exactly identity was completely
characterized. To validate the performance of the pro-
posed HInEKF, simulations on a bipedal robot walking
over nonstationary surfaces were performed. Simulation re-
sults demonstrated that the HInEKF achieves significantly
higher convergence rate compared with existing SEKF for
hybrid dynamical systems with state-triggered jumps.
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