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Accurate control of a humanoid robot’s global position
(i.e., its three-dimensional position in the world) is crit-
ical to the reliable execution of high-risk tasks such as
avoiding collision with pedestrians in a crowded environ-
ment. This paper introduces a time-based nonlinear con-
trol method that achieves accurate global-position track-
ing (GPT) for multi-domain bipedal walking. Deriving
a tracking controller for bipedal robots is challenging
due to the highly complex robot dynamics that are time-
varying and hybrid, especially for multi-domain walking
that involves multiple phases/domains of full actuation,
over actuation, and underactuation. To tackle this chal-
lenge, we introduce a continuous-phase GPT control law
for multi-domain walking, which provably ensures the
exponential convergence of the entire error state within
the full and over actuation domains and that of the di-
rectly regulated error state within the underactuation do-
main. We then construct sufficient multiple-Lyapunov
stability conditions for the hybrid multi-domain track-
ing error system under the proposed GPT control law.
We illustrate the proposed controller design through both
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three-domain walking with all motors activated and two-
domain gait with inactive ankle motors. Simulations of
a ROBOTIS OP3 bipedal humanoid robot demonstrate
the satisfactory accuracy and convergence rate of the
proposed control approach under two different cases of
multi-domain walking as well as various walking speeds
and desired paths.

1 INTRODUCTION
Multi-domain walking of legged locomotors refers to

the type of walking that involves multiple continuous
foot-swinging phases and discrete foot-landing behaviors
within a gait cycle, due to changes in foot-ground con-
tact conditions and actuation authority [1, 2]. Human
walking is a multi-domain process that involves phases
with different actuation types. These phases include: (1)
full actuation phases during which the support foot is flat
on the ground and the number of actuators is equal to
that of the degrees of freedom (DOFs); (2) underactua-
tion phases where the support foot rolls about its toe and
the number of actuators is less than that of the DOFs; and
(3) over actuation phases within which both feet are on
the ground and there are more actuators than DOFs.

Researchers have proposed various control strate-
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Fig. 1. Illustration of the Darwin OP3 robot, which is used to
validate the proposed global-position tracking control approach.
Darwin OP3 is a bipedal humanoid robot with twenty revolute
joints, designed and manufactured by ROBOTIS [3]. The refer-
ence frame of the robot’s floating base, highlighted as “{Base}”,
is located at the center of the chest.

gies to achieve stable multi-domain walking for bipedal
robots. Zhao et al.[2] proposed a hybrid model to capture
the multi-domain robot dynamics and used offline opti-
mization to obtain the desired motion trajectory based
on the hybrid model. An input-output linearizing con-
trol scheme was then applied to drive the robot state
to converge to the desired trajectory. The approach
was validated on a physical planar bipedal robot, AM-
BER2, and later extended to another biped platform [1],
ATRIAS [4]. Hereid et al. utilized the reduced-order
Spring Loaded Inverted Pendulum model [5] to design
an optimization-based trajectory generation method that
plans periodic orbits in the state space of the compli-
ant bipedal robot [6], ATRIAS [7]. The method guar-
antees orbital stability of the multi-domain gait based on
the hybrid zero dynamics (HZD) approach [8]. Reher
et al. achieved an energy-optimal multi-domain walk-
ing gait on the physical robot platform, DURUS, by cre-
ating a hierarchical motion planning and control frame-
work [9]. The framework ensures orbital walking sta-
bility and energy efficiency for the multi-domain robot
model based on the HZD approach [8]. Hamed et al.
established orbitally stable multi-domain walking on a
quadrupedal robot [10, 11] by modeling the associated
hybrid full-order robot dynamics and constructing vir-
tual constraints [12]. Although these approaches have
realized provable stability and impressive performance
of multi-domain walking on various physical robot plat-
forms, it remains unclear how to directly extend them

to solve general global-position tracking (GPT) control
problems. In real-world mobility tasks, such as dynamic
obstacle avoidance during navigation through a crowded
hallway, a robot needs to control its global position accu-
rately with precise timing. However, the previous meth-
ods’ walking stabilization mechanism is orbital stabiliza-
tion [13, 8, 14, 15, 16], which may not ensure reliable
tracking of a time trajectory precisely with the desired
timing.

We have developed a GPT control method that
achieves exponential trajectory tracking for the hybrid
model of two-dimensional (2-D) fully actuated bipedal
walking [17, 18, 19]. To extend our approach to 3-
D fully actuated robots, we considered the robot’s lat-
eral global movement and its coupling with forward dy-
namics through dynamics modeling and stability anal-
ysis [20, 21, 22, 23]. For fully actuated quadrupedal
robotic walking on a rigid surface moving in the iner-
tial frame, we formulated the associated robot dynam-
ics as a hybrid time-varying system and exploited the
model to develop a GPT control law for fully actuated
quadrupeds [24, 25, 26]. However, these methods de-
signed for fully actuated robots cannot solve the multi-
domain control problem directly because they do not ex-
plicitly handle the underactuated robot dynamics associ-
ated with general multi-domain walking.

Some of the results presented in this paper have been
reported in [27]. While our previous work in [27] fo-
cused on GPT controller design and stability analysis
for hybrid multi-domain models of 2-D walking along
a straight line, this study extends the previous method to
3-D bipedal robotic walking, introducing the following
significant new contributions:

(a) Theoretical extension of the previous GPT control
method from 2-D to 3-D bipedal robotic walking.
The key novelty is the formulation of a new phase
variable that represents the distance traveled along
a general curved walking path and can be used to
encode the desired global-position trajectories along
both straight lines and curved paths.

(b) Lyapunov-based stability analysis to generate suffi-
cient conditions under which the proposed GPT con-
trol method provably stabilizes 3-D multi-domain
walking. Full proofs associated with the stability
analysis are provided, while only sketches of partial
proofs were reported in [27].

(c) Extension from three-domain walking with all mo-
tors activated to two-domain gait with inactive ankle
motors, by formulating a hybrid two-domain system
and developing a GPT controller for this new gait
type. Such an extension was missing in [27].
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Fig. 2. Illustration of the three coordinate systems used in the
study: world frame, vehicle frame, and base frame.

(d) Validation of the proposed control approach through
MATLAB simulations of a ROBOTIS OP3 hu-
manoid robot (see Fig.1) with different types of
multi-domain walking, both straight and curved
paths, and various desired global-position profiles.
In contrast, our previous validation only used a sim-
ple 2-D biped with seven links [27].

(e) Casting the multi-domain control law as a quadratic
program (QP) to ensure the feasibility of joint torque
limits, and comparing its performance with an input-
output linearizing control law, which were not in-
cluded in [27].

This paper is structured as follows. Section 2 explains
the full-order robot dynamics model associated with a
common three-domain walking gait. Section 3 presents
the proposed GPT control law for three-domain walk-
ing. Section 4 introduces the Lyapunov-based closed-
loop stability analysis. Section 5 summarizes the con-
troller design extension from three-domain walking to a
two-domain gait. Section 6 reports the simulation val-
idation results. Section 7 discusses the capabilities and
limitations of the proposed control approach. Section 8
provides the concluding remarks. Proofs of all theorems
and propositions are given in Appendix A.

2 FULL-ORDER DYNAMIC MODELING OF
THREE-DOMAIN WALKING

This section presents the hybrid model of bipedal
robot dynamics associated with three-domain walking.

2.1 Coordinate Systems and Generalized Coordi-
nates

This subsection explains the three coordinate systems
used in the proposed controller design. Figure 2 illus-

trates the three frames, with the x-, y-, and z-axes respec-
tively highlighted in red, green, and blue.

2.1.1 World frame
The world frame, also known as the inertial frame, is

rigidly attached to the ground (see “{World}” in Fig. 2).

2.1.2 Base frame
The base frame, illustrated as “{Base}” in Fig. 2, is

rigidly attached to the robot’s trunk. The x-direction (red)
points forward, and the z-direction (blue) points towards
the robot’s head.

2.1.3 Vehicle frame
The origin of the vehicle frame (see “{Vehicle}” in

Fig. 2) coincides with the base frame, and its z-axis re-
mains parallel to that of the world frame. The vehicle
frame rotates only about its z-axis by a certain heading
(yaw) angle. The yaw angle of the vehicle frame with
respect to (w.r.t) the world frame equals that of the base
frame w.r.t. the world frame, while the roll and pitch an-
gles of the vehicle frame w.r.t the world frame are 0.

2.1.4 Generalized coordinates
To use Lagrange’s method to derive the robot dynam-

ics model, we need to first introduce the generalized co-
ordinates to represent the base pose and joint angles of
the robot.

We use pb ∈R3 and γγγb ∈ SO(3) to respectively denote
the absolute base position and orientation w.r.t the world
frame, and their coordinates are represented by (xb,yb,zb)
and (φb,θb,ψb). Here φb,θb,ψb are the roll, pitch, and
yaw angles, respectively. Then, the 6-D pose qb of the
base is given by: qb := [pT

b ,γγγ
T
b ]

T .
Let the scalar real variables q1, ..., qn represent the

joint angles of the n revolute joints of the robot. Then,
the generalized coordinates of a 3-D robot, which has a
floating base and n independent revolute joints, can be
expressed as:

q =
[
qT

b , q1, ..., qn
]T ∈Q, (1)

where Q ⊂ Rn+6 is the configuration space. Note that
the number of degrees of freedom (DOFs) of this robot
without subjecting to any holonomic constraints is n+6.

2.2 Walking Domain Description
For simplicity and without loss of generality, we con-

sider the following assumptions on the foot-ground con-
tact conditions during 3-D walking:

(A1) The toe and heel are the only parts of a support foot
that can contact the ground [1].

(A2) While contacting the ground, the toes and/or heels
have line contact with the ground.

(A3) There is no foot slipping on the ground.
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Fig. 3. The directed cycle of 3-D three-domain walking. The
green circles in the diagram highlight the portions of a foot that
are in contact with the ground. The position trajectory of the
swing foot is indicated by the dashed arrow. The red and blue
legs respectively represent the support and swing legs. Note that
when the robot exits the OA domain and enters the FA domain,
the swing and support legs switch their roles, and accordingly
the leading and trailing legs swap their colors.

Also, we consider the common assumption below
about the robot’s actuators:

(A4) All the n revolute joints of the robot are indepen-
dently actuated.

Let na denote the number of independent actuators, and
na = n holds under assumption (A4).

Figure 3 illustrates the complete gait cycle of human-
like walking with a rolling support foot. As the figure
displays, the complete walking cycle involves three con-
tinuous phases/domains and three discrete behaviors con-
necting the three domains. The three domains are:

(i) Full actuation (FA) domain, where na equals the
number of DOFs;

(ii) Underactation (UA) domain, where the number of
independent actuators (na) is less than that of the
robot’s DOFs; and

(iii) Over actuation (OA) domain, where na is greater
than the number of DOFs.

The actuation types associated with the three domains
are different because those domains have distinct foot-
ground contact conditions, which are explained next un-
der assumptions (A1)-(A4).

2.2.1 FA domain
As illustrated in the “FA” portion of Fig. 3, only one

foot is in support and it is static on the ground within the
FA domain. Under assumption (A1), we know both the
toe and heel of the support foot contact the ground. From
assumptions (A2) and (A3), we can completely charac-
terize the foot-ground contact condition with six inde-
pendent scalar holonomic constraints. Using nc to denote

the number of holonomic constraints, we have nc = 6
within an FA domain, and the number of DOFs becomes
DOF = n+ 6− nc = n. Meanwhile, na = n holds under
assumption (A4). Since DOF = na, all of the DOFs are
directly actuated; that is, the robot is indeed fully actu-
ated.

2.2.2 UA domain
The “UA” portion of Fig. 3 shows that the robot’s sup-

port foot rolls about its toe within a UA domain. Under
assumptions (A2) and (A3), the number of holonomic
constraints is five, i.e., nc = 5. This is because the sup-
port foot can only roll about the line toe but its motion
is fully restricted in terms of the 3-D translation and the
pitch and yaw rotation. Then, the number of DOFs is:
DOF = n+6−5 = n+1. Since the number of indepen-
dent actuators, na, equals n under assumption (A4) and
is lower than the number of DOFs, (n+ 1), the robot is
underactuated with one degree of underactuation.

2.2.3 OA domain
Upon exiting the UA domain, the robot’s swing-

foot heel strikes the ground and enters the OA domain
(Fig. 3). Within an OA domain, both the trailing toe and
the leading heel of the robot contact the ground, which is
described by ten scalar holonomic constraints (i.e., nc =
10). Thus, the DOF becomes DOF = n+6−nc = n−4,
which is less than the number of actuators under assump-
tion (A4), meaning the robot is over actuated.

2.3 Hybrid Multi-Domain Dynamics
This subsection presents the full-order model of

the robot dynamics that corresponds to multi-domain
walking. Since multi-domain walking involves both
continuous-time dynamics and discrete-time behaviors,
a hybrid model is employed to describe the robot dy-
namics. To aid the readers in comprehending the hybrid
system, the fundamentals of hybrid systems will be dis-
cussed first.

2.3.1 Preliminaries on hybrid systems
A hybrid control system HC is a tuple:

HC = (Γ,D,U,S,∆,FG),

where

■ The oriented graph Γ = (V,E) comprises a set of
vertices V = {v1,v2, ...,vN} and a set of edges E =
{e1,e2, ...,eN}, where N is the total number of ele-
ments in each set. In this paper, each vertex vi rep-
resents the ith domain, while each edge ei represents
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the transition from the source domain to the target
domain, thereby indicating the ordered sequence of
all domains. For three-domain walking, we have
i = 3.

■ D is a set of domains of admissibility, which are the
FA, UA, and OA domains for three-domain walking.

■ U is the set of admissible control inputs.
■ S is a set of switching surfaces determining the oc-

currence of switching between domains.
■ ∆ is a set of reset maps, which represents the im-

pact dynamics between a robot’s swing foot and the
ground.

■ FG is a set of vector fields on the state manifold.

The elements of these sets are explained next.

2.3.2 Continuous-phase dynamics
Within any of the three domains, the robot only ex-

hibits continuous movements, and its dynamics model is
naturally continuous-time. Applying Lagrange’s method,
we obtain the second-order, nonlinear robot dynamics as:

M(q)q̈+ c(q, q̇) = Bu+JT Fc, (2)

where M(q) : Q → R(n+6)×(n+6) is the inertia matrix.
The vector c : T Q → R(n+6) is the summation of the
Coriolis, centrifugal, and gravitational terms, where T Q
is the tangent bundle of Q. The matrix B ∈ R(n+6)×na

is the input matrix. The vector u ∈ U ⊂ Rna is the joint
torque vector. The matrix J(q) : Q → Rnc×(n+6) repre-
sents the Jacobian matrix. The vector Fc ∈Rnc is the con-
straint force that the ground applies to the foot-ground
contact region of the robot. Note that the dimensions of
J and Fc vary among the three domains due to differences
in the ground-contact conditions.

The holonomic constraints can be expressed as:

Jq̈+ J̇q̇ = 0, (3)

where 0 is a zero matrix with an appropriate dimension.
Combining Eqs. (2) and (3), we compactly express the

continuous-phase dynamics model as [20]:

M(q)q̈+ c̄(q, q̇) = B̄(q)u, (4)

where the vector c̄ and matrix B̄ are defined as: c̄(q, q̇) :=
c − JT (JM−1JT )−1(JM−1c − J̇q̇) and B̄(q) := B −
JT (JM−1JT )−1JM−1B.

2.3.3 Switching surfaces
When a robot’s state reaches a switching surface, it ex-

its the source domain and enters the targeted domain. As
displayed in Fig. 3, the three-domain walking involves
three switching events, which are:

(i) Switching from FA to UA (“Support heel liftoff”);

(ii) Switching from UA to OA (“Swing heel touch-
down”); and

(iii) Switching from OA to FA (“Leading toe touch-
down”).

The occurrence of these switching events is com-
pletely determined by the position and velocity of the
robot’s swing foot in the world frame as well as the
ground-reaction force experienced by the support foot.
We use switching surfaces to describe the conditions un-
der which a switching event occurs.

When the heel of the support foot takes off at the end
of the FA phase, the robot enters the UA domain (Fig. 3).
This support heel liftoff condition can be described using
the vertical ground-reaction force applied at the support
heel, denoted as Fc,z : T Q×U → R. We use SF→U to
denote the switching surface connecting an FA domain
and its subsequent UA domain, and express it as:

SF→U := {(q, q̇,u) ∈ T Q×U : Fc,z(q, q̇,u) = 0}.
The UA→OA switching occurs when the swing foot’s

heel lands on the ground (Fig. 3). Accordingly, we ex-
press the switching surface that connects a UA domain
and its subsequent OA domain, denoted as SU→O, as:

SU→O(q, q̇) := {(q, q̇)∈T Q : zswh(q)= 0, żswh(q, q̇)< 0},

where zswh : Q → R represents the height of the lowest
point within the swing-foot heel above the ground.

As the leading toe touches the ground at the end of
an OA phase, a new FA phase is activated (Fig. 3). In
this study, we assume that the leading toe landing and
the trailing foot takeoff occur simultaneously at the end
of an OA phase, which is reasonable because the trailing
foot typically remains contact with the ground for a brief
period (e.g., approximately 3% of a complete human gait
cycle [1]) after the touchdown of the leading foot’s toe.
The switching surface, SO→F , that connects an OA do-
main and its subsequent FA domain is then expressed as:

SO→F(q, q̇) := {(q, q̇)∈T Q : zswt(q)= 0, żswt(q, q̇)< 0},

where zswt : Q → R represents the height of the swing-
foot toe above the walking surface.

2.3.4 Discrete impact dynamics
The complete walking cycle involves two foot-landing

impacts; one impact occurs at the landing of the swing-
foot heel (i.e., transition from UA to OA), and the other
at the touchdown of the leading-foot toe between the OA
and FA phases. Note that the switching from FA to UA,
characterized by the support heel liftoff, is a continuous
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process that does not induce any impacts.
We consider the case where the robot’s feet and the

ground are stiff enough to be considered as rigid, as sum-
marized in the following assumptions [8, 28]:

(A5) The landing impact between the robot’s foot and
the ground is a contact between rigid bodies.

(A6) The impact occurs instantaneously and lasts for an
infinitesimal period of time.

Due to the impact between two rigid bodies (assump-
tion (A5)), the robot’s generalized velocity q̇ experiences
a sudden jump upon a foot-landing impact. Unlike ve-
locity q̇, the configuration q remains continuous across
an impact event as long as there is no coordinate swap of
the two legs at any switching event.

Let q̇− and q̇+ represent the values of q̇ just before and
after an impact, respectively. The impact dynamics can
be described by the following nonlinear reset map [12]:

q̇+ = ∆∆∆q̇(q)q̇−, (5)

where ∆∆∆q̇ : Q → R(n+6)×(n+6) is a nonlinear matrix-
valued function relating the pre-impact generalized ve-
locity q̇− to the post-impact value q̇+. The derivation of
∆∆∆q̇ is omitted and can be found in [8]. Note that the di-
mension of ∆∆∆q̇ is invariant across the three domains since
it characterizes the jumps of all floating-base generalized
coordinates.

3 CONTROLLER DESIGN FOR THREE-
DOMAIN WALKING

This section introduces the proposed GPT controller
design based on the hybrid model of multi-domain
bipedal robotic walking introduced in Section 2. The re-
sulting controller provably ensures the exponential error
convergence for the directly regulated DOFs within each
domain. The sufficient conditions under which the pro-
posed controller guarantees the stability for the overall
hybrid system are provided in Section 4.

3.1 Desired Trajectory Encoding
As the primary control objective is to provably drive

the global-position tracking error to zero, one set of de-
sired trajectories that the proposed controller aims to re-
liably track is the robot’s desired global-position trajec-
tories. Since a bipedal humanoid robot typically has
many more DOFs and actuators than the desired global-
position trajectories, the controller could regulate addi-
tional variables of interest (e.g., swing-foot pose).

We use both time-based and state-based phase vari-
ables to encode these two sets of desired trajectories, as
explained next.

3.1.1 Time-based encoding variable
We choose to use the global time variable t to encode

the desired global-position trajectories so that a robot’s
actual horizontal position trajectories in the world (i.e.,
xb and yb) can be accurately controlled with precise tim-
ing, which is crucial for real-world tasks such as dynamic
obstacle avoidance.

We use xd(t) : R+ → R and yd(t) : R+ → R to denote
the desired global-position trajectories along the x- and y-
axis of the world frame, respectively, and ψd(t) :R+ →R
is the desired heading direction. We assume that the
desired horizontal global-position trajectories xd(t) and
yd(t) are supplied by a higher-layer planner, and the de-
sign of this planner is not the focus of this study. Given
xd(t) and yd(t), the desired heading direction ψd(t) can
be designed as a function of xd(t) and yd(t), which is
ψd(t) := tan−1(yd/xd). Such a definition ensures that the
robot is facing forward during walking.

We consider the following assumption on the regular-
ity condition of xd(t) and yd(t):

(A7) The desired global-position trajectories xd(t) and
yd(t) are planned as continuously differentiable on
t ∈ R+ with the norm of ẋd(t) and ẏd(t) bounded
above by a constant number; that is, there exists a
positive constant Ld such that

∥ẋd(t)∥, ∥ẏd(t)∥ ≤ Ld (6)

for any t ∈ R+.

Under assumption (A7), the time functions xd(t) and
yd(t) are Lipschitz continuous on t ∈ R+ [29], which we
utilize in the proposed stability analysis.

3.1.2 State-based encoding variable
As robotic walking inherently exhibits a cyclic move-

ment pattern in the robot’s configuration space, it is natu-
ral to encode the desired motion trajectories of the robot
with a phase variable that represents the walking progress
within a cycle.

To encode the desired trajectories other than the de-
sired global-position trajectories, we choose to use a
state-based phase variable, denoted θ(q) : Q → R, that
represents the total horizontal distance traveled within
a walking step. Accordingly, the phase variable θ(q)
increases monotonically within each walking step dur-
ing straight-line or curved-path walking, which ensures a
unique mapping from θ(q) to the encoded desired tra-
jectories. In contrast, in our previous work [18, 23],
the phase variable is chosen as the walking distance pro-
jected along a single direction on the ground, which may
not ensure such a unique mapping during curved-path
walking.

Since the phase variable θ(q) is essentially the length
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of a 2-D curve that represents the horizontal projection
of the 3-D walking path on the ground, we can use the
actual horizontal velocities (ẋb and ẏb) of the robot’s base
to express θ(q) as:

θ(q(t)) =
∫ t

t0

√
ẋ2

b(t)+ ẏ2
b(t)dt, (7)

where t0 ∈R+ represents the actual initial time instant of
the given walking step and t is the current time.

The normalized phase variable, which represents the
percentage completion of a walking step, is given by:

s(θ) :=
θ

θmax
, (8)

where the real scalar parameter θmax represents the max-
imum value of the phase variable (i.e., the planned total
distance to be traveled within a walking step). At the be-
ginning of each step, the normalized phase variable takes
a value of 0, while at the end of the step, it equals 1.

3.2 Output Function Design
An output function is a function that represents the

difference between a control variable and its desired tra-
jectory, which is essentially the trajectory tracking error.
The proposed controller aims to drive the output function
to zero for the overall hybrid walking process.

Due to the distinct robot dynamics among different do-
mains, we design different output functions (including
the control variables and desired trajectories) for differ-
ent domains.

3.2.1 FA domain
We use hF

c (q) : Q → Rn to denote the vector of n
control variables that are directly commanded within the
FA domain. Without loss of generality, we use the OP3
robot shown in Fig. 1 as an example to explain a common
choice of control variables within the FA domain.

The OP3 robot has twenty directly actuated joints (i.e.,
n = na = 20) including eight upper body joints. Also,
using nup to denote the number of upper body joints, we
have nup = 8.

We choose the twenty control variables as follows:

(i) The robot’s global-position and orientation repre-
sented by the 6-D absolute base pose (i.e., position
pb and orientation γγγb) w.r.t. the world frame;

(ii) The position and orientation of the swing foot w.r.t
the vehicle frame, respectively denoted as psw(q) :
Q→ R3 and γγγsw(q) : Q→ R3; and

(iii) The angles of the nup upper body joints qup ∈ Rnup .

We choose to directly control the global-position of the
robot to ensure that the robot’s base follows the desired
global-position trajectory. The base orientation is also
directly commanded to guarantee a steady trunk (e.g.,

for mounting cameras) and the desired heading direction.
The swing foot pose is regulated to ensure an appropri-
ate foot posture at the landing event, and the upper body
joints are controlled to avoid any unexpected arm mo-
tions that may affect the overall walking performance.

The stack of control variables hF
c (q) are expressed as:

hF
c (q) =



xb
yb
ψb
zb
φb
θb
psw
γγγsw
qup


. (9)

We use hF
d (t,s) : R+ × [0,1] → Rn to denote the de-

sired trajectories for the control variables hF
c (q) within

the FA domain. These trajectories are encoded by the
global time t and the normalized state-based phase vari-
able s(θ) as follows: (i) the desired trajectories of the
base position variables xb and yb and the base yaw an-
gle ψb are encoded by the global time t, while (ii) those
of the other (n−3) control variables, including the base
height zb, base roll angle φb, base pitch angle θb, swing-
foot pose psw and γγγsw, and upper joint angle qup, are en-
coded by the normalized phase variable s(θ).

The desired trajectory hF
d (t,s) is expressed as:

hF
d (t,s) =


xd(t)
yd(t)
ψd(t)
φφφ

F(s)

 , (10)

where xd(t), yd(t), and ψd(t) are defined in Section 3.1.1,
and the function φφφ

F(s) : [0,1]→ Rn−3 represents the de-
sired trajectories of the control variables zb, φb, θb, ψb,
psw, γγγsw, and qup.

We use Bézier polynomials to parameterize the de-
sired function φφφ

F(s) because (i) they do not demonstrate
overly large oscillations with relatively small parameter
variations and (ii) their values at the initial and final in-
stants within a continuous phase can compactly describe
the values of control variables at those time instants [8].

The desired function φφφ
F(s) is given by:

φφφ
F
j (s) :=

M

∑
k=0

α
F
k, j

M!
k!(M− k)!

sk(1− s)M−k, (11)

where αF
k, j ∈R (k ∈ {0,1, ...,M} and j ∈ {1,2, ...,n−3})

is the coefficient of the Bézier polynomials that are to be
optimized (Section 6), and M is the order of the Bézier
polynomials.

The output function during an FA phase is defined as:
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hF(t,q) := hF
c (q)−hF

d (t,s). (12)

3.2.2 UA domain
As explained in Section 2.2, a robot has (n+ 1) DOF

within the UA domain but only na actuators. Thus, only
na (i.e, n) variables can be directly commanded within
the UA domain.

We opt to control individual joint angles within the UA
domain to mimic human-like walking. By “locking” the
joint angles, the robot can perform a controlled falling
about the support toe, similar to human walking.

Thus, the control variable hU
c (q) : Q→ Rn is:

hU
c (q) =


q1
q2
q3
...
qn

 . (13)

Let hU
d (s) : [0,1] → Rn denote the desired joint posi-

tion trajectories within the UA domain. These desired
trajectories hU

d (s) are parameterized using Bézier poly-
nomials φφφ

U (s) : [0,1] → Rn; that is, hU
d = φφφ

U (s). The
function φφφ

U (s) can be expressed similarly to φφφ
F(s).

The associated output function is then given by:

hU (q) := hU
c (q)−hU

d (s). (14)

3.2.3 OA domain
Let hO

c (q) : Q → Rn−4 denote the control variables
within the OA domain. Recall that the robot has na actu-
ators and (n−4) DOFs within the OA domain.

We choose the (n−4) control variables as:

(i) The robot’s 6-D base pose w.r.t. the world frame;
(ii) The angles of the nup upper body joints, qup; and
(iii) The pitch angles of the trailing and leading feet, de-

noted as θt(q) and θl(q), respectively.

Similar to the FA domain, we choose to directly com-
mand the robot’s 6-D base pose within the OA domain to
ensure satisfactory global-position tracking performance,
as well as the upper body joints to avoid unexpected arm
movements that could compromise the robot’s balance.
Also, regulating the pitch angle of the leading foot helps
ensure a flat-foot posture upon switching into the subse-
quent FA domain where the support foot remains flat on
the ground. Meanwhile, controlling the pitch angle of the
trailing foot can prevent overly early or late foot-ground
contact events.

Thus, the control variable hO
c (q) is:

hO
c (q) =



xb
yb
ψb
zb
φb
θb
θt
θl

qup


. (15)

The desired trajectory hO
d (t,s) : R+ × [0,1] → Rn−4

within the OA domain is expressed as:

hO
d (t,s) :=


xd(t)
yd(t)
ψd(t)
φφφ

O(s)

 , (16)

where φφφ
O(s) : [0,1] → Rn−4 represents the desired tra-

jectories of zb, φb, θb, θt , θl , and qup, which, similar to
φφφ

F(s) and φφφ
U (s), can be chosen as Bézier curves.

The tracking error hO(t,q) is expressed as:

hO(t,q) := hO
c (q)−hO

d (t,s). (17)

3.3 Input-Output Linearizing Control
The output functions representing the trajectory track-

ing errors can be compactly expressed as:

yi = hi(t,q), (18)

where the subscript i ∈ {F,U,O} indicates the domain.
Due to the nonlinearity of the robot dynamics and the

time-varying nature of the desired trajectories, the dy-
namics of the output functions are nonlinear and time-
varying. To reduce the complexity of controller design,
we use input-output linearization to convert the non-
linear, time-varying error dynamics into a linear time-
invariant one.

Let ui (i ∈ {F,U,O}) denote the joint torque vector
within the given domain. We exploit the input-output lin-
earizing control law [29]

ui = ( ∂hi

∂q M−1B̄)−1[( ∂hi

∂q )M
−1c̄+vi − ∂ 2hi

∂ t2 − ∂

∂q (
∂hi

∂q q̇)q̇]
(19)

to linearize the continuous-phase output function dynam-
ics (i.e., Eq. (4)) into ÿi = vi, where vi is the control law
of the linearized system. Here, the matrix ∂hi

∂q M−1B̄ is

invertible on Q because (i) M is invertible on Q, (ii) ∂hi

∂q
is full row rank on Q by design, and (iii) B̄ is full column
rank on Q.

It should be noted that ui has different expressions
in different domains, due to the variations in the con-
trol variables and desired trajectories. For instance, as
the output function is time-independent within the UA

8



Fig. 4. Block diagram of the proposed global-position tracking
control law within each domain. Here i ∈ {F,U,O} indicates
the domain type.

domain, the function ∂ 2hU

∂ t2 in Eq. (19) is always a zero
vector because the output function hU is explicitly time-
independent.

We design vi as a proportional-derivative (PD) con-
troller

vi =−Kp,iyi −Kd,iẏi, (20)

where Kp,i and Kd,i are positive-definite diagonal ma-
trices containing the proportional and derivative control
gains, respectively. It is important to note that the di-
mension of the gains Kp,i and Kd,i depends on that of the
output function in each domain; their dimension is n×n
in FA and UA domains, and (n−4)× (n−4) in the OA
domain.

We call the GPT control law in Eqs. (19) and (20) the
“IO-PD” controller in the rest of this paper, and the block
diagram of the controller is shown in Fig. 4.

With the IO-PD control laws, the closed-loop output
function dynamics within domain i becomes linear:

ÿi =−Kd,iẏi −Kp,iyi.

Drawing upon the well-studied linear systems theory, we
can ensure the exponential convergence of yi to zero
within each domain by properly choosing the values of
the PD gain matrices (Kp,i and Kd,i) [29].

4 CLOSED-LOOP STABILITY ANALYSIS FOR
THREE-DOMAIN WALKING

This section explains the proposed stability analysis of
the closed-loop hybrid control system under the continu-
ous IO-PD control law.

The continuous GPT law introduced in Section 3 with
properly chosen PD gains achieves exponential stabiliza-
tion of the output function state within each domain.
Nevertheless, the stability of the overall hybrid dynami-
cal system is not automatically ensured for two main rea-
sons. First, within the UA domain, the utilization of the
input-output linearization technique and the absence of
actuators to directly control all the DOFs induce internal
dynamics, which the control law cannot directly regu-

late [19, 30]. Second, the impact dynamics in Eq. (5) is
uncontrolled due to the infinitesimal duration of an im-
pact between rigid bodies (i.e., ground and swing foot).
As both internal dynamics and reset maps are highly non-
linear and time-varying, analyzing their effects on the
overall system stability is not straightforward.

To ensure satisfactory tracking error convergence for
the overall hybrid closed-loop system, we analyze the
closed-loop stability via the construction of multiple Lya-
punov functions [31]. The resulting sufficient stability
conditions can be used to guide the parameter tuning of
the proposed IO-PD law for ensuring system stability and
satisfactory tracking.

4.1 Hybrid Closed-Loop Dynamics
This subsection introduces the hybrid closed-loop

dynamics under the proposed IO-PD control law in
Eqs. (19) and (20), which serves as the basis of the pro-
posed stability analysis.
4.1.1 State variables within different domains

The state variables of the hybrid closed-loop system
include the output function state (yi,ẏi) (i ∈ {F,O,ξ}).
This choice of state variables allows our stability analysis
to exploit the linear dynamics of the output function state
within each domain, thus greatly reducing the complex-
ity of the stability analysis for the hybrid, time-varying,
nonlinear closed-loop system.

We use xF ∈ R2n and xO ∈ R2n−8 to respectively de-
note the state within the FA and OA domains, which are
exactly the output function state:

xF :=
[

yF
ẏF

]
and xO :=

[
yO
ẏO

]
.

Within the UA domain, the output function state, de-
noted as xξ ∈ R2n−2, is expressed as:

xξ :=
[

yU
ẏU

]
.

Besides xξ , the complete state xU within the UA domain
also include the uncontrolled state, denoted as xη ∈ R2.
Since the stance-foot pitch angle θst(q) is not directly
controlled within the UA domain, we define xη as:

xη :=
[

θst
θ̇st

]
.

Thus, the complete state within the UA domain is:

xU :=
[

xξ

xη

]
. (21)

4.1.2 Closed-loop error dynamics
The hybrid closed-loop error dynamics associated

with the FA and OA domains share the following sim-
ilar form:
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{
ẋF = AF xF if (t,x−F ) /∈ SF→U

x+U = ∆∆∆F→U (t,x−F ) if (t,x−F ) ∈ SF→U{
ẋO = AOxO if (t,x−O) /∈ SO→F

x+F = ∆∆∆O→F(t,x−O) if (t,x−O) ∈ SO→F

(22)

with

AF :=
[

0 I
−Kp,F −Kd,F

]
and AO :=

[
0 I

−Kp,O −Kd,O

]
,

(23)
where I is an identity matrix with an appropriate di-
mension, and ∆∆∆F→U : R+ ×R2n → R2n+2 and ∆∆∆O→F :
R+×R2n−8 →R2n are respectively the reset maps of the
state vectors xF and xO. The expressions of ∆∆∆F→U and
∆∆∆O→F are omitted for space consideration and can be di-
rectly obtained by combining the expressions of the reset
map ∆∆∆q̇ of the generalized coordinates in Eq. (5) and the
output functions yF , yO, and yU .

The closed-loop error dynamics associated with the
continuous UA phase and the subsequent UA→OA im-
pact map can be expressed as:

{
ẋξ = Aξ xξ

ẋη = fη(t,xη ,xξ )
if (t,x−U ) /∈ SU→O

x+O = ∆∆∆U→O(t,x−ξ ,x
−
η ) if (t,x−U ) ∈ SU→O

(24)

where

Aξ :=
[

0 I
−Kp,U −Kd,U

]
. (25)

The expression of fη in Eq. (24) can be directly de-
rived using the continuous-phase dynamics equation of
the generalized coordinates and the expression of the out-
put function yU . Similar to ∆∆∆F→U and ∆∆∆O→F , we can
readily obtain the expression of the reset map ∆∆∆U→O :
R+×R2n+2 → R2n−8 based on the reset map in Eq. (5)
and the expression of yU and yO.

4.2 Multiple Lyapunov-Like Functions
The proposed stability analysis via the construction of

multiple Lyapunov functions begins with the design of
the Lyapunov-like functions. We use VF(xF), VU (xU ),
and VO(xO) to respectively denote the Lyapunov-like
functions within the FA, UA, and OA domains, and in-
troduce their mathematical expressions next.

4.2.1 FA and OA domains
As the closed-loop error dynamics within the continu-

ous FA and OA phases are linear and time-invariant, we
can construct the Lyapunov-like functions VF(xF) and

VO(xO) as [32]:

VF(xF) = xT
F PF xF and VO(xO) = xT

OPOxO

with Pi (i ∈ {F,O}) the solution to the Lyapunov equa-
tion

PiAi +AT
i Pi =−Qi,

where Qi is any symmetric positive-definite matrix with
a proper dimension.

4.2.2 UA domain
As the input-output linearization technique is utilized

and not all DOFs within the UA domain can be directly
controlled, internal dynamics exist that cannot be directly
controlled [19]. We design the Lyapunov-like function
VU for the UA domain as:

VU =Vξ (xξ )+β∥xη∥2, (26)

where Vξ (xξ ) is a positive-definite function and β is a
positive constant to be designed.

As the dynamics of the output function state xξ are
linear and time-invariant, the construction of Vξ (xξ ) is
similar to that of VF and VO:

Vξ (xξ ) = xξ
T Pξ xξ ,

where Pξ is the solution to the Lyapunov equation

Pξ Aξ +AT
ξ

Pξ =−Qξ

with Qξ any symmetric positive-definite matrix with an
appropriate dimension.

4.3 Definition of Switching Instants
In the following stability analysis, the three domains

of the kth (k ∈ {1,2, ...}) walking step are, without loss
of generality, ordered as:

FA →UA → OA.

For the kth walking step, we respectively denote the ac-
tual values of the initial time instant of the FA phase, the
FA →UA switching instant, the UA → OA switching in-
stant, and the final time instant of the OA phase as:

T3k−3, T3k−2, T3k−1, and T3k.

The corresponding desired switching instants are de-
noted as:

τ3k−3, τ3k−2, τ3k−1, and τ3k.

Using these notations, the kth actual complete gait cy-
cle on t ∈ (T3k−3,T3k) comprises:

(i) Continuous FA phase on t ∈ (T3k−3,T3k−2);
(ii) FA→UA switching at t = T−

3k−2;
(iii) Continuous UA phase on t ∈ (T3k−2,T3k−1);
(iv) UA→OA switching at t = T−

3k−1;
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(v) Continuous OA phase on t ∈ (T3k−1,T3k); and
(vi) OA→FA switching at t = T−

3k .

For brevity in notation in the following analysis, the
values of any (scalar or vector) variable ⋆ at t = T−

3k− j
and t = T+

3k− j, i.e.,

⋆(T−
3k− j) and ⋆ (T+

3k− j),

are respectively denoted as:

⋆|−3k− j and ⋆ |+3k− j

for any k ∈ {1,2, ...} and j ∈ {0,1,2,3}.

4.4 Continuous-Phase Convergence and Bounded-
ness of Lyapunov-Like Functions

As the output function state xi (i ∈ {F,O,ξ}) is di-
rectly controlled, we can readily analyze the convergence
of the output functions (and their associated Lyapunov-
like functions, VF , VO, and Vξ ) within each domain based
on the well-studied linear systems theory [29].

Proposition 1. (Continuous-phase output func-
tion convergence within each domain) Consider the
IO-PD control law in Eq. (19), assumptions (A1)-(A7),
and the following condition:

(B1) The PD gains are selected such that AF , AO, and
Aξ are Hurwitz.

Then, there exist positive constants ri, c1i, c2i, and c3i
(i ∈ {F,O,ξ}) such that the Lyapunov-like functions VF ,
VO, and Vξ satisfy the following inequalities

c1i∥xi∥2 ≤Vi(xi)≤ c2i∥xi∥2 and V̇i ≤−c3iVi (27)

within their respective domains for any

xi ∈ Bri(0) := {xi : ∥xi∥ ≤ ri},
where 0 is a zero vector with an appropriate dimension.

Moreover, Eq. (27) yields

VF |−3k−2 ≤ e−c3F (T3k−2−T3k−3)VF |+3k−3, (28)

VO|−3k ≤ e−c3O(T3k−T3k−1)VO|+3k−1, (29)

and

Vξ |−3k−1 ≤ e−c3ξ (T3k−1−T3k−2)Vξ |+3k−2, (30)

which describe the exponential continuous-phase con-
vergence of VF , VO, and Vξ within their respective do-
mains.

The proof of Proposition 1 is omitted as Proposition 1
is a direct adaptation of the Lyapunov stability theorems
from [29]. Note that the explicit relationship between
the PD gains and the continuous-phase convergence rates

c3F , c3O, and c3ξ can be readily obtained based on Re-
mark 6 of our previous work [23].

Due to the existence of the uncontrolled internal state,
the Lyapunov-like function VU does not necessarily con-
verge within the UA domain despite the exponential
continuous-phase convergence of Vξ guaranteed by the
proposed IO-PD control law that satisfies condition (B1).
Still, we can prove that within the UA domain of any
kth walking step, the value of the Lyapunov-like function
VU just before switching out of the domain, i.e., VU |−3k−1,
is bounded above by a positive-definite function of the
“switching-in” value of VU , i.e., VU |+3k−2, as summarized
in Proposition 2.

Proposition 2. (Boundedness of Lyapunov-like
function within UA domain) Consider the IO-PD con-
trol law in Eq. (19) and all conditions in Proposition 1.
There exists a positive real number rU1 and a positive-
definite function wu(·) such that

VU |−3k−1 ≤ wu(VU |+3k−2)

holds for any k ∈ {1,2, ...} and xU ∈ BrU1(0).

Rationale of proof: The proof of Proposition 2 is given
in Appendix A.1. The boundedness of the Lyapunov-
like function VU (xU ) at t = T−

3k−1 is proved based on the
definition of VU (xU ) given in Eq. (26) and the bounded-

ness of
∥∥∥xU |−3k−1

∥∥∥. Recall xU :=
[
xT

ξ
xT

η

]T
. We estab-

lish the needed bound on
∥∥∥xU |−3k−1

∥∥∥ through the bounds

on
∥∥∥xξ |−3k−1

∥∥∥ and
∥∥∥xη |−3k−1

∥∥∥, which are respectively ob-
tained based on the bounds of their continuous-phase dy-
namics of xξ and xη and the integration of those bounds
within the given continuous UA phase. ■

4.5 Boundedness of Lyapunov-Like Functions
across Jumps

Proposition 3. (Boundedness across jumps)
Consider the IO-PD control law in Eq. (19), all condi-
tions in Proposition 1, and the following two additional
conditions:

(B2) The desired trajectories hi
d (i ∈ {F,U,O}) are

planned to respect the impact dynamics with a small,
constant offset γ∆; that is,

∥∆∆∆F→U (τ3k−2,0)∥ ≤ γ∆, (31)
∥∆∆∆U→O(τ3k−1,0)∥ ≤ γ∆, and (32)
∥∆∆∆O→F(τ3k,0)∥ ≤ γ∆. (33)

(B3) The PD gains are chosen to ensure a sufficiently
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high convergence rate (i.e., c3F , c3O, and c3ξ in
Eqs. (28)-(30)) of VF , VO, and Vξ .

Then, there exists a positive real number r such that for
any k ∈ {1,2, ...}, xi ∈ Br(0), and i ∈ {F,U,O}, the fol-
lowing inequalities

...≤VF |+3k ≤VF |+3k−3 ≤ ...≤VF |+3 ≤VF |+0 ,

...≤VU |+3k+1 ≤VU |+3k−2 ≤ ...≤VU |+4 ≤VU |+1 ,
and

...≤VO|+3k+2 ≤VO|+3k−1 ≤ ...≤VF |+5 ≤VF |+2
(34)

hold; that is, the values of each Lyapunov-like function
at their associated “switching-in” instants form a nonin-
creasing sequence.

Rationale of proof: The proof of Proposition 3 is given
in Appendix A.2. The proof shows the derivation details
for the first inequality in Eq. (34) (i.e., VF |+3k ≤ VF |+3k−3
for any k ∈ {1,2, ...}), which can be readily extended to
prove the other two inequalities.

The proposed proof begins the analysis of the time
evolution of the three Lyapunov-like functions within a
complete gait cycle from t = T+

3k−1 to t = T+
3k , which

comprises three continuous phases and three switching
events as listed in Section 4.3.

Based on the time evolution, the bounds on the
Lyapunov-like functions VF , VO, and VU at the end of
their respective continuous phases are given in Proposi-
tion 1 and 2, while their bounds at the beginning of those
continuous phases are established through the analysis
of the reset maps ∆∆∆F→U , ∆∆∆U→O, and ∆∆∆O→F . Finally, we
combine these bounds to prove VF |+3k ≤VF |+3k−3. ■

The offset γ∆ is introduced in condition (B2) for two
primary reasons. Firstly, since the system’s actual state
trajectories inherently possess the impact dynamics, the
desired trajectories need to respect the impact dynam-
ics sufficiently closely (i.e., γ∆ is small enough) in or-
der to avoid overly large errors after an impact [33, 34].
If the desired trajectories do not agree with the impact
dynamics sufficiently closely, the tracking errors at the
beginning of a continuous phase could be overly large
even when the errors at the end of the previous continu-
ous phase are small. Such error expansion could induce
aggressive control efforts at the beginning of a contin-
uous phase, which could reduce energy efficiency and
might even cause torque saturation. Secondly, while it
is necessary to enforce the desired trajectories to respect
the impact dynamics (e.g., through motion planning), re-
quiring the exact agreement with the highly nonlinear im-
pact dynamics (i.e., γ∆ = 0) could significantly increase

the computationally burden of planning, which could be
mitigated by allowing a small offset.

4.6 Main Stability Theorem
We derive the stability conditions for the hybrid error

system in Eqs. (22) and (24) based on Propositions 1-3
and the general stability theory via the construction of
multiple Lyapunov functions [31].

Theorem 1. (Closed-loop stability conditions)
Consider the IO-PD control law in Eq. (19). If all
conditions in Proposition 3 are met, the origin of the
hybrid closed-loop error system in Eqs. (22) and (24) is
locally stable in the sense of Lyapunov.

Rationale of proof: The full proof of Theorem 1 is given
in Appendix A.3. The key idea of the proof is to show
that the closed-loop control system satisfies the general
multiple-Lyapunov stability conditions given in [31] if
all conditions in Proposition 3 are met. ■

5 EXTENSION FROM THREE-DOMAIN WALK-
ING WITH FULL MOTOR ACTIVATION TO
TWO-DOMAIN WALKING WITH INACTIVE
ANKLE MOTORS

This section explains the design of a GPT control law
for a two-domain walking gait to further illustrate the
proposed controller design method. The controller is
a direct extension of the proposed controller design for
three-domain walking (with full motor activation). For
brevity, this section focuses on describing the distinct
aspects of the two-domain case compared to the three-
domain case explained earlier.

We consider the case of two-domain walking where
underactuation is caused due to intentional ankle mo-
tor deactivation instead of loss of full contact with the
ground as in the case of three-domain walking. Bipedal
gait is sometimes intentionally designed as underactu-
ated through motor deactivation at the support ankle [35],
which could simplify the controller design. Specifically,
by switching off the support ankle motors, the controller
can treat the support foot as part of the ground and only
handle a point foot-ground contact instead of a finite sup-
port polygon.

Figure 5 illustrates a complete cycle of a two-domain
walking gait, which comprises an FA and a UA domain,
with the UA phase induced by intentional motor deac-
tivation. The FA and UA phases share the same foot-
ground contact conditions; that is, the toe and heel of
the support foot are in a static contact with the ground.
Yet, within the UA domain, the ankle-roll and ankle-
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Fig. 5. Illustration of a complete two-domain walking cycle. The
green circles show the portions of the feet that touch the ground.
The leg in red represents the support leg, while the leg in blue
the swing leg. The movement of the swing foot is shown by the
dashed arrow.

pitch joints of the support foot are disabled, leading to
DOF = na +2 > na (i.e., underactuation).

To differentiate from the case of three-domain walk-
ing, we add a “†” superscript to the left of mathematical
symbols when introducing the two-domain case.
Hybrid robot dynamics: The continuous-time robot dy-
namics within the FA domain of two-domain walking
have exactly the same expression as those of the three-
domain dynamics in Eq. (2). The robot dynamics within
the UA domain are also the same as Eq. (2) except for
the input matrix B (due to the ankle motor deactivation).

The complete gait cycle contains one foot-landing im-
pact event, which occurs as the robot’s state leaves the
UA domain and enters the FA domain. The form of the
associated impact map is similar to the impact map in
Eq. (5) of the three-domain case. For brevity, we omit
the expression and derivation details of the impact map.

There are two switching events, F→U and U→F,
within a complete gait cycle, which are respectively de-
noted as †SF→U and †SU→F and given by:

†SF→U := {q ∈Q : θ(q)> ls} and
†SU→F := {(q, q̇) ∈ T Q : zsw(q) = 0, żsw(q, q̇)< 0},

where θ(q) is defined as in Eq. (7) and the scalar positive
variable ls represents the desired traveling distance of the
robot’s base within the FA phase.
Local time-based phase variable: To allow the con-
venient adjustment of the intended period of motor de-
activation, we introduce a new phase variable †

θ(t) for
the UA phase representing the elapsed time within this
phase: †

θ(t) = t −TUk, where TUk is the initial time in-
stant of the kth UA phase.

The normalized phase variable is defined as: †s(†
θ) :=

†
θ

δτU
, where δτU is the expected duration of the UA. δτU

can be assigned as a gait parameter that a motion plan-
ner adjusts for ensuring a reasonable duration of motor
deactivation.
Output functions: The output function design within
the FA domain is the same as the three-domain case.

The control variables within FA, denoted as †hF
c (q),

are chosen the same as the three-domain walking case in
Eq. (9). Then, we have †hF

c (q) = hF
c (q). Accordingly,

the desired trajectories †hF
d (t,s) can be chosen the same

as hF
d (t,s), leading to the output function expressed as:

†hF(t,s) = †hF
c (q)−

†hF
d (t,s).

With two ankle (roll and pitch) motors disabled dur-
ing the UA phase, the number of variables that can be
directly controlled is reduced by two compared to the FA
domain. Without loss of generality, We choose the con-
trol variables within the UA domain to be the same as the
FA domain except that the base roll angle φb and base
pitch angle θb are no longer controlled.

The control variables †hU
c within the UA domain are

then expressed as:

†hU
c (q) :=


xb
yb
ψb
zb

psw(q)
γγγsw(q)

 . (35)

The desired trajectories †hU
d are given by:

†hU
d (t,

†s) :=


xd(t)
yd(t)
ψd(t)

†
φφφ

U (†s)

 , (36)

where
†
φφφ

U (†s) : [0,1]→Rna−5 represents the desired tra-
jectories of zb, psw, and γγγsw.

Then, we obtain the output function †hU (t,q) as:
†hU (t,q) := †hU

c (q)− †hU
d (t,

†s). (37)

With the output function †hi (i ∈ {F,A,U}) designed,
we can use the same form of the IO-PD control law in
Eqs. (19) and (39) and the stability conditions in The-
orem 1 to design the needed GPT controller for two-
domain walking.

6 SIMULATION
This section reports the simulation results to demon-

strate the satisfactory global-position tracking perfor-
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mance of the proposed controller design.

6.1 Comparative Controller: Input-Output Lin-
earizing Control with Quadratic Programming

This subsection introduces the formulation of the pro-
posed IO-PD controller as a quadratic program (QP)
that handles the limited joint-torque capacities of real-
world robots while ensuring a relatively accurate global-
position tracking performance. We refer to the resulting
controller as the “IO-QP” controller in this paper. Be-
sides enforcing the actuator limits and providing tracking
performance guarantees, another benefit of the QP for-
mulation lies in its computational efficiency for real-time
implementation.

6.1.1 Constraints
We incorporate the IO-PD controller in Eq. (19) as

an equality constraint in the proposed IO-QP control
law. The proposed IO-QP also includes the torque lim-
its as inequality constraints. We use umax,i and umin,i
(i ∈ {F,U,O}) to denote the upper and lower limits of
the torque command ui given in Eq. (19). Then, the lin-
ear inequality constraint that the control signal ui should
respect can be expressed as: umin,i ≤ ui ≤ umax,i.

To ensure the control command ui respects the actu-
ator limits, we incorporate a slack variable δδδ QP ∈ Rna

in the equality constraint representing the IO-PD control
law:

ui = N(q, q̇)+δδδ QP, (38)

where N = ( ∂hi

∂q M−1B̄)−1[( ∂hi

∂q )M
−1c̄ + vi − ∂ 2hi

∂ t2 −
∂

∂q (
∂hi

∂q q̇)q̇]. To avoid overly large deviation from the
original control law in Eq. (19), we include the slack
variable in the cost function to minimize its norm as ex-
plained next.

6.1.2 Cost function
The proposed cost function is the sum of two com-

ponents. One term is uT
i ui and indicates the magnitude

of the control command ui. Minimizing this term helps
guarantee the satisfaction of the torque limit and the en-
ergy efficiency of walking.

The other term indicates the weighted norm of the
slack variable δδδ QP, i.e., pδδδ

T
QPδδδ QP, with the real positive

scalar constant p the slack penalty weight. By including
the slack penalty term in the cost function, the deviation
of the control signal from the original IO-PD form, which
is caused by the relaxation, can be minimized.

6.1.3 QP formulation
Summarizing the constraints and cost function intro-

duced earlier, we arrive at a QP given by:

Table 1. Mass distribution of the OP3 robot.

Body component Mass (kg) Length (cm)

trunk 1.34 63

left/right thigh 0.31 11

left/right shank 0.22 11

left/right foot 0.07 12

left/right upper arm 0.19 12

left/right lower arm 0.04 12

head 0.15 N/A

min
ui,δδδ QP

uT
i ui + p δδδ

T
QPδδδ QP

s.t. ui = N+δδδ QP

ui ≥ umin,i

ui ≤ umax,i

(39)

We present validation results for both IO-PD and IO-
QP in the following to demonstrate their effectiveness
and performance comparison.

6.2 Simulation Setup
6.2.1 Robot model

The robot used to validate the proposed control ap-
proach is an OP3 bipedal humanoid robot developed by
ROBOTIS, Inc. (see Fig.1). The OP3 robot is 50 cm tall
and weighs approximately 3.2 kg. It is equipped with
20 active joints, as shown in Fig. 1. The mass distribu-
tion and geometric specifications of the robot are listed in
Table 1. To validate the proposed controller, we use the
MATLAB ODE solver ODE45 to simulate the dynamics
models of the OP3 robot for both three-domain walking
(Section 2) and two-domain walking (Section 5). The
default tolerance settings of the ODE45 solver are used.

6.2.2 Desired global-position trajectories and walking
patterns

As mentioned earlier, this study assumes that the
desired global-position trajectories are provided by a
higher-layer planner. To assess the effectiveness of
the proposed controller, three different desired global-
position (GP) trajectories are tested, including single-
direction and varying-direction trajectories. These tra-
jectories are specified in Table. 2.

The GPs include two straight-line global-position tra-
jectories with distinct heading directions, labeled as
(GP1) and (GP2). We set the velocities of (GP1) and
(GP2) to be different to evaluate the performance of the
controller under different walking speeds. To assess the
effectiveness of the proposed control law in tracking the
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Table 2. Desired global-position trajectories.

Traj.
index

xd(t) (cm) yd(t) (cm) Time in-
terval (s)

(GP1) 8t 0 [0,+∞)

(GP2) 19.1t 5.9t [0,+∞)

(GP3)

25t 0 [0,3.13)

3000sin( t−3.13
80 )+

78.2
3000cos( t−3.13

80 )−
3000

[3.13,4.25)

24(t −4.25)+
120

−7(t −4.25)−
0.3

[4.25,+∞)

Table 3. Initial tracking error norms for three cases.

Tracking error norm Case A Case B Case C

swing foot position (%
of step length) 27.5 27.5 40

base orientation (deg.) 0 17 12

base position (% of step
length) 15 15 8

desired global-position trajectories along a path with dif-
ferent walking directions, we also consider a walking tra-
jectory (GP3) consisting of two straight-line segments
connected via an arc.

The desired functions φφφ
F , φφφ

U , and φφφ
O are designed as

Bézier curves (Section 3.2). To respect the impact dy-
namics as prescribed by condition (B2), their parameters
could be designed using the methods introduced in [8].
The desired walking patterns corresponding to the de-
sired functions φφφ

F , φφφ
U , and φφφ

O used in this study are
illustrated in Fig. 6. In three-domain walking (top plot
in Fig. 6), the FA, UA, and OA phases take up approxi-
mately 33%, 8%, and 59% of one walking step, respec-
tively, while the FA and UA phases of the two-domain
walking gait (lower plot in Fig. 6) last 81% and 19% of
a step, respectively. For both walking patterns, the step
length and maximum swing foot height are 7.1 cm and
2.4 cm, respectively.

6.2.3 Simulation cases
To validate the proposed controller under different de-

sired global-position trajectories, walking patterns, and
initial errors, we simulate the following three cases:

(Case A): Combination of desired trajectory (GP1) and
two-domain walking pattern (Fig. 6, top).

(Case B): Combination of desired trajectory (GP2) and
two-domain walking pattern (Fig. 6, top).

(Case C): Combination of desired trajectory (GP3) and

Fig. 6. Desired walking patterns for (a) two-domain walking
(Cases A and B) and (b) three-domain walking (Case C) in the
sagittal plane. The labels Xw and Yw represent the x- and y-axes
of the world frame, respectively.

three-domain walking pattern (Fig. 6, bottom).

Table 3 summarizes the initial tracking error norms for
all cases. Note that the initial swing-foot position track-
ing error is roughly 30-40% of the nominal step length.

6.2.4 Controller setting
For the IO-PD and IO-QP controllers, the PD con-

troller gains are set as Kp,i = 225 · I and Kd,i = 50 · I to
ensure the matrix Ai (i ∈ {F,U,O}) is Hurwitz. For the
IO-QP controller, the slack penalty weight p (Eq. (39)) is
set as p = 107. On a desktop with an i7 CPU and 32GB
RAM running MATLAB, it takes approximately 1 ms to
solve the QP problem in Eq. (39).

To verify the stability of the multi-domain walking
system, we construct the three Lyapunov-like functions
Vf , Vu, and VO as introduced in Section 4. In all domains,
the matrix Pi (where i∈ {F,U,O}) is obtained by solving
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the Lyapunov equation using the gain matrices Kp,i and
Kd,i and the matrix Qi. Here without loss of generality,
we choose Qi as an identity matrix. For the UA phase,
the value of β in the definition of VU in Eq. (26) is set as
0.001.

6.3 Simulation Results
This subsection presents the tracking results of our

proposed IO-PD and IO-QP controller for Cases A
through C.

6.3.1 Global-position tracking performance
Figures 7 and 8 show the tracking performance of the

proposed IO-PD and IO-QP controllers under Cases A
and B, respectively. As explained earlier, Cases A and
B share the same desired walking pattern of two-domain
walking, but they have different desired global-position
trajectories and initial errors. For both cases, the IO-
PD and IO-QP controllers satisfactorily drive the robot’s
actual horizontal global position (xb,yb) to the desired
trajectories (xd(t),yd(t)), as shown in the top four plots
in each figure. Also, from the footstep locations dis-
played at the bottom of each figure, the robot is able to
walk along the desired walking path over the ground. In
particular, the footstep trajectories in Fig. 8 demonstrate
that even with a notable initial error (approx. 17

◦
) of

the robot’s heading direction, the robot is able to quickly
converge to the desired walking path.

Figure 9 displays the global-position tracking results
of three-domain walking for Case C. The top two plots,
i.e., the time profiles of the forward and lateral base
position (xb and yb), show that the actual horizontal
global position diverges from the reference within the
UA phase during which the global position is not directly
controlled. Despite the error divergence within the UA
phase, the actual global position still converges to close
to zero over the entire walking process thanks to con-
vergence within the FA and OA domains, confirming the
validity of Theorem 1.

6.3.2 Convergence of Lyapunov-like functions
The multiple Lyapunov-like functions for case C, im-

plemented with IO-PD and IO-QP control laws, is il-
lustrated in Figure 10. Both control laws ensure the
continuous-phase convergence of VF and VO satisfies
condition (B1). Although VU diverges during the UA
phase, it remains bounded, thereby satisfying condition
(B3). Moreover, we know the desired trajectories pa-
rameterized as Bézier curves are planned to satisfy (B2).
Therefore, the multiple Lyapunov-like functions behave
as predicted by conditions (C1)-(C3) in the proof of The-
orem 1, indicating closed-loop stability.

6.3.3 Satisfaction of torque limits
Figure 11 illustrates the joint torque profiles of each

leg motor under the IO-PD and IO-QP control methods
for Case B. The torque limits umax and umin are set as 4.1
N and −4.1 N, respectively. It is observed that the torque
experiences sudden spikes due to the foot-landing impact
at the switching from the UA to the FA phases. Due to
the notable initial tracking errors, there are also multi-
ple spikes in the joint torques at the beginning of the en-
tire walking process. These spikes tend to be more sig-
nificant with the IO-PD controller than with the IO-QP
controller. In fact, all of the torque peaks under IO-QP
are within the torque limits whereas some of those peaks
under IO-PD exceed the limits, which is primarily due
to the fact that the IO-QP controller explicitly enforces
the torque limits but IO-PD does not. This comparison
highlights the advantage of using IO-QP over IO-PD in
ensuring satisfaction of actuation constraints.

7 DISCUSSION
This study has introduced a nonlinear GPT control

approach for 3-D multi-domain bipedal robotic walking
based on hybrid full-order dynamics modeling and mul-
tiple Lyapunov stability analysis. Similar to the HZD-
based approaches [6, 36, 10] for multi-domain walk-
ing, our controller only acts within continuous phases,
leaving the discrete impact dynamics uncontrolled. An-
other key similarity lies in that we also build the con-
troller based on the hybrid, nonlinear, full-order dynam-
ics model of multi-domain walking that faithfully cap-
tures the true robot dynamics and we exploit the input-
output linearization technique to exactly linearize the
complex continuous-phase robot dynamics.

Despite these similarities, our control law focuses on
accurately tracking the desired global-position trajecto-
ries with the precise timing, whereas the HZD-based
approach may not be directly extended to achieve such
global-position tracking performance. This is essentially
caused by the different stability types that the two ap-
proaches impose. The stability conditions proposed in
this study enforce the stability of the desired global-
position trajectory, which is a time function encoded by
the global time. In contrast, the stability conditions un-
derlying the HZD framework ensure the stability of the
desired periodic orbit, which is a curve in the state space
on which infinitely many global-position trajectories re-
side.

Our previous GPT controller design [17] for the multi-
domain walking of a 2-D robot is only capable of track-
ing straight-line paths. By explicitly modeling the robot
dynamics associated with 3-D walking and considering
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Fig. 7. Satisfactory global-position tracking performance under Case A. The top row shows the global-position tracking results, and
the bottom row displays the straight-line desired walking path and the actual footstep locations. The initial errors are listed in the
Table 3.

the robot’s 3-D movement in the design of the desired
trajectories, the proposed approach is capable of ensur-
ing satisfactory global-position tracking performance for
3-D walking.

One limitation of the proposed approach is that it may
be non-feasible to meet the proposed stability conditions
in practice if the duration of the underactuation phase,
δτU , is overly large. From Eq. (59) in the proof of Propo-
sition 3, we know that as δτU increases, α2 will also in-
crease, leading to a larger value of N̄. If N̄ is overly large,
Eq. (34) will no longer hold, and the stability conditions
will be invalid. To resolve this potential issue, the nomi-
nal duration of the UA domain cannot be set overly long.
Indeed, the percentage of the UA phase within a com-
plete gait cycle is respectively 19% and 8% of the sim-
ulated three-domain and two-domain walking, which is
comparable to that of human walking (i.e., 18% [36]).

Another limitation of our control laws lies in that the
robot dynamics model needs to be sufficiently accurate
for the controller to be effective, due to the utilization
of the input-output linearization technique. Yet, model
parametric errors, external disturbances, and hardware
imperfections (e.g., sensor noise) are prevalent in real-
world robot operations [37]. To enhance the robustness
of the proposed controller for real-world applications, we
can incorporate robust control [38, 39, 40, 22] into the
GPT control law to address uncertainties. Furthermore,

we can exploit online footstep planning [41, 42, 43, 44,
45, 46] to adjust the robot’s desired behaviors in real-time
to better reject modeling errors and external disturbances.

8 CONCLUSION
This paper has introduced a continuous tracking con-

trol law that achieves provably accurate global-position
tracking for the hybrid model of multi-domain bipedal
robotic walking involving different actuation types. The
proposed control law was derived based on input-output
linearization and proportional-derivative control, ensur-
ing the exponential stability of the output function dy-
namics within each continuous phase of the hybrid walk-
ing process. Sufficient stability conditions were estab-
lished via the construction of multiple Lyapunov func-
tions and could be used to guide the gain tuning of the
proposed control law for ensuring the provable stability
for the overall hybrid system. Both a three-domain and
a two-domain walking gait were investigated to illustrate
the effectiveness of the proposed approach, and the input-
output linearizing controller was cast into a quadratic
program (QP) to handle the actuator torque saturation.
Simulation results on a three-dimensional bipedal hu-
manoid robot confirmed the validity of the proposed con-
trol law under a variety of walking paths, desired global-
position trajectories, desired walking patterns, and initial
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Fig. 8. Satisfactory global-position tracking performance under Case B. The top row shows the global-position tracking results, and
the bottom row displays the desired straight-line walking path and the actual footstep locations. The initial errors are listed in the
Table 3.

errors. Finally, the performance of the input-output lin-
earizing control law with and without the QP formula-
tion was compared to highlight the effectiveness of the
former in mitigating torque saturation while ensuring the
closed-loop stability and trajectory tracking accuracy.
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A APPENDIX: PROOFS OF PROPOSITIONS
AND THEOREM 1

A.1 Proof of Proposition 2
Integrating both sides of the UA closed-loop dynamics

in Eq. (24) over time t yields

xη |−3k−1 =
∫ T3k−1

T3k−2

fη(s,xη(s),xξ (s))ds+xη |+3k−2. (40)

Then,∥∥∥xη |−3k−1

∥∥∥≤ ∥∥∥∫ T3k−1

T3k−2

fη(s,xη(s),xξ (s))ds
∥∥∥+∥∥∥xη |+3k−2

∥∥∥
≤
∫ T3k−1

T3k−2

∥∥∥fη(s,xη(s),xξ (s))
∥∥∥ds+

∥∥∥xη |+3k−2

∥∥∥.
(41)

Since the expression of fη(·) is obtained using the
continuous-phase dynamics of the generalized coordi-
nates in Eq. (4) and the expression of the output func-
tion yU in Eqs. (17) and (18), we know fη(t,xη ,xξ ) is
continuously differentiable in t, xη , and xξ . Also, we
can prove that there exists a finite, real, positive number
rη such that ∥ ∂ fη

∂ t ∥, ∥ ∂ fη

∂xξ

∥, and ∥ ∂ fη

∂xη
∥ are bounded on

(T3k−2,T3k−1)×Brη
(0). Then, fη(t,xη ,xξ ) is Lipschitz

continuous on (T3k−2,T3k−1)×Brη
(0) [29], and we can

prove that there exists a a real, positive number k f such
that ∥∥∥fη(t,xη(t),xξ (t))

∥∥∥≤ k f (42)

holds for any t × (xη ,xξ ) ∈ (T3k−2,T3k−1)×Brη
(0).

Combining the two inequalities above, we have∥∥∥xη |−3k−1

∥∥∥≤ k f (T3k−1 −T3k−2)+
∥∥∥xη |+3k−2

∥∥∥. (43)

The duration (T3k−1 −T3k−2) of the UA phase can be es-
timated as:
|T3k−1 −T3k−2|= |T3k−1 − τ3k−1 + τ3k−1 −T3k−2|

≤ |T3k−1 − τ3k−1|+δτU ,
(44)

where δτU := τ3k−1 − T3k−2 is the expected duration of
the UA phase and |T3k−1 − τ3k−1| is the absolute differ-
ence between the actual and planned time instants of the
UA→OA switching.

From our previous work [20], we know there exists
small positive numbers εU and rU1 such that

|T3k−1 − τ3k−1| ≤ εU δτU (45)

holds for any k ∈ {1,2, ...} and xU ∈ BrU1(0).
Thus, using Eqs. (43)-(45), we have

∥∥∥xη |−3k−1

∥∥∥≤ k f (1+ εU )δτU +
∥∥∥xη |+3k−2

∥∥∥. (46)

Substituting Eqs. (30) and (46) into Eq. (26) gives

VU |−3k−1 =Vξ |+3k−1 +β

∥∥∥xη |+3k−1

∥∥∥2

≤e−c3ξ (T3k−1−T3k−2)Vξ |+3k−2 +2β

∥∥∥xη |+3k−2

∥∥∥2

+2βk2
f (1+ εU )

2
δ

2
τU

≤2VU |+3k−2 +2βk2
f (1+ εU )

2.
(47)

Thus, for any xU ∈ BrU2(0) with rU2 := min(rη ,rU1),

VU |−3k−1 ≤ wu(VU |+3k−2)

holds, where wu(VU |+3k−2) := 2VU |+3k−2 +2βk2
f (1+ εU )

2.
It is clear that wu(VU |+3k−2) is a positive-definite function
of VU |+3k−2. ■

A.2 Proof of Proposition 3
For brevity, we only show the proof for ... ≤ VF |+3k ≤

VF |+3k−3 ≤ ...≤VF |+3 ≤VF |+0 , based on which the proofs
for the other two sets of inequalities in Eq. (34) can be
readily obtained.

To prove that VF |+3k ≤ VF |+3k−3 for any k ∈ {1,2, ...},
we need to analyze the evoluation of the state vari-
ables for the kth actual complete gait cycle on t ∈
(T3k−3,T3k), which comprises three continuous phases
and three switching events.
Analyzing the continuous-phase state evolution: We
analyze the state evolution during the three continuous
phases based on the convergence and boundedness re-
sults established in Propositions 1 and 2.

Similar to the boundedness of the UA→OA switch-
ing time discrepancy given in Eq. (45), there exist small
positive numbers εF , εO, rtF and rtO such that for any
xF ∈ BrtF (0) and xO ∈ BrtO(0),∣∣∣T3k−2 − τ3k−2

∣∣∣≤ εF δτF and
∣∣∣T3k − τ3k

∣∣∣≤ εOδτO (48)

hold, where δτF and δτO are the desired periods of the
FA and OA phases of the planned walking cycle, with
δτF := τ3k−2 −T3k−3 and δτO := τ3k −T3k−1 .

Substituting Eq. (48) into Eqs. (28) and (29) yields∥∥∥xF |−3k−2

∥∥∥≤√ c2F
c1F

e
− c3F

2c2F
(1+εF )δτF

∥∥∥xF |+3k−3

∥∥∥ (49)

and ∥∥∥xO|−3k

∥∥∥≤√ c2O
c1O

e
− c3O

2c2O
(1+εO)δτO

∥∥∥xO|+3k−1

∥∥∥ (50)

for any xi ∈ Br̄i(0) (i ∈ {F,O}), with the small positive
number r̄i defined as r̄i := min{ri,rti}.

From the definition of the Lyapunov-like function VU
in Eq. (26), the continuous-phase boundedness of VU in
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Eq. (47), and the continuous-phase convergence of Vξ in
Eq. (30), we obtain the following inequality characteriz-
ing the boundedness of the state variable xU within the
UA phase:∥∥∥xU |−3k−1

∥∥∥2
≤ 2

c̃2ξ

c̃1ξ

∥∥∥xU |+3k−2

∥∥∥2
+

2βk2
f

c̃1ξ
(1+ εU )

2 (51)

where the real scalar constants c̃1ξ and c̃2ξ are defined as
c̃1ξ := min(c1ξ ,β ) and c̃2ξ := max(c2ξ ,β ).

Since

2
c̃2ξ

c̃1ξ

∥∥∥xU |+3k−2

∥∥∥2
+

2βk2
f

c̃1ξ
(1+ εU )

2

≤

(√
2

c̃2ξ

c̃1ξ

∥∥∥xU |+3k−2

∥∥∥+√ 2βk2
f

c̃1ξ
(1+ εU )

)2

,

we rewrite Eq. (51) as:∥∥∥xU |−3k−1

∥∥∥≤√2
c̃2ξ

c̃1ξ

∥∥∥xU |+3k−2

∥∥∥+√ 2βk2
f

c̃1ξ
(1+ εU )

=: α1

∥∥∥xU |+3k−2

∥∥∥+α2.

(52)

Analyzing the state evolution across a jump: Without
loss of generality, we first examine the state evolution
across the F→U switching event by relating the norms of
the state variable just before and after the impact.

Using the expression of the reset map ∆∆∆F→U at the
switching instant t = T−

3k−2 (k ∈ {1,2, ...}), we obtain the
following inequality∥∥∥xU |+3k−2

∥∥∥=∥∥∥∆∆∆F→U (T3k−2,xF |−3k−2)
∥∥∥

=
∥∥∥(∆∆∆F→U (T3k−2,xF |−3k−2)−∆∆∆F→U (τ3k−2,xF |−3k−2))

+(∆∆∆F→U (τ3k−2,xF |−3k−2)−∆∆∆F→U (τ3k−2,0))

+∆∆∆F→U (τ3k−2,0)
∥∥∥

≤
∥∥∥∆∆∆F→U (T3k−2,xF |−3k−2)−∆∆∆F→U (τ3k−2,xF |−3k−2)

∥∥∥
+
∥∥∥∆∆∆F→U (τ3k−2,xF |−3k−2)−∆∆∆F→U (τ3k−2,0)

∥∥∥
+
∥∥∥∆∆∆F→U (τ3k−2,0)

∥∥∥.
(53)

Next, we relate the three terms on the right-hand side
of the inequality in Eq. (53) explicitly with the norm of
the state just before the switching (i.e., xF |−3k−2).

Recall that the expressions of ∆∆∆F→U (t,xF) solely de-
pends on the expressions of: (i) the impact dynamics
∆∆∆q̇(q)q̇, which is continuously differentiable on (q, q̇) ∈
T Q; (ii) the output functions yF(t,q), which is contin-
uously differentiable on t ∈ R+ and q ∈ Q under as-
sumption (A7); and (iii) the time derivative ẏF(t,q, q̇),
which, also under assumption (A7), is continuously dif-
ferentiable on t ∈ R+ and (q, q̇) ∈ T Q. Thus, we know
∆∆∆F→U is continuously differentiable for any t ∈ R+ (i.e.,
including any continuous phases) and state xF ∈ R2n.

Similarly, under assumption (A7), we can prove that
there exists a small, real constant lF such that ∥ ∂∆∆∆F→U

∂ t ∥
and ∥ ∂∆∆∆F→U

∂xF
∥ are bounded for any t ∈ R+ (including all

continuous FA phases) and xF ∈ BlF (0). Thus, for any
k ∈ {1,2, ...}, the function ∆∆∆F→U is Lipschitz continu-
ous on for any t ∈ [T3k−2;τ3k−2] and xF ∈ BlF (0), where
[T3k−2;τ3k−2] equals [T3k−2,τ3k−2] if T3k−2 < τ3k−2, and
it equals [τ3k−2,T3k−2] if T3k−2 > τ3k−2.

Thus, there exist Lipschitz constants LtF and LxF such
that:

∥∥∥∆∆∆F→U (T3k−2,xF |−3k−2)−∆∆∆F→U (τ3k−2,xF |−3k−2)
∥∥∥

≤LtF |T3k−2 − τ3k−2|
(54)

and ∥∥∥∆∆∆F→U (τ3k−2,xF |−3k−2)−∆∆∆F→U (τ3k−2,0)
∥∥∥

≤LxF

∥∥∥xF |−3k−2

∥∥∥ (55)

hold on [T3k−2;τ3k−2]×BlF (0) for any k ∈ {1,2, ...}.
From condition (A2) and Eqs. (31), (48), and (53)-

(55), we know that∥∥∥xU |+3k−2

∥∥∥≤ LxF

∥∥∥xF |−3k−2

∥∥∥+LtF εF δτF + γ∆. (56)

Analogous to the derivation of the inequality in
Eq. (56), we can show that there exist a real, positive
number lU and Lipschitz constants LtU and LxU such that:∥∥∥xO|+3k−1

∥∥∥≤ LxU

∥∥∥xU |−3k−1

∥∥∥+LtU εU δτU + γ∆ (57)

holds for any xU |−3k−1 ∈ BlU (0).
As the robot has full control authority within the

OA domain, we can establish a tighter upper bound on∥∥∥xF |+3k

∥∥∥ than Eqs. (56) and (57) by applying Proposition
3 from our previous work [23]. That is, there exists a
real, positive number lO and Lipschitz constants LtO and
LxO such that∥∥∥xF |+3k

∥∥∥≤ LtO

√
c2O
c1O

e
− c3O

2c2O
δτO
∥∥∥xO|+3k−1

∥∥∥+LxO

∥∥∥xO|−3k

∥∥∥
(58)

for any xO|−3k ∈ BlO(0).
From Eqs. (49), (50), (52), and (56)-(58), we obtain:∥∥∥xF |+3k

∥∥∥≤ N̄ + L̄
∥∥∥xF |+3k−3

∥∥∥. (59)

where
N̄ :=

(
LtU εU δτU + γ∆ +LxU (α1LtF εF δτF +α1γ∆ +α1α2)

)
·
(
LtO

√
c2O
c1O

e
− c3O

2c2O
δτO +LxO

√
c2O
c1O

e
− c3O

2c2O
(1+εO)δτO

)
and
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L̄ :=LxU α1LxF

√
c2F
c1F

e
− c3F

2c2F
(1+εF )δτF

·
(
LtO

√
c2O
c1O

e
− c3O

2c2O
δτO +LxO

√
c2O
c1O

e
− c3O

2c2O
(1+εO)δτO

)
,

Using Eqs. (27) and (59), we obtain

VF |+3k ≤ 2c2F N̄2 + 2c2F L̄2

c1F
VF |+3k−3. (60)

Note that the scalar positive parameters N̄ and L̄ in
Eq. (60) are both dependent on the continuous-phase
convergence rates of the Lyapunov-like functions within
the OA and FA domains (i.e., c3F and c3O), Specifically,
N̄ and L̄ (and accordingly 2c2F L̄2

c1F
and 2c2F N̄2) will de-

crease towards zero as the continuous-phase convergence
rates increase towards the infinity.

If condition (A3) holds (i.e., the PD gains can be ad-
justed to ensure a sufficiently high continuous-phase con-
vergence rate), we can choose the PD gains such that
2c2F L̄2

c1F
is less than 1 and 2c2F N̄2 is sufficiently close

to 0, which will then ensure VF |+3k ≤ VF |+3k−3 for any
k ∈ {1,2, ...}.

■

A.3 Proof of Theorem 1
By the general stability theory based on multiple Lya-

punov functions [31], the origin of the overall hybrid er-
ror system described in Eqs. (22) and (24) is locally sta-
ble in the sense of Lyapunov if the Lyapunov-like func-
tions VF , VO, and VU satisfy the following conditions:

(C1) The Lyapunov-like functions VF and VO exponen-
tially decrease within the continuous FA and OA
phases, respectively.

(C2) Within the continuous UA phase, the “switching-
out” value of the Lyapunov-like function VU is
bounded above by a positive-definite function of the
“switching-in” value of VU ; and

(C3) The values of each Lyapunov-like functions at
their associated “switching-in” instants form a non-
increasing sequence.

If the proposed IO-PD control law satisfies condition
(B1), then the control law ensures conditions (C1) and
(C2), as established in Proposition 1 and 2, respectively.
By further meeting conditions (B2) and (B3), we know
from Proposition 3 that condition (C3) will hold. Thus,
under conditions (B1)-(B3), the closed-loop control sys-
tem meets conditions (C1)-(C3), and thus the origin of
the overall hybrid error system described in Eqs. (22) and
(23) is locally stable in the sense of Lyapunov. ■
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