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ABSTRACT

Reliable global-position tracking control is crucial for
bipedal robots to perform high-level tasks such as multi-agent
coordination and dynamic-obstacle avoidance. Here, a robot’s
global position refers to its position in the environment. In this
study, a control approach that can provably achieve satisfac-
tory global-position tracking is proposed for bipedal robots with
a general multi-domain gait, which consists of walking phases
(domains) of full actuation, over actuation, and underactuation.
The derivation of the proposed control law begins with full-order
modeling of the hybrid, nonlinear walking dynamics. Based on
the full-order model, input-output linearizing control is synthe-
sized, which can achieve exponential global-position tracking
within the fully-actuated and the over-actuated domains but may
result in uncontrolled internal dynamics within the underactua-
tion domain. To enable reliable global-position tracking for the
overall hybrid closed-loop system, the construction of multiple
Lyapunov functions is employed to derive sufficient conditions
under which the tracking performance of the proposed control
law can be provably guaranteed. Finally, simulations of a planar
bipedal robot were performed to demonstrate the effectiveness of
the proposed control approach.
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INTRODUCTION

Human walking is naturally multi-domain consisting of
fully-actuated, underactuated, and over-actuated domains [1]].
A bipedal locomotor is fully-actuated when the support foot has
a full, static contact with the ground, is underactuated when only
the support-foot toe contacts the ground, and is over-actuated
when the swing-foot heel touches the ground while the support-
foot toe is still in contact. Previous studies have revealed that
humans utilize the underactuated domain of their multi-domain
gait to enhance walking agility [2]]. During the underactuated
domain, the support-foot toe works as a pivot to rotate the whole
body to fall down, accelerating the body to achieve higher walk-
ing speed and allowing the legs to reach a longer step. During
the fully- and over-actuated domains, the locomotor regains a se-
cured contact with the ground and is thus able to resume reliable
tracking of various desired motions for achieving high versatil-
ity. Although the rolling motion of the support foot is key to the
inherent versatility and agility of multi-domain walking and is
deceptively easy for humans to realize, the resulting underactu-
ated walking phases can present a difficult challenge for bipedal
robotic walking control.

To address the control challenge of achieving versatile and
agile bipedal robotic walking, various control frameworks have
been proposed. Among them, the Zero-Moment-Point (ZMP)
approach [3]] is the most widely applied one, which has been uti-
lized to achieve high walking versatility based on reduced-order
modeling and the ZMP balance criterion [4})5].
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Another intensively studied control approach, which is
called the Hybrid-Zero-Dynamics (HZD) approach [6}7], has
been developed to achieve provable stabilization and high agility
of walking, including fully-actuated [8|], underactuated [9,|10],
and multi-domain [[11,{12}13]] walking. Recently, researchers
have investigated speed regulation [14] and gait library [15]
based on the HZD approach to improve walking versatility.
These control strategies have been successfully implemented on
a variety of bipedal robots, such as DURUS [12], AMBER2 [[13]],
Cassie [16], and NAO [8]]. The HZD framework has also been
extended to the motion control of exoskeletons [17].

To simultaneously achieve versatile and agile bipedal
robotic walking, we have theoretically derived a control ap-
proach that achieves exponential global-position tracking for
fully actuated planar bipedal robots [18,|19]. Later on, this
control approach has been extended from a planar to a three-
dimensional (3-D) fully-actuated robot [20], which has been val-
idated through both 3-D realistic simulations and experiments on
an NAO bipedal humanoid robot [21]].

Inspired by the high performance of multi-domain human
walking, this study will theoretically extend our previous global-
position tracking control approach from (single-domain) fully-
actuated walking to multi-domain walking for enhancing the
walking versatility and agility of bipedal robots. A complete cy-
cle of a multi-domain gait consists of a fully-actuated domain,
an underactuated domain, and an over-actuated domain. Within
the fully-actuated and the over-actuated domains, an input-output
linearizing control law will be utilized to exponentially drive the
tracking error of the desired trajectories, which include the de-
sired global-position trajectory, to zero. Within the underactu-
ated domain, the robot’s degrees of freedom cannot all be di-
rectly controlled to track the desired trajectories due to the lack
of control authority, and thus internal dynamics may exist un-
der input-output linearizing control. Since it may not be realistic
to realize exponential trajectory tracking within the underactu-
ated domain, the controller design for the underactuated domain
aims to achieve a bounded tracking error rather than exponen-
tial tracking. Besides underactuation, another controller design
challenge is presented by the discrete behaviors of a foot-landing
impact, which cannot be directly controlled due to its infinites-
imally short duration. Thus, the tracking performance of the
closed-loop control system will be formally analyzed based on
Lyapunov theory [22] so as to derive sufficient conditions un-
der which the proposed control law can provably guarantee the
tracking performance of the overall hybrid multi-domain walk-
ing system.

This paper is structured as follows. Section [I] presents
the hybrid, full-order model of multi-domain walking dynam-
ics. The proposed trajectory tracking control law is explained
in Section [2| In Section 3| Lyapunov-based stability analysis is
presented. Section shows MATLAB [23]] simulation results to
demonstrate the effectiveness of our proposed control strategy.

1 FULL-ORDER DYNAMIC MODELING OF MULTI-

DOMAIN WALKING

In this section, a full-order model of multi-domain bipedal
robotic walking is presented, which provides a faithful descrip-
tion of the dynamic behaviors for all degrees of freedom (DOFs)
of the robot. Thanks to the high accuracy of a full-order model
in representing the true dynamics of bipedal robotic walking, a
controller design that is valid for a full-order model will also be
effective for the real robot. Therefore, this model will serve as a
basis for the proposed controller design in Section[2]

The generalized coordinates of a floating-based planar
bipedal robot with n revolute joints can be denoted as

q= [qZ,CIl,.-.,C]n}TEQ, (D

where Q C R"*3 is the configuration space, q, := [x;,25, 6] €
R? is the floating-base position and orientation with respect to
the world coordinate frame, which is used to represent the robot’s
global position and orientation in this study, and gy, ..., g, are the
robot’s joint angles.

1.1 Walking Domain Description

The multi-domain walking considered in this study consists
of three domains, which are fully-actuated, underactuated, and
over-actuated domains. Figure |1| shows the three domains and
the transitions between them. For simplicity and without loss of
generality, it is assumed that the only contact points on each foot
are the toe and the heel [[11]]. Let ny, ny,, and n, denote the num-
ber of DOFs of a robot’s floating base, the number of holonomic
constraints within a domain, and the number of independent ac-
tuators, respectively. Note that n, = 3 for planar robots and that
n, = n when the robot has n independent actuators. The number
of DOFs of the robot can be computed as DOF= (n+ ny) — ny,.
The complete description of each domain is given below:
Fully-Actuated (FA) Domain: In this domain, there are three
holonomic constraints, i.e., n;, = 3, because the support foot
keeps a static, full contact with the ground. Thus, DOF= (n +
np) —np = n = ng; i.e., the number of DOFs equals that of actu-
ators, which indicates that the robot is fully-actuated.
Underactuated (UA) Domain: In this domain, there are two
holonomic constraints, i.e., n;, = 2, because only the support-foot
toe touches the ground. Thus, DOF= (n+n,) —ny, =n+1 > n,,
i.e., the number of DOFs is greater than that of actuators, which
indicates that the robot is underactuated.
Over-Actuated (OA) Domain: In this domain, there are four
holonomic constraints, i.e., n, = 4, because both the leading-
foot toe and the trailing-foot heel touch the ground. Thus, DOF=
(n+np) —ny =n—1< ng;i.e., the number of DOFs is less than
that of actuators, which indicates that the robot is over-actuated.
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FIGURE 1.
tween them within a multi-domain walking step. The red lines and the

Illustration of the three domains and the transitions be-

green circles indicate the support foot and its contract points with the
ground, respectively.

1.2 Hybrid Multi-Domain Walking Dynamics

The full-order model of multi-domain walking dynamics is
naturally hybrid because walking inherently involves both con-
tinuous motion (e.g. foot swinging) and discrete behaviors (e.g.,
landing impacts).
Continuous Dynamics: With Lagrange’s method, the continu-
ous dynamics of multi-domain walking can be obtained as

M(q)d+¢(q,q) =Bu+J Fy, )

where J(q) : Q — R?*(**3) is the Jacobian matrix, M(q) : Q —
R(3)x(+3) s the inertia matrix, ¢(q,q) : TQ — R"*3) is
the sum of Coriolis, centrifugal, and gravitational terms, B €
R("+3)%1a ig the input matrix, and u € U C R" is the joint-torque
vector (U is the set of admissible control input). Here, F,,; is the
vector of external forces applied at the contact points. The di-
mension of F,, depends on the walking domain: a) F.y € R3
within the fully-actuated domain; b) F.y € R? within the un-
deractuated domain; and c) F,y € R* within the over-actuated
domain. The holonomic constraints can be expressed as

Ji+Jg=0o. (3)

From Egs. (2) and (@), the continuous dynamics can be com-
pactly expressed as

M(q){+¢(q,q) =B(q)u, 4

where the derivation of € and B is similar to our previous
work [21]] and is thus omitted due to the space limitation.
Switching surfaces: A switching event connects two successive
domains [[13]]. Three switching surfaces are required to connect
three domains into a multi-domain walking cycle (see Fig.[I).
The switching surfaces Sy, Sy— o0, and So—F connect the
FA to the subsequent UA, the UA to the subsequent OA, and the

OA to the subsequent FA, respectively, which can be expressed
as:

Sr-u(q,9,u) :={(q,q,u) € TO XU : Fou ;(q,q,u) =0,
Foxr2(q,9,u) < 0};

Su—0(4,4) == {(q,9) € TQ: zwi(q) = 0,Z51(q,4) < 0};

So-r(4,9) = {(q,94) € TQ: 5w (q) = 0,Z5ur(q,q) < O},

where Foy . : TQ x U — R is the vertical component of the ex-
ternal force applied on the support-foot heel, zg,, : O — R is
the height of swing-foot heel above the walking surface, and
Zowe - Q — R is the height of leading-foot toe above the walk-
ing surface.

Reset Maps: A complete gait cycle includes two foot-landing
impacts. One is associated with the foot landing of the swing-
foot heel when the domain switches from UA to OA, and the
other is associated with the foot landing of the leading-foot toe
when the domain switches from OA to FA. The domain switch-
ing from FA to UA is a smooth transition and thus does not in-
volve any impact. At a foot-landing impact, the robot’s joint po-
sitions will remain continuous, but its joint velocities will expe-
rience a sudden jump [6]. The impact dynamics can be described
by the following reset map

4" =Ry(q)q ", S

where q~ and q* represent the values of  right before and after
an impact, respectively. Here, R, : Q — R("#3)x("+3) can be
obtained by solving

o] =[]

where SF is a vector of the impulsive external force, and 0,
is a p X p zero matrix. Here, p is the dimension of the external
force. At the UA-to-OA impact, p = 2, which corresponds to the
forward and vertical directions of the heel contact point of the
swing foot. At the OA-to-FA impact, p = 1, which corresponds
to the vertical direction of the swing-foot toe.

2 MODEL-BASED CONTROLLER DESIGN

In this study, the main control object is to achieve satisfac-
tory tracking of the desired global-position trajectory for planar
multi-domain bipedal robotic walking. To realize this objective,
a model-based state feedback controller is developed based on
the full-order dynamic model presented in the previous section.

To illustrate the proposed controller design, a planar bipedal
robot with 6 revolute joints (i.e., n = 6) and 6 independent actu-
ators (i.e., n, = 6) is considered (see Fig. E])
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FIGURE 2.  An illustration of the planar bipedal robot considered in
the simulation. Oy, x,,, and z,, represent the origin, horizontal axis, and
vertical axis of the world coordinate frame, respectively.

2.1 Trajectory Tracking Errors

Fully-Actuated Domain: Let h.r(q) : O — Q. C R" denote
the variables of interest to be controlled within the FA domain,
which include: a) the robot’s global position and orientation, rep-
resented by the floating-base coordinates, (x,z5,6p); and b) the
swing-foot position and orientation, denoted as py,,(q) € R2 and
Y..(d) € R, respectively. Accordingly, h.r(q) can be expressed
as:

her (q) == [X6,2, 0, D%, (@), 7L, (@)] - ©)

Let hyr(t,0(q)) : RT x R — R" denote the desired trajec-
tories of h.r(q) within the FA domain, which are encoded by
time ¢ and a configuration-based phase variable 8 : Q — Qr C R
that monotonically increases within a step and represents how
far a step has progressed. Here, the desired global-position tra-
jectory is defined as explicitly time-dependent because it is often
expressed as time functions in practical robotic applications.

For the planar bipedal robot as shown in Fig. 2] the only
feasible walking direction is along the x,,-axis of the world coor-
dinate frame. Let x4(¢) denote the desired global-position trajec-
tory. Then, hyr(2,0(q)) can be expressed as

hdF(tﬂe(q)) = [xd(t)7¢;(e)}T7 @)

where ¢ (0) : Oy — R~ represents the desired trajectories
of yp, Zp, O, Psw, and ¥,,,. Bézier polynomials can be used to
parameterize the desired function ¢ (0) as [7]

o(s):= f akL!sk(l — )Mk, (8)
A TR — k).

_ot . . . _
where s := 99, _96+ is the normalized phase variable, ot € R~

(k=0,1,...,M) is a coefficient vector that will be optimized in
motion planning, 6~ and 6T denote the values of 6 right before
and after an impact associated with the desired gait, and M is the
order of the Bézier polynomials.

From the above definitions, the trajectory tracking error can
be expressed as

hF(I,Q) = th(‘l) _hdF(t’G(q))'

Underactuated Domain: Let h.y(q) : Q — O, C R" denote
the variables of interest to be controlled within the UA domain,
which are chosen as the individual joint angles of the robot.
Thus, h.y(q) is defined as:

T
hey (q) = (41,9293, 94,9596 - ©9)

Let hyy(0(q)) : Qf — R"™ denote the desired position trajec-
tories of h.y(q) within the UA domain. Note, within the UA
domain, hyy is independent of time because the robot’s global
position is not chosen as a controlled variable due to the lack
of actuators to directly control all DOFs within the UA domain.
However, the desired trajectories hyy will be planned to agree
with the desired global-position trajectory x,(¢). Again, Bézier
polynomials will be used to parameterize the desired function
hyy(0(q)).

From the above definitions, the trajectory tracking error can
be expressed as

hy(q) :=hy(q) —hay(0(q)).

Over-Actuated Domain: Let h.o(q) : Q — Q. C R"~! denote
the variables of interest to be controlled within the OA domain,
which include: a) the robot’s global position and orientation, rep-
resented by the floating-base coordinates, (x,zp,6); and b) the
orientation of the leading and trailing feet, which are denoted as
6,(q) € R and 6,(q) € R, respectively. Thus, h.o(q) is defined
as:

heo(q) = [Xb:25, 65, 61(a). 6:(q),] " - (10)

Lethyo(t,0(q)) : RT x Qf — R~ denote the desired po-
sition trajectories of h.o(q) within the OA domain. Similar to the
FA domain, the desired trajectory hyo(z,0(q)) can be expressed
as

hyo(t,0(q)) = [x4(t), 05(6())]", (11)
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where 9,(0) : Oy — R"a~2 represents the desired trajectories of
Vb 26> Op, 07 and 6;. Again, we can use Bézier polynomials to
parameterize the desired function ¢, (6).

From the above definitions, the trajectory tracking error can
be expressed as

hO(taq) = hCO(q) _th(tve(q))'

2.2 Impact Invariance Condition

Since bipedal robotic walking inherently involves impacts
between a landing foot and the ground, the desired trajectories
hy; (i € {F,U,0}) should respect the reset map in Eq. (3) [24].
To meet this requirement, a set of time-dependent impact invari-
ance conditions will be derived.

Suppose that the three phases of the ' step (k € {1,2,...})
are sequenced in the order of

FA — UA — OA.

Let T3_3, T3x_», T3x—1, and T3; denote the actual initial mo-
ment, the FA — UA switching moment, the UA — OA switch-
ing moment, and the final moment of the k" step, respectively.
Let 7343, T3r—2, T3r—1, and T3; denote the corresponding desired
switching moments. The time-dependent impact invariance con-
ditions are satisfied if the following equations

0; BF(T3I<737Q(T3+1(_3)7q(f347<_3)) 0;
0; hy(t3-2,9(t5_,),a(t5_5)) =0; (12)
0; ho(t3—1,9(75_),q(75_;)) =0,

hp (T3-3,q(T5;_5))
hy (T3c-2,9(75,_))

ho(T3-1,4(75;,_,))

automatically hold when the trajectory tracking errors and their
derivatives are both zero right before the switching moments.

2.3 Model-based State Feedback Control

To simplify the complex dynamics of multi-domain bipedal
robotic walking, input-output linearization is applied within each
domain to linearize their nonlinear, time-varying continuous dy-
namics into a linear, time-invariant system. The output functions
are defined as the trajectory tracking errors as derived in Sec-
tion[2.1} Since the tracking error is a function of time 7 and con-
figuration variable q within the FA and UA domains and is only
a function of q within the underactuated domain, the expressions
of the control laws are different for the three domains.
Fully-Actuated and Over-Actuated Domains: The output
functions are defined as the trajectory tracking errors as derived
in Section[2.1} i.e.,

yi:hi(taq)

with i € {F,0}. The following input-output linearizing control
law [25]]

I na—1i\—17/ I \ng—1x= 2%h; oh; -\
ui=(GeM'B) (GE)M e+ vi— S8 - S (GRa)d] (13)

3

will linearize the continuous dynamics into
yi=vi.
By applying the following proportional-derivative (PD) control
vi=—K,iyi — Kg,:¥i,

where K, ; and Ky ; are positive-definite diagonal matrices, one
has

Vi = —K,iyi — Ky iy

Underactuated Domain: The output functions are defined as
the trajectory tracking errors, i.e.,

yu =hy(q).

The following input-output linearizing control law
uy = (ZEMB) T (FEM e+ vy — S (GLa)a) (14)

will linearize the continuous dynamics into ¥y = vy. Again,
by applying PD control vy = —K,yyv — Kyuyu, where K,y
and K,y are positive-definite diagnal matrices, one has yy =
—Kpuyv —Kauyu.

Although the proposed control laws in Egs. (I3)) and (T4) can
exponentially drive the output functions to zero within the three
domains under properly chosen PD control gains, the discrete
impact dynamics in Eq. (5) cannot be directly controlled. Also,
due to the utilization of input-output linearization and the lack
of actuators to directly control all the DOFs during the UA do-
main, internal dynamics [25] exist within the UA domain, which
cannot be directly controlled as well. Thus, both the impact dy-
namics and the UA-domain internal dynamics of the closed-loop
control system will remain time-varying and strongly nonlinear
under the proposed control laws. It is then necessary to analyze
the stability of the overall hybrid closed-loop control system for
deriving sufficient conditions under which the proposed control
laws can provably guarantee the closed-loop stability and track-
ing performance.
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3 CLOSED-LOOP STABILITY ANALYSIS

To provably guarantee satisfactory tracking of the desired
trajectories in the presence of the uncontrolled, nonlinear, and
time-varying internal dynamics and reset maps, this section
presents the stability analysis of the hybrid dynamical system
in Eqs. @) and (3) under the proposed control laws in Egs. (T3)
and (T4). Since the problem of closed-loop tracking performance
analysis can be solved by analyzing the closed-loop stability of
the tracking error dynamics, we will formally establish sufficient
conditions based on the construction of multiple Lyapunov func-
tions [22] under which the proposed control strategies can guar-
antee the stability of the closed-loop tracking error dynamics.

Respectively define the states within the FA, UA, and OA
domains as:

T
xp = [y yE]T, Xy = [TIT gT} , and X0 := [y}, yg]T’
where

&= [y} )" and 0= [V — Vira Vo — Vira]

represent the state associated with the output functions and the
internal state within the UA domain, respectively. Here, vy is
the passive pitch angle of the stance foot, which corresponds to
the internal state within the UA domain.

The closed-loop dynamics can be expressed as:

v Xr = ApXp
F- X;;:AF_,U(I,X;)

{5 =Ag
Z"U : 71 :fTI(TLg)
(§+an+) =AU»0(E§7771_) if (LX{]) € SUHO(LXU)

if (l‘,X;) % SFHU('ZXF)
if (t,x;) € Sy (1,XF)

if (,xp) & Su—o(t,xv)

o Xp = AOX0 if (I7X6) ¢ SO_>F(I‘,X0)
Xg:AOﬁF(I,Xa) if(t,X(;)ESOHF(I,Xo)
(15)
where
0 I
Ap i | MaXna ingxna ’
d |:_KpF _KdF]
0 I
Ay = | MaxXna tnaxng 7
<= )
and

O 1) x(na—1) Xna—1)x(na—1)
AO._[ = ]

Let Vp(t,xr (1)), Vu(t,xu(t)), and Vo(t,xo()) denote the
Lyapunov function candidates during FA, UA, and OA domains,
respectively. According to the stability conditions established
in [22], the hybrid control system in Eq. is stable in the
sense of Lyapunov if the Lyapunov function candidates satisfy
the following conditions:

(A1) Within the FA and OA domains, the Lyapunov function can-
didates Vr and Vjy exponentially decrease, respectively.

(A2) Within the UA domain, the value of Vi, right before “switch-
ing out” is bounded above by a continuous function of the
value of V; right after “switching-in”.

(A3) The values of V; at the “switching-in” moments form a non-
increasing sequence for all i € {FA,UA,OA}.

The stability of the closed-loop error dynamics in Eq. (I3) will
be analyzed next in order to translate the above stability condi-
tions into mathematically rigorous sufficient conditions that the
proposed continuous control laws should satisfy.

For notational simplicity, (75, _ ;) := |3, ; will be used in
the following stability analysis (k € {1,2,...} and j € {0,1,2,3}).
Due to space limitations, a sketch of the stability analysis will be
presented.

First, sufficient conditions for satisfying (A1) are derived.

With the continuous control laws in Egs. and (T4), it can
be proved that if the PD gains are chosen such that A; is Hurwitz
then the Lyapunov function candidates V; can be constructed in a
way that during FA and OA there exist positive constants r;, cy;,
¢2i, and c3; such that [[25]]

cullxil> < Vi(r,x;) < cail|xil|* and Vi < —e3Vi (16)

hold for any x; € B,,(0) := {x; : ||x;|| < r;}, where i € {F,0}.
From Eq. (T6), one has

Vilyy < e rBaTusslyp|d a7
and
Vol o BIGS)

Hence, the condition (A1) can be locally satisfied by properly
choosing PD gains to ensure that Ap and Ag are both Hurwitz.

Now, we will derive sufficient conditions to satisfy (A2).

Due to the utilization of input-output linearization and the
lack of actuators to directly control all degrees of freedom within
UA, internal dynamics exist within the UA whose dynamics can-
not be directly controlled. The Lyapunov function candidate V
can be constructed as

Vu =Ve(&)+ Bl (19)
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where f is a positive number. Since the state & is directly con-
trolled within the UA, V;’: can be constructed in a way similar to
V4 and Vp. If the PD gains within the UA are selected such that
Ag is Hurwitz, then there exist positive numbers CE, CLEs Cof s and
¢3¢ such that

crellEIP < Ve(r,8) <coellél* and Ve < —c3eVe  (20)

hold for any &€ ¢ By, (0). From Eq. (20), one has

— — Tap—1—T3p—
V§|3k—1 <e e3¢ (Tap—1—Tsx Z)Véu_k—Z' 1)

From Eq. (T3)), one has

Ty
N3 :/ : lfn(s,n(s),é(s))ds+17\3*,(72. (22)

T2
Thus,

T3k—1
Il P <1 (). § sl + o P
T3 (23)

T3k-1

2 2

< [ (5. (5). £ () P+ [
T2

Assume that there exist positive numbers k; and r; such that

£, (2, (2),8(7))|| is bounded above by k; for all (n,§) €
B, (0) [26], i.c.,

[ (£, 1 (2), E(2)) | < ks (24)
Then,
051 ? < B (Dot — Tya) + Ll 29)

Here, the upper bound of the duration of the UA phase, T3, —
Tsr_7, can be estimated as

|T3k—1 — T3k—2| = | T3k—1 — T3k—1 + T3k—1 — D3x—2| 26)
<|T3k—1 — T3—1]| +Agy s

where A, := T3;_1 — T3;_7 is the nominal duration of the k-
step UA phase. Based on our previous work [21]], there exists a
small positive number €y such that

|T3p—1 — T3k—1| < €Ay, 27)

From Egs. (25)-(27), one has
1951 | < hp (14 €0)Agy + M]3 - (28)
Thus, from Egs. (19), (Z1)), and (28), one has

VU|3_k—1 :Vé |;_k71 +ﬁ||17\3+k,1 H2
<e -T2y |1 L 2B|nlg )17
+2Bk;(1+€y)*A7,
<OVl o+ 2Bk (1+e0) = wu(Vu|3_,)-

29

Because w,(Vy|3,_,) is a continuous function of Vy |3, ,, the
condition (A2) is satisfied for any xy € B,,(0) with ry :=
max(rg,ry).

Lastly, to satisfy the stability condition (A3), i.e.,

{VF|(J)raVF|;a }7 {VU|TaVU‘Ia'"}7 and {VO|;aVO|;a }

are all nonincreasing sequences, sufficient conditions will be de-
rived based on our previous work [20]. For space consideration,
only {Vr|i,Vr|7,...} will be discussed.

Upon a switching event at t = T3;_,, one has

Ixu 3ol =1 AF v (T3k—2,XF |5,
<N Ar—u (Tsk—2,XF |35_5) — AFr—u (T3k—2,XF |33 )|
+|AF U (T3k—2,XF |33_5) — AF—u (T31-2,0) |

+|AF v (T31-2,0)]]-
(30)
Since Ar_,y is a continuously differentiable function in t and x,
there exists a positive number /r and Lipschitz constants L;r and
L,r such that

lAF U (Tak—2,XF |34_») — AF v (Tak—2,XF |35_0) |l a1
<LiF|Tak—2 — T34—2]

and

[AF—u (T3k—2.XF |3;_5) — AF—u (T3k-2,0) |

_ (32)
SLxFHXF|3k72H

hold for any xr |5, , € By, (0). Similar to Eq. (27), there exists a
small positive number € such that

|T35—2 — T3k—2| < €pAg,, (33)

where Ag, 1= T34_» — T3¢_3 is the nominal duration of the k-
step FA phase. Also, if the impact invariance conditions derived
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in Section [2.2] can be satisfied through motion planning, then
1AF v (T3k—2,0)[| = (34)
From Eqs. (30)-(34)), one has
X035, o || < Lir€rAck + Lir|[XF |3, |I- 35)

Similar to the above derivation, one can obtain that there exists a
small positive number &p, positive numbers [y and /o, and Lips-
chitz constants L;;;, Ly, Lo, and L,o such that

X031 | < LwevAw + L llxu 3, | (36)

and

X7 |3l < Lio€oAro + Lol X035l (37)

hold for any xy|5,_, € Biy(0) and xo|5, € Bjo(0), respectively,
where Ao is the nominal duration of the k*-step OA phase.
From Egs. and (33)), one has

_ CQF 1+ep)A
||XF‘3]<72H§1/61F€ 2y (1her A Fisl (38)

and

€20
—e

2c2 (1+€0)Azy |x

X035l < olsall. (39

Therefore, one can prove that

Ixr |3 ]| < LiogoAco

HLioly[ 20

(LwevAw
+ Ly (kf (1 + SU)ATU
+ Lir&pAcr

2 1 A
+ Loy | “i e B e =)

(40)

Define

2 <1+80)A10
10 41)
(LweuAw + Ly (kf(1 + €y)Aq, + Lir€rAcr)))

N :=L,0€0Az0 + Lyo(

and

- C _7
L ::on(\ / C?Z 2o (1015

(LiweuAw + Loy (kr(1+ €y)Aq, (42)

C2F I+er)A
LY P T A )

then Eq. (40) can be rearranged into

IxF L3/l < N+ LlIxF [ 5_s]l- 43)

From Egq. (T6)), one then has

72

2L
VF|3k < C2F(2N +— Cir VF|3k 3) (44)

Thus, if the PD gains in each domain are chosen to be sufficiently

fast such that % is less than 1 and 2¢,p N2 is sufficiently close
to 0, then the condition (A3) can be satisfied.

4 SIMULATION

In this section, the simulation results are presented to
demonstrate the effectiveness of the proposed control strategy.
The planar bipedal robot as shown in Fig.|2|is simulated.

In MATLAB simulations, the continuous control laws in
Egs. and are implemented using the full-order model
in Eq. ). The PD gains K, and K, are set to be the same for
three domains (K, = 225 and K; = 15). Such a choice of PD
gains will guarantee that A; is Hurwitz for all i € {F,U,A}, thus
satisfying the condition (A1).

Without loss of generality, the original desired global-
position trajectory is chosen as x4(¢) = 0.2t — 0.14 m. Due to the
utilization of input-output linearization during the UA domain,
internal dynamics will exist, which cannot be directly controlled
and may result in a relatively large tracking error at the beginning
of the OA domain. To reduce the magnitude of the control effort
required to mitigate this initial tracking error, the desired global-
position trajectory within the OA domain is modified such that
it matches the actual trajectory at the initial moment of an OA
phase and smoothly connects to the original desired trajectory
in the middle of the OA phase. Let %;(¢) denote this modified
desired global-position trajectory.

Figure [3|shows the simulation results of the proposed multi-
domain global-position control, which indicates that the con-
troller is able to drive the robot to the modified desired global-
position trajectory despite the presence of the nonlinear, time-
varying internal dynamics and reset maps that can not be di-
rectly controlled. Although the robot tracks the modified desired

8 © 2019 by ASME
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FIGURE 3.  The global-position tracking performance of the pro-

posed control strategy. Three walking domains are marked. The robot
is able to converge to the modified desired global-position trajectory un-
der a relatively large initial tracking error. Since the modified desired
global-position trajectory is designed to stay sufficiently close to the
original one, a bounded tracking error of the original desired trajectory
is guaranteed.

global-position trajectory rather than the original one, we can still
consider that satisfactory global-position tracking is realized be-
cause the modified desired trajectory is designed to overlap with
the original one for the majority of the entire walking process.

Figure [4] shows the phase portrait of the robot’s individual
joint. It demonstrates that stable walking is realized in the pres-
ence of uncontrolled reset maps and internal dynamics.

5 CONCLUSIONS

This paper introduces a global-position tracking control ap-
proach for planar multi-domain bipedal robotic walking through
full-order dynamic modeling, input-output linearizing state feed-
back control, and closed-loop stability analysis. The full-order
dynamic model of a planar bipedal robot was represented, which
describes the complete dynamic behaviors of all degrees of free-
dom for the robot during the three domains of multi-domain
walking. The input-output linearization technique in combina-
tion with PD control was utilized to drive the output functions,
which are defined as trajectory tracking errors, to zero within
each domain. Despite the presence of uncontrolled internal dy-
namics and landing impact dynamics, the overall walking sys-
tem can still reliably track the desired trajectories with bounded
tracking errors. Simulations results demonstrated the effective-
ness of the proposed walking strategy in realizing satisfactory

a1 a1
= =
3 S
g o g o0
N— N
~ o~
> a1 -1
12 -1 -0.8 0.6 1.2 1 0.8 0.6
q; (rad) 4> (rad)
) )
= 1 < 1
E o E o
= -1 < 1
N >
0.5 1 15 0.8 1 12 14 16
q; (rad) q4(rad)
2 2 Z 2
3 3
g0 g0
‘S 2 > -2
“a 0.5 0 “1 08 06 -04
gs (rad) g (rad)

FIGURE 4. The phase portrait of robot’s individual joint for 40 steps.
It clearly shows that stable walking motions are realized under the pro-
posed control approach.

global-position tracking for versatile multi-domain walking. In
our future work, the proposed input-output linearizing control
will be modified to guarantee robust trajectory tracking as well
as to exploit the potential of multi-domain gait in achieving agile
walking.
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