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Abstract

This dissertation focuses on advancing bipedal robot control and state estimation within
the context of dynamic environments. It encompasses several key stages, starting with the
establishment of global-position tracking (GPT) control for multi-domain walking, where
walking involves alterations in contact conditions or actuator configurations during motion.
This initial effort, as described in Chapter 3, lays the foundation for precise trajectory
tracking and stability, essential for navigating rapid changing environments. Developing
a tracking controller for bipedal robots poses unique challenges due to the intricate, time-
varying, and hybrid nature of robot dynamics, particularly in the context of multi-domain
walking, encompassing various phases with distinct actuation characteristics including full
actuation, over actuation, and underactuation. In response to this challenge, a continuous-
phase GPT control law for multi-domain walking is introduced, which provides provable
exponential convergence of the entire error state within full and over actuation domains, as
well as the directly regulated error state within the underactuation domain. The simulation
results confirm the accuracy and reasonable convergence rate of the proposed control
approach.

Subsequently, the dissertation addresses the open problems of state estimation and
control for bipedal locomotion on dynamic rigid surfaces (DRSes), which are rigid surfaces
moving in the inertial frame. Real-world examples of DRSes include trains and ships.
Towards solving the state estimation problem, the dissertation explores the expansion of
existing state estimation techniques from static terrains to DRSes, as reported in Chapter 4.
This extension aims to enhance the accuracy of state estimation with DRS motion involved,
which is needed to inform controller designs. A new invariant extended Kalman filter
is introduced for estimating the robot’s pose and velocity during DRS locomotion using
common sensors found on legged robots, such as inertial measurement units (IMU), joint
encoders, and RGB-D cameras. The filter explicitly accounts for the nonstationary surface-
foot contact point and the hybrid robot behaviors. It also exhibits attractive properties
such as guaranteed convergence in the absence of IMU biases for the deterministic case.
Furthermore, the observability of state variables is analyzed, revealing the impact of DRS
movement on the observability. Experimental validations with a Digit humanoid robot
walking on a pitching treadmill confirm the efficacy of the proposed filter under uncertainties
(e.g., sensor noise and biases and estimation errors) and various DRS pitch movements.

The last direction of this dissertation research focuses on the design and evaluation of a
hierarchical control approach that ensures stable underactuated bipedal walking on a DRS
with a known, periodic, horizontal motion. Chapter 5 summarizes the findings along this
direction. The framework comprises three layers: higher-layer foot-placement planning,
middle-layer full-body reference generation, and lower-layer feedback control. The key
novelty of the proposed framework lies in the footstep planning. By incorporating a new
angular momentum-based linear inverted pendulum (ALIP) model and a DRS forcing input,
the higher layer povably stabilizes the hybrid, linear, time-varying ALIP model. The middle-
layer walking pattern generator produces smooth foot placement transitions using Bézier
polynomials encoded by a time-based phase variable, while the lower layer adopts existing
feedback controllers to drive the robot to its desired state. Validations using the Digit robot,
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both in simulations and hardware experiments, support the framework’s effectiveness in
realizing stable bipedal walking on a horizontally moving surface.
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ṽc
y, is zero because the treadmill does not move in that direction. . . . . . . 77

4-7 Base velocity and orientation estimation results of the two filters, InEKF-

DRS (proposed) and InEKF-SRS, for Cases A. The thin solid and thick solid

lines are the estimates and ground truth of the base velocity and orientation.

The blue-dashed lines are the treadmill orientation profile. . . . . . . . . . 78

4-8 Accuracy comparison of InEKF-SRS and InEKF-DRS (proposed) for the

estimation of base velocity and roll and pitch angles under Case A. . . . . 79

4-9 Base velocity and orientation estimation results of the two filters, InEKF-

DRS (proposed) and InEKF-SRS, for Cases B. The thin solid and thick solid

lines are the estimates and ground truth of the base velocity and orientation.

The blue-dashed lines are the treadmill orientation profile. . . . . . . . . . 80

4-10 Base velocity and orientation estimation results of the two filters, InEKF-

DRS (proposed) and InEKF-SRS, for Cases C. The thin solid and thick solid

lines are the estimates and ground truth of the base velocity and orientation.

The blue-dashed lines are the treadmill orientation profile. . . . . . . . . . 81

4-11 Base velocity and orientation estimation results of the two filters, InEKF-

DRS (proposed) and InEKF-SRS, for Cases D. The thin solid and thick solid

lines are the estimates and ground truth of the base velocity and orientation.

The blue-dashed lines are the treadmill orientation profile. . . . . . . . . . 82

xi



4-12 Time-lapse figures of Digit walking on a rocking treadmill. The black arrow

indicates the treadmill’s direction of rotation. . . . . . . . . . . . . . . . . 83

5-1 The default controller of the Digit humanoid robot exhibited fast lateral

position drift on a DRS that oscillated at a frequency of 0.25 Hz and a

magnitude of 5 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5-2 Illustrations of a) the sagittal and lateral plane of a 3-D robot, b) continuous

and c) discrete ALIP dynamics in the sagittal plane, and d) continuous and

e) discrete ALIP dynamics in the lateral plane. . . . . . . . . . . . . . . . . 86

5-3 Overview of the proposed hierarchical control approach. The ALIP-based

planner generates the desired foot landing locations based on the current

state of the full-order model. The middle-layer walking pattern generator

adjusts the desired swing foot trajectories based on the full-order model

and the higher-layer planning result. In the lower layer, the input-output

linearizing controller reliably tracks the full-order reference trajectories. . . 92

5-4 Time line illustration. Tk−1 is the desired start instant of the current walking

step, Tk is the desired timing for the end of the current step, and Tk+1 is

the desired timing for the end of the next step. The superscript + and −

indicates the right and left limits. . . . . . . . . . . . . . . . . . . . . . . . 94

5-5 Illustration of computing the swing foot landing location . . . . . . . . . . 95

5-6 Illustration of the periodicity of robot walking Tstep, DRS motion TDRS,

and the solution of the hybrid linear system Tsys. This highlights that the

proposed formulation does not require Tstep should equal TDRS. . . . . . . . 98

xii



5-7 a) Illustration of the joints of Digit, with the highlighted joints on the right

side (q16-q30). Although the joints on the left side (q1-q15) are not shown

in this figure, they are symmtric to the right side. The green joints indicate

that they are active when the corresponding leg is in the swinging phase,

but they are deactivated when the corresponding leg serves as the support

leg. The joints label are listed as follows: right upper body joints (RUPJ),

right hip yaw (RHY), right hip pitch (RHP), right hip roll (RHR), right knee

(RK), right shin (RS), right heel spring (RHS) , right tarsas (RTA), right

toe A (RTO-A), right toe B (RTO-B), right ankle roll (RAR), right ankle

pitch (RAP) b) Illustration of the three closed-loop linkage systems that

can be characterized via holonomic constraints. This visualization aids in

understanding how passive joints are structured in the system. . . . . . . . 100

5-8 Performance comparison between the proposed DRS framework with the

previous SRS framework. The pink background indicates the left foot

support phase and the blue background indicates the right foot support phase.

As we can observe, within all cases, the full-body trajectory generated by

our proposed framework is much closer to the desired ALIP trajectory. Also,

the angular momentum prediction at the end of the current step (yellow

curve) shows much higher accuracy even in the presence of the DRS motion.

In contrast, the SRS framework performs poorer with two failure cases. . . 111

5-9 Comparison of global position tracking capability between the SRS and

the DRS planner. a) Plots show superior tracking performance of the DRS

planner in the forward direction, with the Digit staying within the designated

walking area. b) Digit walking on a narrow DRS walkway under the DRS

planner. c) Digit walking on the same walkway under the SRS planner,

resulting in stepping outside the walking surface. . . . . . . . . . . . . . . 113

xiii



5-10 Simulation results of Case A showing the response of the Digit robot under

an unknwon sudden push lasting 0.1 second. a) Time evolution of the CoM

position and the angular momentum trajectories. b) Time lapse images of a

walking Digit robot during push recovery. The plots demonstrate that the

robot maintains stability and effectively regulates its desired forward speed

after the push. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5-11 Simulation results of Case C were obtained when the Digit robot was

carrying a 10 kg box. The weight of the box was unknown to the planner.

The results are presented in the following two figures. a) shows the trajectory

evolution along the time axis. b) illustrates the walking motion of the robot.

It is evident that the robot maintains its stability throughout the walking

process, even with the presence of the external load causing forward drift. . 115

5-12 Experiment setup with the following elements: 1) a Digit robot, 2) a split-

belt Motek M-gait treadmill (i.e., DRS), 3) the moving axis of the treadmill,

4) a laser safety guard, 5) a safety harness. . . . . . . . . . . . . . . . . . . 116

5-13 Experimental results showing the task space tracking performance under

Case B. The results reveal accurate CoM height tracking, facilitating the

close match between the full-order robot model and the ALIP model. Ad-

ditionally, the position tracking of the swing foot is satisfactory, ensuring

accurate placement at the intended destination. While mild fluctuations are

observed in the orientation tracking of both the base and swing foot, their

small magnitude prevents them from compromising the overall walking

performance of Digit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5-14 Experimental trajectory tracking performance across Cases A-C. The desired

ALIP trajectories of xSC and Ly feature a level zero line due to a desired

forward speed of 0, preventing the Digit from stepping out of the confined

testing area on the treadmill. Examining ySC and Lx, it becomes evident that

the Digit effectively adheres to its desired trajectory, thereby ensuring its

stable locomotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xiv



5-15 Time-lapse figures of Digit walking on a horizontally moving treadmill

under case B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xv



List of Tables

3.1 Mass distribution of the OP3 robot. . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Desired global-position trajectories. . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Initial tracking error norms for three cases. . . . . . . . . . . . . . . . . . . . 51

4.1 Noise standard deviation for inekf-srs and inekf-drs. . . . . . . . . . . . . . 77

4.2 RMS error comparison under Case A. . . . . . . . . . . . . . . . . . . . . 79

5.1 Simulation Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Linear velocity regulation comparison . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Experiment Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xvi



1

Chapter 1 Introduction

1.1 Motivation

Bipedal walking systems hold great potential for various applications, including delivery

services and emergency response. Their remarkable capability to navigate through challeng-

ing terrains like uneven surfaces, stairs, narrow passages, and even moving platforms sets

them apart from wheeled or tracked robots.

To ensure the success of bipedal robot walking, two critical components come into play:

controllers and state estimators. Controllers play a central role in enabling reliable legged

robot locomotion by directly altering the dynamic behavior of the robot. Meanwhile, state

estimation is essential in supplying the controller with accurate estimates of the movement

variables in real-time.

However, designing controllers and state estimators for bipedal robots presents substan-

tial challenges. These machines exhibit complex hybrid dynamical behaviors that encompass

both continuous dynamics, such as foot swinging, and discrete jumps, such as the role switch-

ing between the support and the swing feet at a foot-landing event. These discrete jumps

are nonlinear, uncontrolled, and triggered by state-dependent conditions [2, 3]. Both the

continuous and the discrete behaviors are subject to various ground contact constraints [4].

Also, modern bipedal robots are often equipped with on-board sensors that may not directly

measure all the relevant state variables or can be influenced by hardware imperfections such

as bias and noise [5]. Furthermore, in real-world applications, bipedal robots may encounter

dynamic rigid surfaces (DRSes) [6], which are rigid surfaces moving in the inertial frame,

such as ships, aircraft, trains, and elevators (see Fig. 1-1-a)). These surfaces introduce extra

complexity due to the time-varying movement of the foot-ground contact region, in contrast

to the static contact area on static terrain.

The robot hardware used in this dissertation research is shown in Fig. 1-1-b).
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Figure 1-1: a) Illustration of real-world dynamic rigid surfaces (DRSes). b) Illustration of
the robot hardware used in this dissertation. The left hand side is the OP3 robot (manufac-
tured by ROBOTIS Co., Ltd), and the right hand side is the Digit robot (manufactured by
Agility Robotics).

1.2 Related Work

To provide a context for this dissertation, several existing approaches of dynamic

modelling, state estimation, and control strategies are reviewed in this section.

1.2.1 Dynamic Modeling for Bipedal Walking

Various model-based control approaches have achieved reliable walking performance

on a wide range of bipedal robot platforms. These approaches rely on dynamic models,

including reduced-order and full-order models, each with its own strengths and weaknesses

in control design. Models are indispensable in bipedal robot controller design as they

provide mathematical representations of robot dynamics and the environment. Reduced-

order models offer computational efficiency, making them suitable when approximations

are acceptable, whereas full-order models provide high-fidelity representations for precise

control but require greater computational resources. The choice between these models

depends on the need to balance accuracy with computational demands in different scenarios,

highlighting the fundamental role of models in ensuring effective bipedal robot control.
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1.2.1.1 Linear Inverted Pendulum Model

The most extensively studied reduced-order model of legged locomotion is the linear

inverted pendulum (LIP) [7, 8] model. The LIP model approximates the legged robot as a

mass point atop a massless leg, and captures the essential behaviors of legged locomotion

(e.g., the transfer between the robot’s potential and kinetic energy during walking). The

major advantage of the LIP model stems from its simplicity (i.e., low dimensionality and

linearity). As a legged robot typically has ten to forty joints, the full-order model of legged

locomotion dynamics can be high-dimensional. The high dimensionality could induce an

overly high computational load for the implementation of motion planners and controllers

that prevent real-time implementation. In contrast, the LIP model has a significantly smaller

number of state variables, and thus can be utilized to enable online planning and control.

Besides simplicity, the LIP model also provides analytical tractability as well as physical

intuitions into the complex dynamics of legged locomotion. Furthermore, Y. Gong et

al. [9] have proposed an angular momentum-based linear inverted pendulum (ALIP) model.

Compared with the classical LIP model, the ALIP model takes into account both the inertial

and angular motions of the bipedal robot, resulting in a higher level of model fidelity. Yet,

the major disadvantage of the LIP model, which is commonly shared by reduced-order

models, is its inaccuracy in capturing the robot’s complete dynamic behaviors as compared

with a full-order model, especially for legged robots whose whole-body mass cannot be

accurately assumed to be concentrated at a single point.

1.2.1.2 Spring-Loaded Inverted Pendulum Model

The Spring-Loaded Inverted Pendulum (SLIP) model is a widely used reduced-order

model in the study of biomechanics and robotics, particularly in the context of understanding

and simulating bipedal and quadrupedal locomotion [10]. This model simplifies the complex

dynamics of legged locomotion into a single leg with a spring, representing the combined

mass, inertia, and muscle action of an animal or a robot’s leg. The essence of the SLIP model

is its ability to capture the fundamental mechanics of running and hopping motions, where

energy is stored in the spring during the stance phase and released during the take-off phase,
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creating a cyclical movement pattern [11]. This model has been significant in uncovering

fundamental locomotion principles in the natural world and has influenced the design and

development of legged robotic systems [12].

1.2.1.3 Centroidal Dynamics

Another widely adopted reduced-order model is the centroidal dynamics [13, 14, 15, 16],

which describes the dynamics of a robot’s center of mass (CoM) and its whole-body angular

momentum about the CoM in response to external forces (i.e., gravitational and ground

reaction forces). Compared to the LIP model, the centroidal dynamics provides a more

realistic approximation of the actual robot dynamics for several reasons. First, it does not

rely on some of the relatively restrictive assumptions underlying the LIP model, such as

the constant CoM height above the support point. Second, in contrast to the LIP model

that only considers the effective ground reaction forces at the center of pressure (CoP), the

centroidal dynamics considers the ground reaction forces at each support foot, which could

be utilized to allow planners and controllers to explicitly optimize those forces at all support

feet for ensuring secured foot-ground contact. However, the centroidal dynamics is not as

analytically tractable as the LIP model. For instance, the whole-body angular momentum

about the CoM cannot be integrated analytically based on the centroidal dynamics.

1.2.1.4 Hybrid Zero Dynamics (HZD)

The full-order model of a bipedal robot describes the complete dynamic behaviors of a

biped’s full degrees of freedom (DOF). The major advantage of using a full-order model in

controller design lies in its higher accuracy than a reduced-order model. Yet, the full-order

model of a bipedal robot can be highly complex due to its high dimensionality, nonlinearity,

and hybrid nature. To simplify the full-order robot model without compromising its accuracy,

the concept of hybrid zero dynamics (HZD) [2, 17, 18] has been proposed for underactuated

walking robots whose independent joint motors are fewer than their DOFs. The HZD is

the low-dimensional zero dynamics of the uncontrolled portion of the robot’s full-order

dynamics under the input-output linearizing control that is built upon the full-order model.

The HZD enjoys both the accuracy of a general full-order model as well as the simplicity of a
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standard reduced-order model. Different from the standard reduced-order models, the HZD

also captures the hybrid behaviors of bipedal walking. Indeed, bipedal walking is inherently

hybrid and possesses discrete-time dynamics, such as the role switching of the support and

swing feet at the foot-landing events as well as the sudden jumps in the joint velocities

caused by landing impacts. By capturing the hybrid behaviors, the HZD allows controllers

to explicitly address them for ensuring locomotion stability in the presence of significant

discrete behaviors. This is in sharp contrast to the majority of the existing reduced-order

models, which only consider the continuous-time dynamics of bipedal walking, i.e., the

swing-phase dynamics.

1.2.2 State Estimation for Legged Locomotion

State estimation plays a significant role in controller design and motion planning for

robots by providing real-time estimates of the robot’s movement state, such as the position,

velocity, and orientation of the robot’s base/trunk segment. The key performance measures

of state estimation include: (a) accuracy, which is used to assess how closely the state

estimates match the ground truth; (b) computational efficiency, which is a crucial metric for

real-time implementation; (c) reliance on a minimal number of sensors, which is important

for cost-effectiveness and simplicity in hardware setups; and (d) error convergence rate,

which characterizes how fast the state estimate converges to its steady-state value.

State estimation methods include filtering and smoothing [19]. Filtering utilizes only the

previous estimation results from the last time step to estimate the state variables at the current

time step, whereas smoothing (e.g., factor graph [20, 21]) uses multiple previous estimation

results, sometimes even all results up to the last time step, to provide state estimates at

the current time step. Compared to smoothing, filtering is typically computationally more

efficient due to its lighter computational load, and thus is more suitable for real-time state

estimation. We concentrate on reviewing common filtering methods next as our work

primarily addresses filtering instead of smoothing.
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1.2.2.1 Kalman Filtering and Its Variantions

Kalman filtering (KF) is a commonly used real-time state estimation method for linear

systems, involving propagation and measurement update steps. In the propagation step,

it estimates the true state’s probability density function using linear system dynamics.

When sensor measurements arrive, state estimates are updated using linear measurement

models [22]. In practical scenarios, process and measurement models are often nonlinear,

leading to KF’s performance limitations. The extended Kalman filter (EKF) extends KF to

nonlinear models based on the linearization of the nonlinear model at the estimated state [23].

While computationally efficient, EKF may perform poorly in the presence of significant

initial estimation errors and lacks provable guarantees [24]. In addition, the EKF has

been reported to cause observability inconsistency issues [25] because they might treat the

unobservable state as if they are observable. To overcome the inaccuracies of linearization

in EKF, the unscented Kalman filter (UKF) provides an alternative by employing weighted

statistical linear regression [26]. In general, the UKF produces equal or better results than

the EKF [23].

1.2.2.2 Invariant Extended Kalman Filtering

Recently, the invariant extended Kalman filtering (InEKF) method has been introduced

to resolve the inaccurate linearization of system models in order to achieve real-time, rapidly

convergent estimation [24]. The InEKF formulates the filter design on the matrix Lie group

for a class of continuous-time or discrete-time systems with group affine process models and

invariant measurement models. For such systems, the linearization of the error dynamics on

the Lie group is exact and independent of the state estimates for the deterministic portion

of the systems. Due to this attractive feature, the InEKF provides provable guarantees

on the estimation performance while demanding a low computational burden to allow for

real-time implementation. The InEKF has achieved remarkable estimation performance for

drones [27], under water vehicles [28], and legged robots [29, 30].
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1.2.2.3 Real-Time State Estimation of Legged Locomotion

Legged robots are often equipped with sensors, such as IMUs (typically attached to the

robot’s trunk), joint encoders, contact sensors, cameras, and Lidars, to measure their pose

and motion. However, these sensors are prone to hardware imperfections, uncertainties

during real-world operations, and might not directly measure all variables needed to inform

motion planners and controllers. To address this, various filters have been designed to

provide real-time, accurate state estimates.

Early filter designs for legged robots primarily employ the robot’s forward kinematics

chain [31] but struggle with relatively large state estimation errors due to foot slippage

on the ground, sensor noise, and kinematic model uncertainties. Improvements involve

constructing a measurement model based on the forward kinematics from the ground contact

point to the IMU, assuming static contact points [32]. This approach has been implemented

on robots such as MIT’s mini Cheetah quadruped [33], where the orientation of the robot’s

trunk, directly measured by the IMU, is utilized.

An EKF approach, employing unit quaternions to represent IMU rotations, has been

introduced by Bloesch et al. for quadrupedal and bipedal robots [32]. This approach has

enabled accurate and real-time estimation of movement variables such as the linear velocity

and roll and pitch angles of the IMU/trunk frame. Yang et al. have further extendeded this

method to a contact-centric UKF for legged locomotion on challenging terrains [34].

Hartley et al. [29] have applied the InEKF [32] to legged robot locomotion, reformulating

theprevious EKF-based estimator [32] on matrix Lie groups. In contrast to the EKF approach,

the InEKF ensures the asymptotic error convergence for the deterministic scenario in the

absence of IMU biases, and significantly improves the error convergence rate. Lin et al. [35]

have introduced a learning-based approach for detecting robot-terrain contacts without

requiring modifications of existing hardware. This improved contact detection method

enhances the effectiveness of the InEKF.

To date, the majority of state estimators for legged robots primarily address cases where

the ground remains static, and state estimation for moving surfaces remains underexplored.
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1.2.3 Control Design

Controllers directly alter a robot’s dynamic behavior and are essential in ensuring reliable

legged locomotion performance. The primary challenges in designing controllers for legged

robot locomotion arise from the complex robot dynamics, which are nonlinear, hybrid,

and high-dimensional in nature. Furthermore, factors such as environmental uncertainties,

sensor noise, and external disturbances contribute to the overall complexity of controller

design. Common assessment measures of legged locomotion control include stability,

agility, efficiency, versatility, and robustness. Stability primarily involves a robot’s ability

to maintain balance and prevent falls, making it the most important performance measure.

Agility is the skill of effectively traversing different terrains, efficiency involves lowering

energy usage, and versatility is the robot’s ability to adjust its walking patterns to various

environments. Robustness indicates the controller’s capacity to manage model uncertainties

and external disturbances. Different control approaches will be introduced next.

1.2.3.1 Zero Moment Point (ZMP) Based Control Design

The ZMP control design method is one of the most extensively studied methods for

bipedal walking [7, 36]. This method relies on the satisfaction of the ZMP balance criterion

to ensure walking stability. A ZMP is a reference point on the robot’s foot about which the

sum of all horizontal moments of ground reaction forces is equal to zero [37]. The ZMP

balance criterion requires that the ZMP should be strictly within the support polygon for

preventing a support foot from rolling over its edge. The ZMP controller design method

typically utilizes the LIP model as its basis, and has been successfully implemented on a

variety of biped robot platforms, such as ASIMO [38] and NAO [39].

The advantage of the ZMP control method lies in its high walking versatility, and has

enabled stable walking with different gait types through accurate trajectory tracking. Despite

high versatility, the classical ZMP-based controller is unable to address underactuated

walking, which exists during foot slipping as well as the heel-off phase of human-like

walking.
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1.2.3.2 Capture Point Based Control Design

Besides the ZMP point, another extensively studied reference point in controller design

is the capture point [40, 41]. The capture point is a point on the walking surface that a robot

needs to step to in order to come to a complete stop. A controller designed based on the

capture point can be used to guarantee walking robustness against external disturbances

such as sudden pushes.

In general, the real-time computation of the capture point based on a full-order model is

challenging due to the complex walking dynamics [42]. However, with a simplified model

such as the LIP model, the analytical expression of a capture point can be obtained. Thus,

implementing the capture point based control strategy online is possible due to the low

computational cost of the LIP model [43]. A limitation of the LIP model is its assumption

of constant CoM height, which proves inadequate when the robot navigates uneven terrain.

To address this, S. Caron [44] has introduced the variable-height inverted pendulum (VHIP)

model, which enables the robot to adapt to uneven terrain using capture inputs that are

computed within a few microseconds.

Still, using a reduced-order model in controller design may not be effective for robot

platforms (e.g., bipedal humanoid robots with substantial leg masses) whose dynamics

cannot be sufficiently accurately captured by such models. Also, both the ZMP and the

capture point based control methods only address the continuous walking dynamics without

explicitly considering the discrete-time dynamics of bipedal walking, and thus cannot ensure

walking stability when the discrete behaviors, such as sudden jumps in joint velocities upon

foot landings, are significant.

1.2.3.3 Hybrid Zero Dynamics (HZD) Based Control Design

In contrast to the ZMP and capture point based methods, the HZD contol framework

ensures the walking stability by provably stabilizing the desired motions of the hybrid,

nonlinear, full-order walking dynamics [2, 17, 18].

The HZD framework has been implemented for fully actuated [45], underactuated [46,

47], and multi-domain walking [48, 49], as well as running [50] and robot-assisted human
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walking [51]. Recently, velocity regulation [36] and learning-based gait library design [52]

have been incorporated into the HZD framework to enhance walking versatility beyond

periodic walking. In addition, the reinforcement leaning approach has also adapted into the

HZD framework [53]. As the HZD framework considers the full-order robot model without

relying on the restrictive model simplification assumptions as in the ZMP and capture point

approaches, it has achieved much higher walking performance in terms of agility and energy

efficiency. However, the HZD framework has been largely focused on stabilizing periodic

walking motions based on orbital stabilization instead of provable trajectory tracking.

1.2.3.4 Learning Based Control Design

Thanks to the availability of abundant data, the data-driven methods, notably reinforce-

ment learning (RL), offer new ways of control design for bipedal robots. There has been a

growing body of work that employs RL in a model-free manner [54, 55]. These model-free

methods generally require extensive training time and face challenges in transitioning from

simulated environments to physical hardware. They also typically do not provide guaran-

tees for system stability and performance and lack interpretability. In response to these

limitations, hierarchical controller structures that merge RL with model-based approaches

have been developed [56]. This methodology integrates various established models such

as the LIP [57], SLIP [58], and full-order models [53]. By utilizing various models, the

controller can capture the dynamics of bipedal walking systems more effectively [59]. This

combination of model- and learning-based approaches represents a significant advancement

in the field of robotic locomotion. It harnesses the predictive power of established models

while simultaneously leveraging the generalizability of RL. The result is a more robust

and versatile control system that can better navigate the complexities inherent in bipedal

locomotion. Although the primary focus of this dissertation is on model-based methods

instead of learning-based techniques, the potential and efficacy of these approaches are

promising for further exploration.
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1.3 Contributions

The research laid out in this dissertation has led to:

• Derivation of a nonlinear control approach that exploits Lyapunov-based controller

design methodologies to realize accurate global-position tracking for multi-domain

bipedal robot walking;

• Creation and experimental validation of an invariant filtering method that guarantees

real-time, rapid error convergence for bipedal walking over both stationary and DRSes,

by theoretically extending the existing InEKF method from systems without state-

triggered jumps to hybrid dynamical systems.

• Formulation and experimental assessement of a new control approach that employs a

new hybrid and time-varying reduced-order model to achieve stable underactuated

bipedal walking on a horizontally oscillating DRS.

1.4 Overall Structure of this Dissertation

A brief summary of the following chapters are explained next.

Chapter 2 Background: In this chapter, we establish the fundamental mathematical

concepts that readers will need so as to grasp the content presented in the rest of this

dissertation. The covered topics include coordinate systems, the LIP model, hybrid systems,

and an introduction to the basics of Lie groups. These concepts will reappear across the

entirety of the dissertation. As we delve into coordinate systems, readers will gain insight

into how the robot’s movements are described. The derivation of the LIP model lays the

groundwork for more advanced discussions in Section 5. The exploration of hybrid system

dynamics guides us through the intricate behaviors of robots, providing a pivotal framework

for comprehending multi-domain locomotion and full-order control strategies. Additionally,

the section on the matrix Lie groups sets the stage for understanding the core principles of

the InEKF, which is utilized for the robot’s state estimation.
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Chapter 3 Global-Position Tracking Control for 3-D Multi-Domain Bipedal Walking:

This chapter introduces a new time-based nonlinear control method for accurate global-

position tracking (GPT) in multi-domain bipedal walking. The complexity of the hybrid and

nonlinear robot dynamics poses challenges in deriving tracking controllers, especially for

multi-domain walking with full, over, and under actuation phases. Our approach employs a

continuous-phase GPT control law that ensures exponential error state convergence across

all domains. Sufficient multiple-Lyapunov stability conditions for the hybrid multi-domain

tracking error system are established. Simulation results demonstrate the effectiveness

of the proposed control method in both three-domain and two-domain walking scenarios,

showcasing accurate tracking and convergence across various speeds and paths.

Chapter 4 Invariant Filtering for Legged Humanoid Locomotion: This chapter presents

an InEKF that estimates the robot’s trunk pose and velocity during DRS locomotion by using

common sensors of legged robots (e.g., IMU, joint encoders, and RDB-D camera). A key

feature of the filter lies in that it explicitly addresses the nonstationary surface-foot contact

point and the hybrid robot behaviors. Another key feature is that, in the absence of IMU

biases, the filter satisfies the attractive group affine and invariant observation conditions,

and is thus provably convergent for the deterministic continuous phases. The observability

analysis is performed to reveal the effects of DRS movement on the state observability,

and the convergence property of the hybrid, deterministic filter system is examined for the

observable state variables. Experiments of a Digit humanoid robot walking on a pitching

treadmill validate the effectiveness of the proposed filter under sensor noise and biases as

well as large initial estimation errors and DRS movement uncertainties.

Chapter 5 Foot-Placement Control for Underactuated Bipedal Walking on Dynamic

Rigid Surfaces (DRSes): This chapter introduces a real-time control framework that

realizes stable underactuated walking on DRSes with a known, periodic, horizontal motion.

The framework consists of three layers: foot-placement planning, full-body reference

generation, and feedback control. By incorporating the angular momentum-based linear

inverted pendulum (ALIP) model and a DRS forcing input, the framework ensures stable

walking by stabilizing the hybrid, linear, time-varying ALIP model. The walking pattern

generator produces smooth foot placement transitions using Bèzier polynomials encoded
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by a time-based phase variable, while the lower layer implements feedback controllers

to handle holonomic constraints. Validations on the Digit robot, both in simulations and

hardware, demonstrate the effectiveness of the framework in addressing DRSes.

Chapter 6 Conclusion and Future Work: This chapter presents an overview of the

dissertation research, including our GPT control for multi-domain walking, InEKF-based

state estimation for DRS locomotion, and ALIP-based control for underactuated walking

on a horizontally moving DRS. Additionally, this chapter outlines promising directions for

future research in the context of the dissertation.
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Chapter 2 Background

This chapter introduces the essential mathematical concepts underlying the content in the

rest of this dissertation. The covered topics encompass coordinate systems, hybrid systems,

and an introduction of matrix Lie groups.

2.1 Coordinate Systems and Generalized Coordinates

This section explains the three coordinate systems used in the proposed controller

and estimator designs. Figure 2-1 illustrates the three frames, with the x-, y-, and z-axes

respectively highlighted in red, green, and blue.

2.1.1 Coordinate Systems

The world frame, also known as the inertial frame, is rigidly attached to the ground

(see “{World}” in Fig. 2-1). The base frame, illustrated as “{Base}” in Fig. 2-1, is rigidly

attached to the robot’s trunk. The x-direction (red) points forward, and the z-direction (blue)

points towards the robot’s head. The origin of the vehicle frame (see “{Vehicle}” in Fig. 2-1)

coincides with the base frame, and its z-axis remains parallel to that of the world frame. The

vehicle frame rotates only about its z-axis by a certain heading (yaw) angle. The yaw angle

of the vehicle frame with respect to (w.r.t.) the world frame equals that of the base frame

w.r.t. the world frame, while the roll and pitch angles of the vehicle frame w.r.t. the world

frame are 0.

2.1.2 Generalized coordinates

To use Lagrange’s method to derive robot dynamics models, we need to first introduce

the generalized coordinates to represent the base pose (i.e., position and orientation) and

joint angles of the robot.
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Figure 2-1: Illustration of the three coordinate systems used in the study: world frame,
vehicle frame, and base frame.

We use pb ∈ R3 and γγγb ∈ SO(3) to respectively denote the absolute base position and

orientation w.r.t. the world frame, and their coordinates are represented by (xb,yb,zb) and

(φb,θb,ψb). Here φb,θb,ψb are the roll, pitch, and yaw angles, respectively. Then, the 6-D

pose qb of the base is given by: qb := [(pb)T ,(γγγb)T ]T .

Let the scalar real variables q1, ..., qn represent n revolute joints of the robot. Then, the

generalized coordinates of a 3-D robot, which has a floating base and total of n independent

revolute joints, can be expressed as:

q =
[
qT

b , q1, ..., qn

]T
∈Q, (2.1)

where Q⊂ Rn+6 is the configuration space. Note that the number of degrees of freedom

(DOFs) of this robot without subjecting to any holonomic constraints is n+6.

2.2 Hybrid System

A hybrid control systemHC is a tuple:

HC = (Γ,D,U,S,∆,FG), (2.2)

where

■ The oriented graph Γ = (V,E) comprises a set of vertices V = {v1,v2, ...,vN} and a set
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of edges E = {e1,e2, ...,eN}, where N is the total number of elements in each set. In

this dissertation, each vertex vi represents the ith domain, while each edge ei represents

the transition from the source domain to the target domain, thereby indicating the

ordered sequence of all domains.

■ D is a set of domains of admissibility.

■ U is the set of admissible control inputs.

■ S is a set of switching surfaces determining the occurrence of switching between

domains.

■ ∆ is a set of reset maps, which represents the impact dynamics between a robot’s

swing foot and the ground.

■ FG is a set of vector fields on the state manifold.

The elements of these sets are explained next.

2.2.1 Continuous-phase dynamics

Within any domains in D, the robot only exhibits continuous movements, and its dy-

namics model is naturally continuous-time. Applying Lagrange’s method, we obtain the

second-order, nonlinear robot dynamics as:

M(q)q̈+ c(q, q̇) = Bu+JT Fc, (2.3)

where M(q) :Q→ R(n+6)×(n+6) is the inertia matrix. The vector c : T Q→ R(n+6) is the

summation of the Coriolis, centrifugal, and gravitational terms, where T Q is the tangent

bundle of Q. The matrix B ∈ R(n+6)×na is the input matrix. The vector u ∈U ⊂ Rna is the

joint torque vector. The matrix J(q) :Q→ Rnc×(n+6) represents the Jacobian matrix. The

vector Fc ∈ Rnc is the constraint force that the ground applies to the foot-ground contact

region of the robot. Note that during multi-domain walking, the dimensions of J and Fc vary

among the different domains due to differences in the ground-contact conditions and other

types of holonomic constraints.
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The holonomic constraints associated with legged locomotion on stationary ground can

be expressed as:

Jq̈+ J̇q̇ = 0, (2.4)

where 0 is a zero matrix with an appropriate dimension.

Combining Eqs. (2.3) and (2.4), we compactly express the continuous-phase dynamics

model as [60]:

M(q)q̈+ c̄(q, q̇) = B̄(q)u, (2.5)

where the vector c̄ and matrix B̄ are defined as: c̄(q, q̇) := c−JT (JM−1JT )−1(JM−1c− J̇q̇)

and B̄(q) := B−JT (JM−1JT )−1JM−1B.

2.2.2 Switching surfaces

When a robot’s state reaches a switching surface Si ∈ S, where i is the index of the

switching surface, it exits the source domain and enters the targeted domain. We use

switching surfaces to describe the conditions under which a switching event occurs. The

switching surface varies for different walking type, as we will look more into details in

Chap. 3 and Chap. 5.

2.2.3 Discrete impact dynamics

When a rigit swing foot hits a rigid walking surface, an instantaneous rigid-body impact

occurs, resulting in the robot’s generalized velocity q̇ experiencing a sudden jump. Unlike

velocity q̇, the configuration q remains continuous across an impact event as long as there

is no coordinate swap of the two legs at any switching event. Let q̇− and q̇+ represent

the values of q̇ just before and after an impact, respectively. The impact dynamics can be

described by the following nonlinear reset map [2]:

q̇+ = ∆∆∆q̇(q)q̇−, (2.6)

where ∆∆∆q̇ : Q→ R(n+6)×(n+6) is an element in ∆ and a nonlinear matrix-valued function

relating the pre-impact generalized velocity q̇− to the post-impact value q̇+. The derivation
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of ∆∆∆q̇ relies on the specific impact scenario, which will be explored in detail in Chap. 3

where various foot-surface contact conditions will be discussed.

2.3 Bézier polynomial

The Bézier polynomial φ(s), which is used to parameterize the desired trajectory, is

defined as follows:

φ(s) :=
M

∑
m=0

αm
M!

m!(M−m)!
sm(1− s)M−m, (2.7)

where M represents the order of the Bézier polynomial and αm is the coefficient associated

with the mth term. Bézier polynomials have the convenient property that φ(0) = α0 and

φ(1) = αM, which allows us to relate the coefficients to the values of the polynomial at the

endpoints. By adjusting the values of the coefficients, we can modify the desired trajectory

accordingly. Moreover, Bézier polynomials exhibit relatively small oscillations even with

small variations in the parameters, making them a suitable choice for encoding desired

trajectories for robots.

2.4 Fundamentals of Matrix Lie Groups

Robotic state estimation is vital for a robot to understand its environment and navigate

effectively, involving the deduction of the robot’s internal state from sensor data. The

integration of matrix Lie groups into robotic state estimation can help effectively address

the nonlinearities of system dynamics [29]. This section offers a brief introduction to matrix

Lie groups.

2.4.1 Lie Groups

A Lie group G is a smooth manifold whose elements, such as X , Y , and Z , satisfies the

following group axioms:

Closure: X ◦Y ∈ G,

Identity: X ◦I = I ◦X = X ,



19

Inverse: X ◦X−1 = X−1 ◦X = I,

Associativity: (X ◦Y)◦Z = X ◦ (Y ◦Z),

where I is the group identity and ◦ is the group composition operation.

2.4.2 Matrix Lie Groups

A matrix Lie group GM [61] is a specific type of Lie groups in which the elements of

the group are represented by certain invertible square matrices, and the group operation is

matrix multiplication, denoted as · here. Accordingly, to ensure that matrices X, Y, and

Z belong to the matrix Lie group, they must satisfy the following conditions, which are

derived from the group axioms:

Closure: X ·Y ∈ GM,

Identity: X · I = I ·X = X,

Inverse: X ·X−1 = X−1 ·X = I,

Associativity: (X ·Y) ·Z = X · (Y ·Z),

where I is the identity matrix with a proper dimension. Since this dissertation primarily uses

matrix Lie group in the proposed state estimator design, the subsequent content focuses

on introducing several basic concepts associated with matrix Lie groups, rather than the

broader context of a general Lie group.

2.4.3 Lie Algebra

For any point (matrix) X ∈ GM, there is an unique tangent space, denoted as TXGM. Such

a tangent space at the group identity, denoted as TIGM, is called the Lie algebra g. The

Lie algebra is a set of n×n square matrices with dimension of dimg. Lie algebra g can be

mapped directly to the vector space using the linear operator (·)∨ : g→Rdimg (Vee operator),

whose inverse operator is (·)∧ : Rdimg→ g (hat operator).

It is worth noting that the Lie algebra can be defined locally w.r.t. a specific point X on

the matrix Lie group, which may not necessarily be the group identity. To precisely denote
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this tangent space, a left superscript can be used, as seen in expressions such as X v ∈ TXGM

and Iv ∈ TIGM, where v ∈ g represents an arbitrary element within the Lie algebra.

2.4.4 Exponential, Logarithmic, and Adjoint Operations

The exponential map, denoted as exp : g→GM, maps the element of the Lie algebra to

the Lie group exactly. In the context of matrix Lie groups, the exp function corresponds to

the matrix exponential and possesses the following properties:

• exp(tv+ sv) = exp(tv) · exp(sv),

• exp(tv) = (exp(v))t ,

• exp(−v) = (exp(v))−1,

• exp(X ·v ·X−1) = X · exp(v) ·X−1.

where t and s are any real numbers. The inverse operation is the logarithmic map, denoted

as log : GM→ g.

The Lie algebra at the group identity and the Lie algebra at other points can be trans-

formed to each other through the adjoint transformation, AdX : g→ g, via the following

expression:
Iv = AdX(

X v) = X ·v ·X−1. (2.8)
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Chapter 3 Global-Position Tracking Control for

Multi-Domain Bipedal Robot Walking

This chapter introduces a new time-based nonlinear control method that achieves accurate

global-position tracking (GPT) for multi-domain bipedal walking on a static ground by

explicitly treating the hybrid, nonlinear, full-order robot dynamics.

Multi-domain walking in legged locomotion is naturally hybrid, involving both contin-

uous foot-swinging phases and discrete foot-landing behaviors within a gait cycle. This

occurs due to changes in foot-ground contact conditions and actuation authority [62, 63],

which is observed in human walking as well. These phases encompass full actuation, under-

actuation, and over actuation, each having different actuation characteristics. In contrast to

fully actuated walking, multi-domain walking offers greater agility and efficiency thanks

to underactuation. However, this underactuation introduces substantial control challenges

owing to limited control authority.

Several control strategies have been proposed to achieve stable multi-domain walking in

bipedal and quadrupedal robots. These strategies use hybrid models to capture multi-domain

robot dynamics [63]. M. Dai et al. have introduced the multi-domain linear inverted pendu-

lum (MLIP) model and employed step-to-step dynamics to achieve human-like multi-domain

walking on a three-dimensional (3-D) full-order Cassie robot [64]. Meanwhile, M. Tucker

et al. have demonstrated multi-domain walking on an exoskeleton platform [65]. While

these approaches have demonstrated stability and reliable performance on physical legged

robot robot platforms, they may not directly address general global-position tracking (GPT)

control problems. In real-world scenarios, robots often require precise global position con-

trol and timing, which can be challenging to achieve with orbital stabilization mechanisms

employed in previous methods[66, 67, 68, 69, 70]. This is because those previous methods

rely on orbital stabilization to ensure locomotion stability, which cannot guarantee accurate

and precise tracking of time-varying global-position trajectories [71, 72, 73, 74, 75].

To address this tracking control problem for multi-domain walking, we have developed
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Figure 3-1: Illustration of the Darwin OP3 robot, which is used to validate the proposed
global-position tracking control approach. Darwin OP3 is a bipedal humanoid robot with
twenty revolute joints, designed and manufactured by ROBOTIS [1]. The reference frame
of the robot’s floating base, highlighted as “{Base}”, is located at the center of the chest.

a GPT control method for 2-D fully actuated bipedal walking robots [71, 72, 76] and

extendeded it to 3-D fully actuated robots [73, 77, 78, 75, 60]. Additionally, we have

formulated the dynamics of fully actuated quadrupedal walking on a dynamic rigid surface

(DRS) in the inertial frame as a hybrid time-varying system [79, 6, 80], enabling the

development of a GPT control law for fully actuated quadrupeds. However, these methods

are not directly applicable to the multi-domain control problem because they do not explicitly

handle the underactuated robot dynamics associated with multi-domain walking.

3.1 Full-Order Dynamic Modeling of Three-Domain Walk-

ing

This section presents the hybrid model of bipedal robot dynamics associated with

three-domain walking. The robot model used in this chapter is illustrated in Fig. 3-1.
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3.1.1 Walking Domain Description

For simplicity and without loss of generality, we consider the following assumptions on

the foot-ground contact conditions during 3-D walking:

A3.1 The toe and heel are the only parts of a support foot that can contact the ground [62].

A3.2 While contacting the ground, the toes and/or heels have line contact with the ground.

A3.3 There is no foot slipping on the ground.

Also, we consider the common assumption below about the robot’s actuators:

A3.4 All the n revolute joints of the robot are independently actuated.

Let na denote the number of independent actuators, and na = n holds under assumption

(A3.4). At the switching instant, we consider the following assumptions:

A3.5 The landing impact between the robot’s foot and the ground is a contact between rigid

bodies.

A3.6 The impact occurs instantaneously and lasts for an infinitesimal period of time.

Figure 3-2 illustrates the complete gait cycle of human-like walking with a rolling

support foot. As the figure displays, the complete walking cycle involves three continuous

phases/domains and three discrete behaviors connecting the three domains. The three

domains are:

(i) Full actuation (FA) domain, where na equals the number of DOFs;

(ii) Underactation (UA) domain, where the number of independent actuators (na) is less

than that of the robot’s degrees of freedom (DOFs); and

(iii) Over actuation (OA) domain, where na is greater than the number of DOFs.

The actuation types associated with the three domains are different because those

domains have distinct foot-ground contact conditions, which are explained next under

assumptions (A3.1)-(A3.4).
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Figure 3-2: The directed cycle of 3-D three-domain walking. The green circles in the diagram
highlight the portions of a foot that are in contact with the ground. The position trajectory of
the swing foot is indicated by the dashed arrow. The red and blue legs respectively represent
the support and swing legs. Note that when the robot exits the OA domain and enters the
FA domain, the swing and support legs switch their roles, and accordingly the leading and
trailing legs swap their colors.

3.1.1.1 FA domain

As illustrated in the “FA” portion of Fig. 3-2, only one foot is in support and it is static

on the ground within the FA domain. Under assumption (A3.1), we know both the toe

and heel of the support foot contact the ground. From assumptions (A3.2) and (A3.3), we

can completely characterize the foot-ground contact condition with six independent scalar

holonomic constraints. Using nc to denote the number of holonomic constraints, we have

nc = 6 within an FA domain, and the number of DOFs becomes DOF = n+ 6− nc = n.

Meanwhile, na = n holds under assumption (A3.4). Since DOF = na, all of the DOFs are

directly actuated; that is, the robot is indeed fully actuated.

3.1.1.2 UA domain

The “UA” portion of Fig. 3-2 shows that the robot’s support foot rolls about its toe within

a UA domain. Under assumptions (A3.2) and (A3.3), the number of holonomic constraints

is five, i.e., nc = 5. This is because the support foot can only rotate about the line toe but

its motion is fully restricted in terms of the 3-D translation and the roll and yaw rotation.

Then, the number of DOFs is: DOF = n+6−5 = n+1. Since the number of independent

actuators, na, equals n under assumption (A3.4) and is lower than the number of DOFs,

(n+1), the robot is underactuated with one degree of underactuation.
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3.1.1.3 OA domain

Upon exiting the UA domain, the robot’s swing-foot heel strikes the ground and enters

the OA domain (Fig. 3-2). Within an OA domain, both the trailing toe and the leading heel

of the robot contact the ground, which is described by ten scalar holonomic constraints (i.e.,

nc = 10). Thus, the DOF becomes DOF = n+6−nc = n−4, which is less than the number

of actuators under assumption (A3.4), meaning the robot is over actuated.

3.1.2 Hybrid Multi-Domain Dynamics

This subsection presents the full-order model of the robot dynamics that corresponds

to multi-domain walking. Since multi-domain walking involves both continuous-time

dynamics and discrete-time behaviors, a hybrid model is employed to describe the robot

dynamics. Recall Sec. 2.2 for fundamentals of the hybrid system.

3.1.2.1 Continuous-phase dynamics

Within any of the three domains, the robot only exhibits continuous movements, and

its dynamics model is naturally continuous-time as described by Eq. (2.3). Note that the

dimensions of J and Fc in Eq. (2.3) vary among the three domains due to differences in the

ground-contact conditions.

3.1.2.2 Switching surfaces

As displayed in Fig. 3-2, the human-like, three-domain walking involves three switching

events, which are:

(i) Switching from FA to UA (“Support heel liftoff”);

(ii) Switching from UA to OA (“Swing heel touchdown”); and

(iii) Switching from OA to FA (“Leading toe touchdown”).

The occurrence of these switching events is completely determined by the position and

velocity of the robot’s swing foot in the world frame as well as the ground-reaction force



26

experienced by the support foot. We use switching surfaces to describe the conditions under

which a switching event occurs.

When the heel of the support foot takes off at the end of the FA phase, the robot enters

the UA domain (Fig. 3-2). This support heel liftoff condition can be described using the

vertical ground-reaction force applied at the support heel, denoted as Fc,z : T Q×U → R.

We use SF→U to denote the switching surface connecting an FA domain and its subsequent

UA domain, and express it as:

SF→U := {(q, q̇,u) ∈ T Q×U : Fc,z(q, q̇,u) = 0}.

The UA-to-OA switching occurs when the swing foot’s heel lands on the ground (Fig. 3-

2). Accordingly, we express the switching surface that connects a UA domain and its

subsequent OA domain, denoted as SU→O, as:

SU→O(q, q̇) := {(q, q̇) ∈ T Q : zswh(q) = 0, żswh(q, q̇)< 0},

where zswh : Q→ R represents the height of the lowest point within the swing-foot heel

above the ground.

As the leading toe touches the ground at the end of an OA phase, a new FA phase is

activated (Fig. 3-2). In this study, we assume that the leading toe landing and the trailing

foot takeoff occur simultaneously at the end of an OA phase, which is reasonable because

the trailing foot typically remains contact with the ground only for a brief period (e.g.,

approximately 3% of a complete human gait cycle [62]) after the touchdown of the leading

foot’s toe. The switching surface, SO→F , that connects an OA domain and its subsequent FA

domain is then expressed as:

SO→F(q, q̇) := {(q, q̇) ∈ T Q : zswt(q) = 0, żswt(q, q̇)< 0},

where zswt :Q→ R represents the height of the swing-foot toe above the walking surface.



27

3.1.2.3 Discrete impact dynamics

The complete walking cycle involves two foot-landing instantaneous impacts; one impact

occurs at the landing of the swing-foot heel (i.e., transition from UA to OA), and the other

at the touchdown of the leading-foot toe between the OA and FA phases. Note that the

switching from FA to UA, characterized by the support heel liftoff, is a continuous process

that does not induce any impacts.

Recall Eq. (2.6) for the expression of the impact dynamics. Note that the dimension of

∆∆∆q̇ is invariant across the three domains since it characterizes the jumps of all floating-base

generalized coordinates.

3.2 Controller Design for Three-Domain Walking

This section introduces the proposed GPT controller design based on the hybrid model

of multi-domain bipedal robotic walking introduced in Section 3.1. The resulting controller

provably ensures the exponential error convergence for the directly regulated DOFs within

each domain. The sufficient conditions under which the proposed controller guarantees the

stability for the overall hybrid system are provided in Section 3.3.

3.2.1 Desired Trajectory Encoding

As the primary control objective is to provably drive the global-position tracking error to

zero, one set of desired trajectories that the proposed controller aims to reliably track is the

robot’s desired global-position trajectories. Since a bipedal humanoid robot typically has

many more DOFs and actuators than the desired global-position trajectories, the controller

could regulate additional variables of interest (e.g., swing-foot pose).

We use both time-based and state-based phase variables to encode these two sets of

desired trajectories, as explained next.
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3.2.1.1 Time-based encoding variable

We choose to use the global time variable t to encode the desired global-position

trajectories so that a robot’s actual horizontal position trajectories in the world (i.e., xb and

yb) can be accurately controlled with precise timing, which is crucial for real-world tasks

such as dynamic obstacle avoidance.

We use xd(t) : R+ → R and yd(t) : R+ → R to denote the desired global-position

trajectories along the x- and y-axis of the world frame, respectively, and ψd(t) : R+→ R

is the desired heading/yaw angle. We assume that the desired horizontal global-position

trajectories xd(t) and yd(t) are supplied by a higher-layer planner, and the design of this

planner is not the focus of this chapter. Given xd(t) and yd(t), the desired heading direction

ψd(t) can be designed as a function of xd(t) and yd(t), which is ψd(t) := tan−1(yd/xd).

Such a definition ensures that the robot is facing forward during walking.

We consider the following assumption on the regularity condition of xd(t) and yd(t):

A3.7 The desired global-position trajectories xd(t) and yd(t) are planned as continuously

differentiable on t ∈R+ with the norm of ẋd(t) and ẏd(t) bounded above by a constant

number; that is, there exists a positive constant Ld such that

∥ẋd(t)∥, ∥ẏd(t)∥ ≤ Ld (3.1)

for any t ∈ R+.

Under assumption (A3.7), the time functions xd(t) and yd(t) are Lipschitz continuous on

t ∈ R+ [81], which we utilize in the proposed stability analysis.

3.2.1.2 State-based encoding variable

As robotic walking inherently exhibits a cyclic movement pattern in the robot’s configu-

ration space, it is natural to encode the desired motion trajectories of the robot with a phase

variable that represents the walking progress within a cycle.

To encode the desired trajectories other than the desired global-position trajectories,

we choose to use a state-based phase variable, denoted θ(q) :Q→ R, that represents the
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total horizontal distance traveled within a walking step. Accordingly, the phase variable

θ(q) increases monotonically within each walking step during straight-line or curved-path

walking, which ensures a unique mapping from θ(q) to the encoded desired trajectories. In

contrast, in our previous work [73, 75], the phase variable is chosen as the walking distance

projected along a single direction on the ground, which may not ensure such a unique

mapping during curved-path walking.

Since the phase variable θ(q) is essentially the length of a 2-D curve that represents

the horizontal projection of the 3-D walking path on the ground, we can use the actual

horizontal velocities (ẋb and ẏb) of the robot’s base to express θ(q) as:

θ(q(t)) =
∫ t

t0

√
ẋ2

b(t)+ ẏ2
b(t)dt, (3.2)

where t0 ∈ R+ represents the actual initial time instant of the given walking step and t is the

current time.

The normalized phase variable, which represents the percentage completion of a walking

step, is given by:

s(θ) :=
θ

θmax
, (3.3)

where the real scalar parameter θmax represents the maximum value of the phase variable

(i.e., the planned total distance to be traveled within a walking step). At the beginning of

each step, the normalized phase variable takes a value of 0, while at the end of the step, it

equals 1.

3.2.2 Output Function Design

An output function is a function that represents the difference between a control variable

and its desired trajectory, which is essentially the trajectory tracking error. The proposed

controller aims to drive the output function to zero for the overall hybrid walking process.

Due to the distinct robot dynamics among different domains, we design different output

functions (including the control variables and desired trajectories) for different domains.
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3.2.2.1 FA domain

We use hF
c (q) : Q→ Rn to denote the vector of n control variables that are directly

commanded within the FA domain. Without loss of generality, we use the OP3 robot shown

in Fig. 3-1 as an example to explain a common choice of control variables within the FA

domain.

The OP3 robot has twenty directly actuated joints (i.e., n = na = 20) including eight

upper body joints. Also, using nup to denote the number of upper body joints, we have

nup = 8.

We choose the twenty control variables as follows:

(i) The robot’s global position and orientation represented by the 6-D absolute base pose

(i.e., position pb and orientation γγγb) w.r.t. the world frame;

(ii) The position and orientation of the swing foot w.r.t. the vehicle frame, respectively

denoted as psw(q) :Q→ R3 and γγγsw(q) :Q→ R3; and

(iii) The angles of the nup upper body joints qup ∈ Rnup .

We choose to directly control the global position of the robot to ensure that the robot’s

base follows the desired global-position trajectory. The base orientation is also directly

commanded to guarantee a steady trunk (e.g., for mounting cameras) and the desired heading

direction. The swing foot pose is regulated to ensure an appropriate foot posture at the

landing event, and the upper body joints are controlled to avoid any unexpected arm motions

that may affect the overall walking performance.

The stack of control variables hF
c (q) are expressed as:
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hF
c (q) =



xb

yb

ψb

zb

φb

θb

psw

γγγsw

qup



. (3.4)

We use hF
d (t,s) : R+× [0,1]→ Rn to denote the desired trajectories for the control

variables hF
c (q) within the FA domain. These trajectories are encoded by the global time t

and the normalized state-based phase variable s(θ) as follows: (i) the desired trajectories of

the base position variables xb and yb and the base yaw angle ψb are encoded by the global

time t, while (ii) those of the other (n−3) control variables, including the base height zb,

base roll angle φb, base pitch angle θb, swing-foot pose psw and γγγsw, and upper joint angle

qup, are encoded by the normalized phase variable s(θ).

The desired trajectory hF
d (t,s) is expressed as:

hF
d (t,s) =


xd(t)

yd(t)

ψd(t)

φφφ
F(s)

 , (3.5)

where xd(t), yd(t), and ψd(t) are defined in Section 3.2.1.1, and the function φφφ
F(s) : [0,1]→

Rn−3 represents the desired trajectories of the control variables zb, φb, θb, ψb, psw, γγγsw, and

qup.

The desired function φφφ
F(s) is parameterized by the Bézier polynomials (recall Sec. 2.3).

The output function during an FA phase is defined as:

hF(t,q) := hF
c (q)−hF

d (t,s). (3.6)
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3.2.2.2 UA domain

As explained in Section 3.1.1, a robot has (n+1) DOF within the UA domain but only

na actuators. Thus, only na (i.e, n) variables can be directly commanded within the UA

domain.

We opt to control individual joint angles within the UA domain to mimic human-like

walking. By “locking” the joint angles, the robot can perform a controlled falling about the

support toe, similar to human walking.

Thus, the control variable hU
c (q) :Q→ Rn is:

hU
c (q) =



q1

q2

q3

...

qn


. (3.7)

Let hU
d (s) : [0,1]→ Rn denote the desired joint position trajectories within the UA

domain. These desired trajectories hU
d (s) are parameterized using Bézier polynomials

φφφ
U(s) : [0,1]→ Rn; that is, hU

d = φφφ
U(s). The function φφφ

U(s) can be expressed similarly to

φφφ
F(s).

The associated output function is then given by:

hU(q) := hU
c (q)−hU

d (s). (3.8)

3.2.2.3 OA domain

Let hO
c (q) :Q→ Rn−4 denote the control variables within the OA domain. Recall that

the robot has na actuators and (n−4) DOFs within the OA domain.

We choose the (n−4) control variables as:

(i) The robot’s 6-D base pose w.r.t. the world frame;

(ii) The angles of the nup upper body joints, qup; and
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(iii) The pitch angles of the trailing and leading feet, denoted as θt(q) and θl(q), respec-

tively.

Similar to the FA domain, we choose to directly command the robot’s 6-D base pose

within the OA domain to ensure satisfactory global-position tracking performance, as well

as the upper body joints to avoid unexpected arm movements that could compromise the

robot’s balance. Also, regulating the pitch angle of the leading foot helps ensure a flat-foot

posture upon switching into the subsequent FA domain where the support foot remains flat

on the ground. Meanwhile, controlling the pitch angle of the trailing foot can prevent overly

early or late foot-ground contact events.

Thus, the control variable hO
c (q) is:

hO
c (q) =



xb

yb

ψb

zb

φb

θb

θt

θl

qup



. (3.9)

The desired trajectory hO
d (t,s) : R+× [0,1]→ Rn−4 within the OA domain is expressed

as:

hO
d (t,s) :=


xd(t)

yd(t)

ψd(t)

φφφ
O(s)

 , (3.10)

where φφφ
O(s) : [0,1]→ Rn−7 represents the desired trajectories of zb, φb, θb, θt , θl , and qup,
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which, similar to φφφ
F(s) and φφφ

U(s), can be chosen as Bézier curves.

The tracking error hO(t,q) is expressed as:

hO(t,q) := hO
c (q)−hO

d (t,s). (3.11)

3.2.3 Input-Output Linearizing Control

The output functions representing the trajectory tracking errors can be compactly ex-

pressed as:

yi = hi(t,q), (3.12)

where the subscript i ∈ {F,U,O} indicates the domain.

Due to the nonlinearity of the robot dynamics and the time-varying nature of the desired

trajectories, the dynamics of the output functions are nonlinear and time-varying. To

reduce the complexity of controller design, we use input-output linearization to convert the

nonlinear, time-varying error dynamics into a linear time-invariant one.

Let ui (i ∈ {F,U,O}) denote the joint torque vector within the given domain. We exploit

the input-output linearizing control law [81]

ui = (∂hi

∂q M−1B̄)−1[(∂hi

∂q )M
−1c̄+vi− ∂ 2hi

∂ t2 − ∂

∂q(
∂hi

∂q q̇)q̇] (3.13)

to linearize the continuous-phase output function dynamics (i.e., Eq. (2.5)) into ÿi = vi,

where vi is the control law of the linearized system. Here, the matrix ∂hi

∂q M−1B̄ is invertible

on Q because (i) M is invertible on Q, (ii) ∂hi

∂q is full row rank on Q by design, and (iii) B̄ is

full column rank on Q.

It should be noted that ui has different expressions in different domains, due to the

variations in the control variables and desired trajectories. For instance, as the output

function is time-independent within the UA domain, the function ∂ 2hU

∂ t2 in Eq. (3.13) is

always a zero vector because the output function hU is explicitly time-independent.

We design vi as a proportional-derivative (PD) controller
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Figure 3-3: Block diagram of the proposed global-position tracking control law within each
domain. Here i ∈ {F,U,O} indicates the domain type.

vi =−Kp,iyi−Kd,iẏi, (3.14)

where Kp,i and Kd,i are positive-definite diagonal matrices containing the proportional and

derivative control gains, respectively. It is important to note that the dimension of the gains

Kp,i and Kd,i depends on that of the output function in each domain; their dimension is

n×n in FA and UA domains, and (n−4)× (n−4) in the OA domain.

We call the GPT control law in Eqs. (3.13) and (3.14) the “IO-PD” controller in the rest

of this chapter, and the block diagram of the controller is shown in Fig. 3-3.

Under the IO-PD control laws, the closed-loop output function dynamics within domain

i becomes linear:

ÿi =−Kd,iẏi−Kp,iyi.

Drawing upon the well-studied linear systems theory, we can ensure the exponential con-

vergence of yi to zero within each domain by properly choosing the values of the PD gain

matrices (Kp,i and Kd,i) [81].

3.3 Closed-Loop Stability Analysis for Three-Domain Walk-

ing

This section explains the proposed stability analysis of the closed-loop hybrid control

system under the continuous IO-PD control law.
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The continuous GPT law introduced in Section 3.2 with properly chosen PD gains

achieves exponential stabilization of the output function state within each domain. Never-

theless, the stability of the overall hybrid dynamical system is not automatically ensured

for two main reasons. First, within the UA domain, the utilization of the input-output

linearization technique and the absence of actuators to directly control all the DOFs induce

internal dynamics, which the control law cannot directly regulate [3, 82]. Second, the impact

dynamics in Eq. (2.6) is uncontrolled due to the infinitesimal duration of an impact between

rigid bodies (i.e., ground and swing foot). As both internal dynamics and reset maps are

highly nonlinear and time-varying, analyzing their effects on the overall system stability is

not straightforward.

To ensure satisfactory tracking error convergence for the overall hybrid closed-loop

system, we analyze the closed-loop stability via the construction of multiple Lyapunov

functions [83]. The resulting sufficient stability conditions can be used to guide the parameter

tuning of the proposed IO-PD law for ensuring system stability and satisfactory tracking.

3.3.1 Hybrid Closed-Loop Dynamics

This subsection introduces the hybrid closed-loop dynamics under the proposed IO-PD

control law in Eqs. (3.13) and (3.14), which serves as the basis of the proposed stability

analysis.

3.3.1.1 State variables within different domains

The state variables of the hybrid closed-loop system include the output function state

(yi,ẏi) (i ∈ {F,O,U}). This choice of state variables allows our stability analysis to exploit

the linear dynamics of the output function state within each domain, thus greatly reducing

the complexity of the stability analysis for the hybrid, time-varying, nonlinear closed-loop

system.

We use xF ∈ R2n and xO ∈ R2n−8 to respectively denote the state within the FA and OA

domains, which are exactly the output function state:
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xF :=

yF

ẏF

 and xO :=

yO

ẏO

 .
Within the UA domain, the output function state, denoted as xξ ∈ R2n−2, is expressed

as:

xξ :=

yU

ẏU

 .
Besides xξ , the complete state xU within the UA domain also include the uncontrolled state,

denoted as xη ∈R2. Since the stance-foot pitch angle θst(q) is not directly controlled within

the UA domain, we define xη as:

xη :=

θst

θ̇st

 .
Thus, the complete state within the UA domain is:

xU :=

xξ

xη

 . (3.15)

3.3.1.2 Closed-loop error dynamics

The hybrid closed-loop error dynamics associated with the FA and OA domains share

the following similar form:

ẋF = AFxF if (t,x−F ) /∈ SF→U

x+U = ∆∆∆F→U(t,x−F ) if (t,x−F ) ∈ SF→UẋO = AOxO if (t,x−O) /∈ SO→F

x+F = ∆∆∆O→F(t,x−O) if (t,x−O) ∈ SO→F

(3.16)

with
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AF :=

 0 I

−Kp,F −Kd,F

 and AO :=

 0 I

−Kp,O −Kd,O

 , (3.17)

where I is an identity matrix with an appropriate dimension, and ∆∆∆F→U : R+×R2n→R2n+2

and ∆∆∆O→F : R+×R2n−8→ R2n are respectively the reset maps of the state vectors xF and

xO. The expressions of ∆∆∆F→U and ∆∆∆O→F are omitted for space consideration and can be

directly obtained by combining the expressions of the reset map ∆∆∆q̇ of the generalized

coordinates in Eq. (2.6) and the output functions yF , yO, and yU .

The closed-loop error dynamics associated with the continuous UA phase and the

subsequent UA→OA impact map can be expressed as:



 ẋξ = Aξ xξ

ẋη = fη(t,xη ,xξ )

if (t,x−U ) /∈ SU→O

x+O = ∆∆∆U→O(t,x−ξ ,x
−
η ) if (t,x−U ) ∈ SU→O

(3.18)

where

Aξ :=

 0 I

−Kp,U −Kd,U

 . (3.19)

The expression of fη in Eq. (3.18) can be directly derived using the continuous-phase

dynamics equation of the generalized coordinates and the expression of the output function

yU . Similar to ∆∆∆F→U and ∆∆∆O→F , we can readily obtain the expression of the reset map

∆∆∆U→O : R+×R2n+2→ R2n−8 based on the reset map in Eq. (2.6) and the expressions of

yU and yO.

3.3.2 Multiple Lyapunov-Like Functions

The proposed stability analysis via the construction of multiple Lyapunov functions

begins with the design of the Lyapunov-like functions. We use VF(xF), VU(xU), and VO(xO)

to respectively denote the Lyapunov-like functions within the FA, UA, and OA domains,

and introduce their mathematical expressions next.
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3.3.2.1 FA and OA domains

As the closed-loop error dynamics within the continuous FA and OA phases are linear

and time-invariant, we can construct the Lyapunov-like functions VF(xF) and VO(xO) as [84]:

VF(xF) = xT
FPFxF and VO(xO) = xT

OPOxO

with Pi (i ∈ {F,O}) the solution to the Lyapunov equation

PiAi +AT
i Pi =−Qi,

where Qi is any symmetric positive-definite matrix with a proper dimension.

3.3.2.2 UA domain

As the input-output linearization technique is utilized and not all DOFs within the

UA domain can be directly controlled, internal dynamics exist that cannot be directly

controlled [72]. We design the Lyapunov-like function VU for the UA domain as:

VU =Vξ (xξ )+β∥xη∥2, (3.20)

where Vξ (xξ ) is a positive-definite function and β is a positive constant to be designed.

As the dynamics of the output function state xξ are linear and time-invariant, the

construction of Vξ (xξ ) is similar to that of VF and VO:

Vξ (xξ ) = xξ
T Pξ xξ ,

where Pξ is the solution to the Lyapunov equation

Pξ Aξ +AT
ξ

Pξ =−Qξ

with Qξ any symmetric positive-definite matrix with an appropriate dimension.
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3.3.3 Definition of Switching Instants

In the following stability analysis, the three domains of the kth (k ∈ {1,2, ...}) walking

step are, without loss of generality, ordered as:

FA→UA→ OA.

For the kth walking step, we respectively denote the actual values of the initial time instants

of the FA phase, the FA→UA switching instant, the UA→ OA switching instant, and the

final time instant of the OA phase as:

T3k−3, T3k−2, T3k−1, and T3k.

The corresponding desired switching instants are denoted as:

τ3k−3, τ3k−2, τ3k−1, and τ3k.

Using these notations, the kth actual complete gait cycle on t ∈ (T3k−3,T3k) comprises:

(i) Continuous FA phase on t ∈ (T3k−3,T3k−2);

(ii) FA→UA switching at t = T−3k−2;

(iii) Continuous UA phase on t ∈ (T3k−2,T3k−1);

(iv) UA→OA switching at t = T−3k−1;

(v) Continuous OA phase on t ∈ (T3k−1,T3k); and

(vi) OA→FA switching at t = T−3k .

For brevity in notation in the following analysis, the values of any (scalar or vector)

variable ⋆ at t = T−3k− j and t = T+
3k− j, i.e.,

⋆(T−3k− j) and ⋆ (T+
3k− j),

are respectively denoted as:
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⋆|−3k− j and ⋆ |+3k− j

for any k ∈ {1,2, ...} and j ∈ {0,1,2,3}.

3.3.4 Continuous-Phase Convergence and Boundedness of Lyapunov-

Like Functions

As the output function state xi (i ∈ {F,O,ξ}) is directly controlled, we can readily ana-

lyze the convergence of the output functions (and their associated Lyapunov-like functions,

VF , VO, and Vξ ) within each domain based on the well-studied linear systems theory [81].

Proposition 1. (Continuous-phase output function convergence within each domain)

Consider the IO-PD control law in Eq. (3.13), assumptions (A3.1)-(A3.7), and the following

condition:

(B1) The PD gains are selected such that AF , AO, and Aξ are Hurwitz.

Then, there exist positive constants ri, c1i, c2i, and c3i (i ∈ {F,O,ξ}) such that the Lyapunov-

like functions VF , VO, and Vξ satisfy the following inequalities

c1i∥xi∥2 ≤Vi(xi)≤ c2i∥xi∥2 and V̇i ≤−c3iVi (3.21)

within their respective domains for any

xi ∈ Bri(0) := {xi : ∥xi∥ ≤ ri},

where 0 is a zero vector with an appropriate dimension.

Moreover, Eq. (3.21) yields

VF |−3k−2 ≤ e−c3F (T3k−2−T3k−3)VF |+3k−3, (3.22)

VO|−3k ≤ e−c3O(T3k−T3k−1)VO|+3k−1, (3.23)
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and

Vξ |−3k−1 ≤ e−c3ξ (T3k−1−T3k−2)Vξ |+3k−2, (3.24)

which describe the exponential continuous-phase convergence of VF , VO, and Vξ within their

respective domains.

The proof of Proposition 1 is omitted as Proposition 1 is a direct adaptation of the

Lyapunov stability theorems from [81]. Note that the explicit relationship between the PD

gains and the continuous-phase convergence rates c3F , c3O, and c3ξ can be readily obtained

based on Remark 6 of our previous work [75].

Due to the existence of the uncontrolled internal state, the Lyapunov-like function VU

does not necessarily converge within the UA domain despite the exponential continuous-

phase convergence of Vξ guaranteed by the proposed IO-PD control law that satisfies

condition (B1). Still, we can prove that within the UA domain of any kth walking step,

the value of the Lyapunov-like function VU just before switching out of the domain, i.e.,

VU |−3k−1, is bounded above by a positive-definite function of the “switching-in” value of VU ,

i.e., VU |+3k−2, as summarized in Proposition 2.

Proposition 2. (Boundedness of Lyapunov-like function within UA domain) Consider

the IO-PD control law in Eq. (3.13) and all conditions in Proposition 1. There exists a

positive real number rU1 and a positive-definite function wu(·) such that

VU |−3k−1 ≤ wu(VU |+3k−2)

holds for any k ∈ {1,2, ...} and xU ∈ BrU1(0).

Rationale of proof: The proof of Proposition 2 is given in Appendix A.1.1. The bounded-

ness of the Lyapunov-like function VU(xU) at t = T−3k−1 is proven based on the definition of

VU(xU) given in Eq. (3.20) and the boundedness of
∥∥∥xU |−3k−1

∥∥∥. Recall xU :=
[
xT

ξ
xT

η

]T
. We

establish the needed bound on
∥∥∥xU |−3k−1

∥∥∥ through the bounds on
∥∥∥xξ |−3k−1

∥∥∥ and
∥∥∥xη |−3k−1

∥∥∥,

which are respectively obtained based on the bounds of their continuous-phase dynamics of

xξ and xη and the integration of those bounds within the given continuous UA phase. ■
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3.3.5 Boundedness of Lyapunov-Like Functions across Jumps

Proposition 3. (Boundedness across jumps) Consider the IO-PD control law in Eq. (3.13),

all conditions in Proposition 1, and the following two additional conditions:

(B2) The desired trajectories hi
d (i ∈ {F,U,O}) are planned to respect the impact dynamics

with a small, constant offset γ∆; that is,

∥∆∆∆F→U(τ3k−2,0)∥ ≤ γ∆, (3.25)

∥∆∆∆U→O(τ3k−1,0)∥ ≤ γ∆, and (3.26)

∥∆∆∆O→F(τ3k,0)∥ ≤ γ∆. (3.27)

(B3) The PD gains are chosen to ensure a sufficiently high convergence rate (i.e., c3F , c3O,

and c3ξ in Eqs. (3.22)-(3.24)) of VF , VO, and Vξ .

Then, there exists a positive real number r such that for any k ∈ {1,2, ...}, xi ∈ Br(0), and

i ∈ {F,U,O}, the following inequalities

...≤VF |+3k ≤VF |+3k−3 ≤ ...≤VF |+3 ≤VF |+0 ,

...≤VU |+3k+1 ≤VU |+3k−2 ≤ ...≤VU |+4 ≤VU |+1 ,

and

...≤VO|+3k+2 ≤VO|+3k−1 ≤ ...≤VO|+5 ≤VO|+2

(3.28)

hold; that is, the values of each Lyapunov-like function at their associated “switching-in”

instants form a nonincreasing sequence.

Rationale of proof: The proof of Proposition 3 is given in Appendix A.1.2. The proof

shows the derivation details for the first inequality in Eq. (3.28) (i.e., VF |+3k ≤VF |+3k−3 for

any k ∈ {1,2, ...}), which can be readily extended to prove the other two inequalities.

The proposed proof begins the analysis of the time evolution of the three Lyapunov-like

functions within a complete gait cycle from t = T+
3k−1 to t = T+

3k , which comprises three

continuous phases and three switching events as listed in Section 3.3.3.
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Based on the time evolution, the bounds on the Lyapunov-like functions VF , VO, and VU

at the end of their respective continuous phases are given in Proposition 1 and 2, while their

bounds at the beginning of those continuous phases are established through the analysis

of the reset maps ∆∆∆F→U , ∆∆∆U→O, and ∆∆∆O→F . Finally, we combine these bounds to prove

VF |+3k ≤VF |+3k−3. ■

The offset γ∆ is introduced in condition (B2) for two primary reasons. Firstly, since

the system’s actual state trajectories inherently possess the impact dynamics, the desired

trajectories need to respect the impact dynamics sufficiently closely (i.e., γ∆ is small enough)

in order to avoid overly large errors after an impact [85, 86]. If the desired trajectories do

not agree with the impact dynamics sufficiently closely, the tracking errors at the beginning

of a continuous phase could be overly large even when the errors at the end of the previous

continuous phase are small. Such error expansion could induce aggressive control efforts at

the beginning of a continuous phase, which could reduce energy efficiency and might even

cause torque saturation. Secondly, while it is necessary to enforce the desired trajectories to

respect the impact dynamics (e.g., through motion planning), requiring the exact agreement

with the highly nonlinear impact dynamics (i.e., γ∆ = 0) could significantly increase the

computationally burden of planning, which could be mitigated by allowing a small offset.

3.3.6 Main Stability Theorem

We derive the stability conditions for the hybrid error system in Eqs. (3.16) and (3.18)

based on Propositions 1-3 and the general stability theory via the construction of multiple

Lyapunov functions [83].

Theorem 1. (Closed-loop stability conditions) Consider the IO-PD control law in Eq. (3.13).

If all conditions in Proposition 3 are met, the origin of the hybrid closed-loop error system

in Eqs. (3.16) and (3.18) is locally stable in the sense of Lyapunov.

Rationale of proof: The full proof of Theorem 1 is given in Appendix A.1.3. The key idea

of the proof is to show that the closed-loop control system satisfies the general multiple-

Lyapunov stability conditions given in [83] if all conditions in Proposition 3 are met.

■



45

3.4 Extension from Three-Domain Walking with Full Mo-

tor Activation to Two-Domain Walking with Inactive

Ankle Motors

This section explains the design of a GPT control law for a two-domain walking gait to

further illustrate the proposed controller design method. The controller is a direct extension

of the proposed controller design for three-domain walking (with full motor activation).

For brevity, this section focuses on describing the distinct aspects of the two-domain case

compared to the three-domain case explained earlier.

We consider the case of two-domain walking where underactuation is caused due to

intentional ankle motor deactivation instead of loss of full contact with the ground as in

the case of three-domain walking. Bipedal gait is sometimes intentionally designed as

underactuated through motor deactivation at the support ankle [87], which could simplify

the controller design. Specifically, by switching off the support ankle motors, the controller

can treat the support foot as part of the ground and only handle a point foot-ground contact

instead of a finite support polygon.

Figure 3-4 illustrates a complete cycle of a two-domain walking gait, which comprises

an FA and a UA domain, with the UA phase induced by intentional motor deactivation.

The FA and UA phases share the same foot-ground contact conditions; that is, the toe

and heel of the support foot are in a static contact with the ground. Yet, within the UA

domain, the ankle-roll and ankle-pitch joints of the support foot are disabled, leading to

DOF = na +2 > na (i.e., underactuation).

To differentiate from the case of three-domain walking, we add a “†” superscript to the

left of mathematical symbols when introducing the two-domain case.

Hybrid robot dynamics: The continuous-time robot dynamics within the FA domain

of two-domain walking have exactly the same expression as those of the three-domain

dynamics in Eq. (2.3). The robot dynamics within the UA domain are also the same as

Eq. (2.3) except for the input matrix B (due to the ankle motor deactivation).

The complete gait cycle contains one foot-landing impact event, which occurs as the
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Figure 3-4: Illustration of a complete two-domain walking cycle. The green circles show the
portions of the feet that touch the ground. The leg in red represents the support leg, while
the leg in blue the swing leg. The movement of the swing foot is shown by the dashed arrow.

robot’s state leaves the UA domain and enters the FA domain. The form of the associated

impact map is similar to the impact map in Eq. (2.6) of the three-domain case. For brevity,

we omit the expression and derivation details of the impact map.

There are two switching events, F→U and U→F, within a complete gait cycle, which

are respectively denoted as †SF→U and †SU→F and given by:

†SF→U := {q ∈Q : θ(q)> ls} and

†SU→F := {(q, q̇) ∈ T Q : zsw(q) = 0, żsw(q, q̇)< 0},

where θ(q) is defined as in Eq. (3.2) and the scalar positive variable ls represents the desired

traveling distance of the robot’s base within the FA phase.

Local time-based phase variable: To allow the convenient adjustment of the intended

period of motor deactivation, we introduce a new phase variable †
θ(t) for the UA phase

representing the elapsed time within this phase: †
θ(t) = t−TUk, where TUk is the initial

time instant of the kth UA phase.

The normalized phase variable is defined as: †s(†
θ) :=

†
θ

δτU
, where δτU is the expected

duration of the UA. δτU can be assigned as a gait parameter that a motion planner adjusts for

ensuring a reasonable duration of motor deactivation.

Output functions: The output function design within the FA domain is the same as the

three-domain case.
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The control variables within FA, denoted as †hF
c (q), are chosen the same as the three-

domain walking case in Eq. (3.4). Then, we have †hF
c (q) = hF

c (q). Accordingly, the desired

trajectories †hF
d (t,s) can be chosen the same as hF

d (t,s), leading to the output function

expressed as: †hF(t,s) = †hF
c (q)−

†hF
d (t,s).

With two ankle (roll and pitch) motors disabled during the UA phase, the number of

variables that can be directly controlled is reduced by two compared to the FA domain.

Without loss of generality, We choose the control variables within the UA domain to be the

same as the FA domain except that the base roll angle φb and base pitch angle θb are no

longer controlled.

The control variables †hU
c within the UA domain are then expressed as:

†hU
c (q) :=



xb

yb

ψb

zb

psw(q)

γγγsw(q)


. (3.29)

The desired trajectories †hU
d are given by:

†hU
d (t,

†s) :=


xd(t)

yd(t)

ψd(t)
†
φφφ

U(†s)

 , (3.30)

where
†
φφφ

U(†s) : [0,1]→ Rna−5 represents the desired trajectories of zb, psw, and γγγsw.

Then, we obtain the output function †hU(t,q) as:

†hU(t,q) := †hU
c (q)− †hU

d (t,
†s). (3.31)

With the output function †hi (i ∈ {F,U}) designed, we can use the same form of the
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IO-PD control law in Eqs. (3.13) and (3.33) and the stability conditions in Theorem 1 to

design the needed GPT controller for two-domain walking.

3.5 SIMULATION

This section reports the simulation results to demonstrate the satisfactory global-position

tracking performance of the proposed controller design.

3.5.1 Comparative Controller: Input-Output Linearizing Control with

Quadratic Programming

This subsection introduces the formulation of the proposed IO-PD controller as a

quadratic program (QP) that handles the limited joint-torque capacities of real-world robots

while ensuring a relatively accurate global-position tracking performance. We refer to the

resulting controller as the “IO-QP” controller in this chapter. Besides enforcing the actuator

limits and providing tracking performance guarantees, another benefit of the QP formulation

lies in its computational efficiency for real-time implementation.

3.5.1.1 Constraints

We incorporate the IO-PD controller in Eq. (3.13) as an equality constraint in the

proposed IO-QP control law. The proposed IO-QP also includes the torque limits as

inequality constraints. We use umax,i and umin,i (i ∈ {F,U,O}) to denote the upper and lower

limits of the torque command ui given in Eq. (3.13). Then, the linear inequality constraint

that the control signal ui should respect can be expressed as: umin,i ≤ ui ≤ umax,i.

To ensure the control command ui respects the actuator limits, we incorporate a slack

variable δδδ QP ∈ Rna in the equality constraint representing the IO-PD control law:

ui = N(q, q̇)+δδδ QP, (3.32)

where N = (∂hi

∂q M−1B̄)−1[(∂hi

∂q )M
−1c̄+vi− ∂ 2hi

∂ t2 − ∂

∂q(
∂hi

∂q q̇)q̇]. To avoid overly large devi-

ation from the original control law in Eq. (3.13), we include the slack variable in the cost
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Table 3.1: Mass distribution of the OP3 robot.
Body component Mass (kg) Length (cm)

trunk 1.34 63
left/right thigh 0.31 11
left/right shank 0.22 11
left/right foot 0.07 12

left/right upper arm 0.19 12
left/right lower arm 0.04 12

head 0.15 N/A

function to minimize its norm as explained next.

3.5.1.2 Cost function

The proposed cost function is the sum of two components. One term is uT
i ui and

indicates the magnitude of the control command ui. Minimizing this term helps guarantee

the satisfaction of the torque limit and the energy efficiency of walking.

The other term indicates the weighted norm of the slack variable δδδ QP, i.e., pδδδ
T
QPδδδ QP,

with the real positive scalar constant p the slack penalty weight. By including the slack

penalty term in the cost function, the deviation of the control signal from the original IO-PD

form, which is caused by the relaxation, can be minimized.

3.5.1.3 QP formulation

Summarizing the constraints and cost function introduced earlier, we arrive at a QP

given by:

min
ui,δδδ QP

uT
i ui + p δδδ

T
QPδδδ QP

s.t. ui = N+δδδ QP

ui ≥ umin,i

ui ≤ umax,i

(3.33)

We present validation results for both IO-PD and IO-QP in the following section to

demonstrate their effectiveness and performance comparison.
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Table 3.2: Desired global-position trajectories.
Traj. index xd(t) (cm) yd(t) (cm) Time interval (s)

(GP1) 8t 0 [0,+∞)

(GP2) 19.1t 5.9t [0,+∞)

(GP3)
25t 0 [0,3.13)

3000sin( t−3.13
80 )+78.2 3000cos( t−3.13

80 )−3000 [3.13,4.25)
24(t−4.25)+120 −7(t−4.25)−0.3 [4.25,+∞)

3.5.2 Simulation Setup

3.5.2.1 Robot model

The robot used to validate the proposed control approach is an OP3 bipedal humanoid

robot developed by ROBOTIS, Inc. (see Fig.3-1). The OP3 robot is 50 cm tall and weighs

approximately 3.2 kg. It is equipped with 20 active joints, as shown in Fig. 3-1. The mass

distribution and geometric specifications of the robot are listed in Table 3.1. To validate

the proposed controller, we use the MATLAB ODE solver ODE45 to simulate the dynamics

models of the OP3 robot for both three-domain walking and two-domain walking. The

default tolerance settings of the ODE45 solver are used.

3.5.2.2 Desired global-position trajectories and walking patterns

As mentioned earlier, this study assumes that the desired global-position trajectories are

provided by a higher-layer planner. To assess the effectiveness of the proposed controller,

three different desired global-position (GP) trajectories are tested, including single-direction

and varying-direction trajectories. These trajectories are specified in Table. 3.2.

The GPs include two straight-line global-position trajectories with distinct heading

directions, labeled as (GP1) and (GP2). We set the velocities of (GP1) and (GP2) to be

different to evaluate the performance of the controller under different walking speeds. To

assess the effectiveness of the proposed control law in tracking the desired global-position

trajectories along a path with different walking directions, we also consider a walking

trajectory (GP3) consisting of two straight-line segments connected via an arc.

The desired functions φφφ
F , φφφ

U , φφφ
O, and

†
φφφ

U are designed as Bézier curves (Section 3.2).

To respect the impact dynamics as prescribed by condition (B2), their parameters could be
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Table 3.3: Initial tracking error norms for three cases.
Tracking error norm Case A Case B Case C

swing foot position (% of step length) 27.5 27.5 40
base orientation (deg.) 0 17 12

base position (% of step length) 15 15 8

Figure 3-5: Desired walking patterns for (a) two-domain walking (Cases A and B) and (b)
three-domain walking (Case C) in the sagittal plane. The labels Xw and Yw represent the x-
and y-axes of the world frame, respectively.

designed using the methods introduced in [67]. The desired walking patterns corresponding

to the desired functions φφφ
F , φφφ

U , φφφ
O, and

†
φφφ

U used in this study are illustrated in Fig. 3-5.

In three-domain walking ( 3-5 (a)), the FA, UA, and OA phases take up approximately

33%, 8%, and 59% of one walking step, respectively, while the FA and UA phases of the

two-domain walking gait (Fig. 3-5 (b)) last 81% and 19% of a step, respectively. For both

walking patterns, the step length and maximum swing foot height are 7.1 cm and 2.4 cm,

respectively.

3.5.2.3 Simulation cases

To validate the proposed controller under different desired global-position trajectories,

walking patterns, and initial errors, we simulate the following three cases:

(Case A): Combination of desired trajectory (GP1) and two-domain walking pattern (Fig. 3-
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5, left).

(Case B): Combination of desired trajectory (GP2) and two-domain walking pattern (Fig. 3-

5, left).

(Case C): Combination of desired trajectory (GP3) and three-domain walking pattern

(Fig. 3-5, right).

Table 3.3 summarizes the initial tracking error norms for all cases. Note that the initial

swing-foot position tracking error is roughly 30-40% of the nominal step length.

3.5.2.4 Controller setting

For the IO-PD and IO-QP controllers, the PD controller gains are set as Kp,i = 225 · I

and Kd,i = 50 · I to ensure the matrix Ai (i ∈ {F,U,O}) is Hurwitz matrix. For the IO-QP

controller, the slack penalty weight p (Eq. (3.33)) is set as p = 107. On a desktop with an

i7 CPU and 32GB RAM running MATLAB, it takes approximately 1 ms to solve the QP

problem in Eq. (3.33).

To verify the stability of the multi-domain walking system, we construct the three

Lyapunov-like functions Vf , Vu, and VO as introduced in Section 3.3. In all domains, the

matrix Pi (where i ∈ {F,U,O}) is obtained by solving the Lyapunov equation using the gain

matrices Kp,i and Kd,i and the matrix Qi. Here without loss of generality, we choose Qi as

an identity matrix. For the UA phase, the value of β in the definition of VU in Eq. (3.20) is

set as 0.001.

3.5.3 Simulation Results

This subsection presents the tracking results of our proposed IO-PD and IO-QP controller

for Cases A through C.

3.5.3.1 Global-position tracking performance

Figures 3-6 and 3-7 show the tracking performance of the proposed IO-PD and IO-QP

controllers under Cases A and B, respectively. As explained earlier, Cases A and B share the
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Figure 3-6: Satisfactory global-position tracking performance under Case A. The top row
shows the global-position tracking results, and the bottom row displays the straight-line
desired walking path and the actual footstep locations. The initial errors are listed in the
Table 3.3.

Figure 3-7: Satisfactory global-position tracking performance under Case B. The top row
shows the global-position tracking results, and the bottom row displays the desired straight-
line walking path and the actual footstep locations. The initial errors are listed in the
Table 3.3.
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Figure 3-8: Satisfactory global-position tracking performance under Case C. The top row
shows the global-position tracking results, and the bottom row displays the desired walking
path and the actual footstep locations. The desired walking path consists of two straight
lines connected by an arc. The initial errors are listed in the Table 3.3.

Figure 3-9: Time-elapsed illustration of three-domain walking.
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Figure 3-10: Time evolutions of multiple Lyapunov-like functions under Case C. The closed-
loop stability is confirmed by the behaviors of the multiple Lyapunov functions, which
complies with conditions (C1)-(C3) stated in the proof of Theorem 1 for both (a) IO-PD and
(b) IO-QP control laws.

same desired walking pattern of two-domain walking (Fig. 3-9 a)), but they have different

desired global-position trajectories and initial errors. For both cases, the IO-PD and IO-QP

controllers satisfactorily drive the robot’s actual horizontal global position (xb,yb) to the

desired trajectories (xd(t),yd(t)), as shown in the top four plots in each figure. Also, from

the footstep locations displayed at the bottom of each figure, the robot is able to walk along

the desired walking path over the ground. In particular, the footstep trajectories in Fig. 3-7

demonstrate that even with a notable initial error (approx. 17◦) of the robot’s heading

direction, the robot is able to quickly converge to the desired walking path.

Figure 3-8 displays the global-position tracking results of three-domain walking for

Case C (Fig. 3-9 b)). The top two plots, i.e., the time profiles of the forward and lateral

base position (xb and yb), show that the actual horizontal global position diverges from the

reference within the UA phase during which the global position is not directly controlled.

Despite the error divergence within the UA phase, the actual global position still converges

to close to zero over the entire walking process thanks to convergence within the FA and OA

domains, confirming the validity of Theorem 1.
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Figure 3-11: Torque profiles of each leg motor under the proposed (a) IO-PD and (b) IO-QP
controllers for Case B. “L” and “R” stand for left and right, respectively. The red circles
highlight the occurrence of torque limit violations. The jumps are more significant under
the IO-PD controller than the IO-QP controller because the latter explicitly meets the torque
limits. The blue dotted line represents the torque limits. It is evident that the torque profile
of the IO-QP controller adheres to the torque limits, whereas the torque profile of the IO-PD
controller may exceed the torque limits.

3.5.3.2 Convergence of Lyapunov-like functions

The multiple Lyapunov-like functions for case C, implemented with IO-PD and IO-QP

control laws, is illustrated in Figure 3-10. Both control laws ensure the continuous-phase

convergence of VF and VO satisfies condition (B1). Although VU diverges during the UA

phase, it remains bounded, thereby satisfying condition (B3). Moreover, we know the

desired trajectories parameterized as Bézier curves are planned to satisfy (B2). Therefore,

the multiple Lyapunov-like functions behave as predicted by conditions (C1)-(C3) in the

proof of Theorem 1, indicating closed-loop stability.
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3.5.3.3 Satisfaction of torque limits

Figure 3-11 illustrates the joint torque profiles of each leg motor under the IO-PD and

IO-QP control methods for Case B. The torque limits umax and umin are set as 4.1 N and

−4.1 N, respectively. It is observed that the torque experiences sudden spikes due to the

foot-landing impact at the switching from the UA to the FA phases. Due to the notable

initial tracking errors, there are also multiple spikes in the joint torques at the beginning

of the entire walking process. These spikes tend to be more significant with the IO-PD

controller than with the IO-QP controller. In fact, all of the torque peaks under IO-QP are

within the torque limits whereas some of those peaks under IO-PD exceed the limits, which

is primarily due to the fact that the IO-QP controller explicitly enforces the torque limits but

IO-PD does not. This comparison highlights the advantage of using IO-QP over IO-PD in

ensuring satisfaction of actuation constraints.

3.6 Discussion

This study has introduced a nonlinear GPT control approach for 3-D multi-domain

bipedal robotic walking based on hybrid full-order dynamics modeling and multiple Lya-

punov stability analysis. Similar to the HZD-based approaches [48, 88, 89] for multi-domain

walking, our controller only acts within continuous phases, leaving the discrete impact dy-

namics uncontrolled. Another key similarity lies in that we also build the controller based

on the hybrid, nonlinear, full-order dynamics model of multi-domain walking that faithfully

captures the true robot dynamics and we exploit the input-output linearization technique to

exactly linearize the complex continuous-phase robot dynamics.

Despite these similarities, our control law focuses on accurately tracking the desired

global-position trajectories with the precise timing, whereas the HZD-based approach may

not be directly extended to achieve such global-position tracking performance. This is

essentially caused by the different stability types that the two approaches impose. The

stability conditions proposed in this study enforce the stability of the desired global-position

trajectory, which is a time function encoded by the global time. In contrast, the stability

conditions underlying the HZD framework ensure the stability of the desired periodic orbit,
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which is a curve in the state space on which infinitely many global-position trajectories

reside.

Our previous GPT controller design [71] for the multi-domain walking of a 2-D robot

is only capable of tracking straight-line paths. By explicitly modeling the robot dynamics

associated with 3-D walking and considering the robot’s 3-D movement in the design of the

desired trajectories, the proposed approach is capable of ensuring satisfactory global-position

tracking performance for 3-D walking.

One limitation of the proposed approach is that it may be non-feasible to meet the

proposed stability conditions in practice if the duration of the underactuation phase, δτU , is

overly large. From Eq. (A.20) in the proof of Proposition 3, we know that as δτU increases,

α2 will also increase, leading to a larger value of N̄. If N̄ is overly large, Eq. (3.28) will

no longer hold, and the stability conditions will be invalid. To resolve this potential issue,

the nominal duration of the UA domain cannot be set overly long. Indeed, the percentage

of the UA phase within a complete gait cycle is respectively 19% and 8% of the simulated

two-domain and three-domain walking, which is comparable to that of human walking (i.e.,

18% [88]).

Another limitation of our control laws lies in that the robot dynamics model needs

to be sufficiently accurate for the controller to be effective, due to the utilization of the

input-output linearization technique. Yet, model parametric errors, external disturbances,

and hardware imperfections (e.g., sensor noise) are prevalent in real-world robot opera-

tions [90]. To enhance the robustness of the proposed controller for real-world applications,

we can incorporate robust control [91, 92, 93, 74, 94] into the GPT control law to address

uncertainties. Furthermore, we can exploit online footstep planning [95, 96, 97, 98, 99, 100]

to adjust the robot’s desired behaviors in real-time to better reject modeling errors and

external disturbances.

3.7 Summary

• A continuous tracking control law is introduced that achieves provably accurate

global-position tracking for the hybrid model of multi-domain bipedal robotic walking
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involving different actuation types.

• Both a three-domain and a two-domain walking gait are investigated to illustrate the

effectiveness of the proposed approach, and the input-output linearizing controller

was cast into a quadratic program (QP) to handle the actuator torque saturation.

• Finally, the performance of the input-output linearizing control law with and without

the QP formulation is compared to highlight the effectiveness of the former in mitigat-

ing torque saturation while ensuring the closed-loop stability and trajectory tracking

accuracy.

• We have previously published research on global-position tracking control for fully

actuated robot walking [60, 75] and planar multi-domain walking [101]. Our most

recent work on this topic has been submitted [102].
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Chapter 4 Invariant Extended Kalman Filtering for

Legged Robot Locomotion

In this chapter, we delve into locomotion on dynamic rigid surfaces (DRSes) and address

state estimation challenges. The subsequent chapter will explore motion generation and

control within a similar context. State estimation is crucial for providing a robot with

accurate movement state information, including trunk pose and velocity, that are essential

for planning and control. While extensive research has tackled state estimation on static and

unstable surfaces, DRSes such as ships and aircraft remains underexplored. The challenge

lies in the nonstationary nature of surface-foot contact points and the hybrid robot dynamics

involving both continuous behaviors and discrete foot-landing events. The main objective of

this chapter is to introduce the design of a state estimator that takes into explicit account the

motion DRSes and achieves accurate, rapidly convergent, and real-time estimation.

The extended Kalman filter (EKF) [103, 104, 105] has been a standard method for real-

time state estimation in legged locomotion on static surfaces using common on-board sensors.

Recently, EKF-based estimators have been adapted for estimating a robot’s trunk/base pose

and velocity [32, 106, 107]. However, they suffer limitations in handling large estimation

errors. To address these issues and ensure rapid convergence under substantial estimation

errors, the previous EKF-based design [32] has be expanded into an invariant extended

Kalman filter (InEKF) [24] for legged locomotion on static surfaces [29, 108]. Subsequently,

the InEKF has been extended to incorporate smoothing techniques in works by Chauchat

et al.[109] and by Yoon et al.[110]. The InEKF methodology has also found application

in various other domains, including wheeled vehicles [111], underwater vehicles [112],

aircraft [113], and human movement [114, 115]. However, its effectiveness in DRS loco-

motion, especially under significant surface motion, remains unclear due to its underlying

assumption of stationary surface-foot contact.
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Figure 4-1: Illustration of coordinate frames and key variables. The treadmill is a DRS that
rotates in the world frame.

4.1 Problem Formulation

In the proposed filter design, we focus on key state variables essential for locomotion

planning and control. These include the robot’s linear velocity (v ∈ R3) and orientation

(R ∈ SO(3)) in the world frame, as well as the base position (pb ∈ R3) and contact-point

position (pc ∈ R3). These selections allow us to incorporate forward kinematics between

the base and contact/foot frames in the filter design [32, 29].

The considered DRS shares characteristics with real-world DRSes such as aircraft and

vessels. Firstly, when operating on such surfaces, a robot only has access to surface-attached

landmarks, rather than landmarks fixed in the inertial frame, due to limited visibility of the

environment. Secondly, we assume a relatively accurate knowledge of the DRS’s orientation

(RDRS ∈ SO(3)) and linear and angular velocities (vDRS,ωωωDRS ∈ R3) (see Fig.4-1). This

assumption is reasonable as real-world DRSs typically incorporate high-precision motion

monitoring systems [116, 117]. The proposed filter design explicitly accounts for the

inevitable inaccuracies in the surface pose and motion knowledge, as discussed in Sec. 4.2.

The sensors utilized in this study consist of standard on-board equipment, including

an inertial measurement unit (IMU) mounted on the robot’s base/trunk, joint encoders, an

RGB-D camera, and a contact indicator. The RGB-D camera tracks landmarks fixed to the

DRS. This tracking allows the calculation of the camera’s pose w.r.t. the DRS frame. The

contact indicator serves to detect foot landing events. The encoders measure the joint angles
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q ∈ Rm with m the number of joints. Corrupted by white zero-mean Gaussian noise wq,

the raw encoder data q̃ is expressed as: q̃ = q+wq. The IMU includes a gyroscope and an

accelerator that respectively measure the angular velocity ωωω ∈ R3 and linear acceleration

a ∈ R3 of the IMU in the IMU/base frame. Corrupted by white Gaussian zero-mean noise

wa,wω ∈ R3, as well as biases ba,bω ∈ R3, the IMU readings ã and ω̃ωω are expressed as:

ã = a+ba +wa and ω̃ωω = ωωω +bω +wω .

4.1.1 Continuous-Phase IMU Motion and Bias Dynamics

To form the process model, we choose to adopt the IMU motion dynamics due to its

accuracy and simplicity [32]. At time t, the IMU motion dynamics is given by:

Ṙt = Rt(ω̃ωω t−bω
t −wω

t )×,

v̇t = Rt(ãt−ba
t −wa

t )+g, and ṗt = vt ,
(4.1)

where (·)× is a skew-symmetric matrix and g is the gravitational acceleration vector. The

IMU bias dynamics is modeled as Brownian motion [29]:

ḃa
t = wba

t and ḃω
t = wbω

t , (4.2)

where wba
t and wbω

t are white Gaussian noise with zero mean.

4.1.2 Continuous-Phase Contact-Point Motion Dynamics

During DRS locomotion, the support foot moves w.r.t. the world frame due to the

surface’s motion. Consequently, the deterministic motion model differs from prior work

on static surface locomotion [32, 29], where the contact point’s motion was assumed to be

ṗc
t = 0. Instead, we explicitly consider the contact point velocity vc

t in the model:

ṗc
t = vc

t . (4.3)

In this study, we inform the model in Eq.(4.3) by directly measuring the contact point
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velocity. This measurement is based on the known surface pose and motion, along with the

measured contact position in the DRS frame. The kinematics for this velocity measurement

are as follows (see Fig.4-1):

vc
t = vDRS

t +ωωω
DRS
t × (RDRS

t
DRSpc

t ). (4.4)

Here, DRSpc
t represents the contact point position relative to the DRS frame, expressed

in the DRS frame. This value can be computed using the robot’s camera and encoder data.

It is worth noting that we assume the surface orientation RDRS
t and motion ωωωDRS,vDRS

t are

known, as explained earlier. For an example of how to compute vc
t , refer to Sec. 4.4.

To account for velocity measurement inaccuracies, we consider:

ṽc
t = vc

t +Rtwc
t , (4.5)

Here, ṽc
t ∈ R3 represents the measured contact point velocity, and wc

t models the inaccu-

racy as white Gaussian zero-mean noise expressed in the base frame.

4.1.3 Discrete Jump Dynamics at a Foot Landing

During a foot landing, there is a role switch between the swing and support legs,

which results in a discrete jump in the contact point position pc
t . To ensure an appropriate

propagation of the estimate and covariance during foot landings, the proposed filter explicitly

considers this jump.

The jump map for the contact point position pc
t is defined as:

pc
t+ = pc

t +Rthc(qt) (4.6)

Here, the subscript t+ denotes the timing just after the foot landing at time t. The function

hc represents the forward kinematics from the previous support-foot position to the new one,

expressed in the base frame. Importantly, all other state variables remain continuous across

foot switching, except for pc
t .

To approximate the nonlinear term in the jump dynamics (Eq. (4.6)) using a first-order
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Taylor expansion, we have: Rthc(qt)≈ Rthc(q̃t)−Rt
∂hc
∂q (q̃t)w

q
t .

4.1.4 Position based Forward Kinematics Measurement

To establish a connection between the contact and base frames, we employ the leg

odometry measurement as described in [32, 29] (see Fig. 4-2-b):

RT
t (p

c
t −pb

t ) = hp(qt), (4.7)

Here, the function hp represents the support foot position relative to the base, expressed

in the base frame. Given the inherent inaccuracy in the encoder reading q̃t = qt +wq,

and utilizing a first-order Taylor expansion, we can rewrite the model in Eq. (4.7) as:

hp(qt)≈ hp(q̃t)−
∂hp
∂q (q̃t)w

q
t .

4.1.5 Contact Orientation based Measurement

When the support foot and the surface have a full area contact, their normal vectors are

parallel, whether the surface is stationary or moving (see Fig. 4-2-a)). In this study, we

utilize this rotational kinematic relationship to form a measurement model. Suppose that the

z-axes of the contact and surface frames are aligned and normal to the DRS. Then,

RDRS
t

[
0 0 1

]T
= Rc

t

[
0 0 1

]T
= RthR(qt)

[
0 0 1

]T
(4.8)

holds, where Rc
t ∈ SO(3) is the contact frame orientation and the forward kinematics matrix

function hR is the support foot orientation w.r.t. the base frame (see Fig.4-1). To address

the inaccuracy of the known surface orientation R̃DRS
t , we assume the true orientation is

corrupted by white Gaussian zero-mean uncertainty wDRS
t as:

RDRS
t = exp(−wDRS

t )R̃DRS
t ≈ (I3− (wDRS

t )×)R̃DRS
t , (4.9)

where In is an n×n identity matrix.
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Figure 4-2: Illustrations of the observations: a) normal vector alignment of the contact and
DRS frames and b) contact point position in the base frame.

To handle the inaccuracy of the encoder reading q̃t , the support foot orientation RthR(qt)

is approximated as: RthR(qt)≈ RthR(q̃t)−RtJhR(q̃t ,w
q
t ). Here the matrix JhR(q̃t ,w

q
t ) is

obtained based on the Jacobian of each column of hR ≜ [hR,1, hR,2, hR,3] as:

JhR ≜
[

∂hR,1
∂qt

(q̃tn)w
q
t ,

∂hR,2
∂qt

(q̃t)w
q
t ,

∂hR,3
∂qt

(q̃t)w
q
t

]
. (4.10)

Combining these equations yields:

RT
t R̃DRS

t

[
0 0 1

]T
+RT

t (−wDRS
t )×R̃DRS

t

[
0 0 1

]T

≈hR(q̃t)
[
0 0 1

]T
− ∂hR,3

∂ q̃t
(q̃t)w

q
t .

(4.11)

4.2 Filter Design

This section introduces the proposed InEKF design based on the models formulated in

Sec. 4.1.

The proposed filter derivation begins with proper state representation. We adopt the

representation in [29] since our filters estimate the same state. First, the state variables Rt ,

vt , pb
t , and pc

t are expressed on the matrix Lie group G as:

Xt ≜

 Rt
[
vt , pb

t , pc
t
]

03×3 I3

 ∈ G, (4.12)
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where 0m×n is an m×n zero matrix. The Lie group G is SE3(3), an extension of the special

Euclidean group SE(3).

To explicitly handle IMU biases, they are also chosen as state variables. These biases are

typically expressed on the vector space instead of G [118]; that is, θθθ t ≜ [(bω
t )

T ,(ba
t )

T ]T .

Let ¯(·) denote the estimate of the variable (·). Based on the InEKF framework [24], we

use the right-invariant error ηηη t to represent the estimation error of Xt on G:

ηηη t ≜ X̄tX−1
t ∈ G. (4.13)

The log of the invariant error, denoted as ξξξ t , is a vector on Rdimg defined via ηηη t ≜ exp(ξξξ∧t ).

The individual elements of ηηη t , ξξξ t , and ξξξ
∧
t are given in Sec .B.2 of the Appendix (see

Eq. (B.3)).

The IMU bias estimation error ζζζ t is defined as: ζζζ t ≜ θ̄θθ t−θθθ .

4.2.1 Continuous-Phase Process Model and Propagation Step

This subsection introduces the process model and propagation step of the proposed filter

for the continuous phases.

4.2.1.1 Process model

Based on the IMU motion and bias dynamics and the contact point motion in Eqs. (4.1)-

(4.3), the process model is expressed as:

Ẋt =

Rt(ω̃ωω t−bω
t )× [Rt(ãt−ba

t )+g, vt , ṽc
t ]

03×3 03×3

−Xt(wX
t )
∧

≜ fut (Xt ,θθθ t)−Xt(wX
t )
∧,

(4.14)

with the noise vector wX
t ≜

[
(wω

t )
T ,(wa

t )
T ,01×3,(wc

t )
T
]T

. Here we define the input ut to

consist of the IMU and encoder readings and the measured contact point velocity, i.e., ut =[
ω̃ωω

T
t , ãT

t , (ṽc
t )

T , q̃t

]T
. Note that the encoder reading q̃t is not an input to the continuous-

phase process model in Eq. (4.14) but is used later in the jump process model.
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4.2.1.2 Linearized error model

By using the first-order Taylor expansion ηηη t = expm(ξξξ
∧
t )≈ I+ξξξ

∧
t and by applying the

chain rule to express η̇ηη t , we obtain the linearized error equation:

ξ̇ξξ t

ζ̇ζζ t

= At

ξξξ t

ζζζ t

+
AdX̄t

012×6

06×12 I6

wt . (4.15)

Here, the noise term wt is defined as wt ≜ [(wX
t )

T ,(wbω
t )T ,(wba

t )T ]T , the adjoint matrix

AdX̄t
is given in Section B.2 of the Appendix (see Eq. (B.5)), and the matrix At is:

At =



03×3 03×3 03×3 03×3 −R̄t 03×3

(g)× 03×3 03×3 03×3 −(v̄t)×R̄t −R̄t

03×3 I3 03×3 03×3 −(p̄t)×R̄t 03×3

(ṽc
t )× 03×3 03×3 03×3 −(p̄c

t )×R̄t 03×3

06×3 06×3 06×3 06×3 06×3 06×3


. (4.16)

Note that At contains the contact point velocity ṽc
t because the process model explicitly

considers it. Derivation of Eqs. (4.15) and (4.16) is given in B.2 of the Appendix.

4.2.1.3 Propagation

Let tn (n ∈ {1,2, ...}) denote the time when sensors return data for the filter to correct

the estimates. Then, during the propagation step on t ∈ [tn−1, tn), the estimates X̄t and θ̄θθ t are

obtained via ˙̄Xt = fut (X̄t , θ̄θθ t) and ˙̄
θθθ t = 0 based on the process models in Eqs. (4.14) and

(4.2).

By the InEKF methodology, the covariance matrix Pt is propagated via the Riccati

equation associated with the linearized error model in Eq. (4.15): Ṗt = AtPt +PAT
t + Q̄t ,

where Q̄t ≜

AdX̄t
012×6

06×12 I6

Cov(wt)

AdX̄t
012×6

06×12 I6

T

.

Remark 1 (Group affine property): Without IMU biases, the continuous process model in

Eq. (4.14) is group affine as defined in [24]. Thus, without biases and in the deterministic

case, the linear error dynamics in Eq. (4.15) is exact and independent of the true state, and
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the covariance propagation is exact. Such features are different from the standard EKF

whose linearization accuracy relies on the estimation error.

4.2.2 Continuous-Phase Measurement Models and Update Step

This subsection formulates the two measurements in Eqs. (4.7) and (4.8) into the right-

invariant observation form defined in [24] and introduces the update step of the proposed

InEKF at time tn. These treatments result in an error update equation that is independent of

the true state.

4.2.2.1 Right-invariant orientation based measurement

The orientation based measurement in Eq. (4.11) can be transformed into the following

right-invariant observation form:hR(q̃)tn

0

0

1


03×1


︸ ︷︷ ︸

Y1,tn

= X−1
tn

R̃DRS
tn

0

0

1


03×1


︸ ︷︷ ︸

d1,tn

+

V1,tn

03×1


(4.17)

with V1,tn = RT
tn(R̃

DRS
tn

[
0 0 1

]T
)×wDRS

tn +
∂hR,3

∂q (q̃tn)w
q
tn .

4.2.2.2 Right-invariant position measurement

The position measurement in Eq. (4.7) has the right-invariant form [29]:
hp(q̃tn)

0

1

−1


︸ ︷︷ ︸

Y2,tn

= X−1
tn


03×1

0

1

−1


︸ ︷︷ ︸

d2,tn

+

∂hp
∂ q̃ (q̃tn)w

q
tn

03×1

 .
(4.18)
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4.2.2.3 Update

At time tn, the updated estimates and covariance, denoted as (X̄†
tn, θ̄θθ

†
tn) and P†

tn , are given

by [24]:

X̄†
tn = exp

(
Lξ

tnztn

)
X̄tn, θ̄θθ

†
tn = θ̄θθ tn +Lζ

tnztn , P†
tn = (I−LtnHtn)Ptn, (4.19)

where Ltn ≜
[
(Lξ

tn)
T ,(Lζ

tn)
T
]T

is filter gain, Htn is the observation matrix, and

ztn ≜
[
(X̄tnY1,tn−d1,tn)

T , (X̄tnY2,tn−d2,tn)
T
]T

.

To derive the observation matrix Htn , we first decompose it into Htn =
[
HT

1,tn, HT
2,tn

]T
,

where H1,tn ∈ R6×12 and H2,tn ∈ R6×12 are respectively associated with the measure-

ment models in (4.17) and (4.18). Since the measurement models are not explicitly

dependent on biases, the matrix Hi,tn (i = 1,2) can be further decomposed as Hi,tn ≜[
H̃i,tn , 03×6 ;03×12, 03×6

]
, where the element 03×6 correspond to the bias terms and the

element 03×12 could be removed if a reduced-dimensional filter gain is instead used as

in [29]. Based on the right-InEKF methodology [24], we obtain the submatrix H̃i,tn via

H̃i,tnξξξ tn =−(ξξξ tn)
∧di,tn: H̃1,tn ≜ [(RDRS

tn [0,0,1]T )×, 03×9] and H̃2,tn ≜ [03×6, − I3, I3].

To compute Ltn , the linearized error update equation is obtained based on the update

equation (Eq. (4.19)) as:

ξξξ
†
tn

ζζζ
†
tn

= (I−LtnHtn)

ξξξ tn

ζζζ tn

+Ltn


R̄tn

∂hR,3
∂qt

(q̃tn)

03×1

R̄tn
∂hp
∂qt

(q̃tn)

03×1

wq
tn, (4.20)

with derivation details given in B.3 of the Appendix. Then, applying the standard Kalman fil-

tering methodology to this linear error update equation, we obtain the filter gain: Ltn = PtnHT
tnS−1

tn
,

where Stn =HtnPtn
¯HT

tn +Ntn
, N̄tn ≜ diag(N̄1,tn, N̄2,tn) , N̄1,tn ≜ R̄tn

∂hR,3
∂qt

(q̃tn)Cov(wq
tn)(

∂hR,3
∂qt

(q̃tn))
T R̄T

tn

, and N̄2,tn ≜ R̄tn
∂hp
∂qt

(q̃tn)Cov(wq
tn)(

∂hp
∂qt

(q̃tn))
T R̄T

tn .
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Remark 2 (Independence of true state): The linearized error update equation (Eq. (4.20))

is independent of the true state Xt and θθθ t in the deterministic case. This is because

both measurement models satisfy the right-invariant observation form w.r.t. Xt and are

independent of θθθ t and because the update equation of X̄t is in the exponential form as

prescribed by the InEKF methodology [24].

4.2.3 Discrete Process Model and Propagation Step

Without loss of generality and for simplicity, suppose that the foot-landing events and the

updates do not coincide. Thus, the proposed filtering for the state jump focuses on estimate

and covariance propagation without update. Except for the true contact point position pc
t ,

the rest of the true state is continuous across a foot landing, as explained in Sec. 4.1.

4.2.3.1 Process model

From the proposed jump dynamics in Sec. 4.1, the stochastic jump dynamics of Xt can

be approximately expressed as:

Xt+ = Xt

 I3 [03×1, 03×1, hc(q̃t)]

03×3 I3

−Xt

∂hc
∂q (q̃t)w

q
t

03×1


≜ ∆∆∆ut (Xt)−Xtw∆

t ,

(4.21)

where the encoder data q̃t serves as the input. As the biases are continuous under a jump

event, θθθ t+ = θθθ t holds.

Remark 3 (Group affine property): The jump map ∆∆∆ut of the state Xt possesses the

discrete-time group affine property defined in [119], and is independent of IMU biases θθθ t .

Thus, the jump dynamics of the error ξξξ t is independent of the true state and is exactly linear.

Moreover, from the expression of ∆∆∆ut in Eq. (4.21), we can see that ∆∆∆ut is a group action on

SE3(3), under which the error ξξξ t naturally does not change.
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4.2.3.2 Error equation

From Eq. (4.21), we obtain the dynamics of the logarithmic error ξξξ t as: ξξξ t+ = ξξξ t −

AdX̄w∆
t . Indeed, as analyzed in Remark 3, the error does not jump under ∆∆∆ut . Also,

ζζζ t+ = ζζζ t− holds since the IMU biases are continuous.

4.2.3.3 Propagation

Based on the deterministic portion of the jump model in Eq. (4.21), the propagation of

the state estimate at a jump event is: X̄t+ = ∆∆∆ut (X̄t) and θ̄θθ t+ = θ̄θθ t . With the linear error

equation of ξξξ and ζζζ across a jump, the propagation of the covariance matrix is expressed as:

Pt+ = Pt + Q̄∆
t , where Q̄∆

t =

AdX̄Cov(w∆
t )AdT

X̄ 03×3

03×3 03×3

.

The complete algorithm of the proposed right-InEKF is summarized as Algorithm 1:

Algorithm 1 Proposed Right InEKF for Hybrid Models of DRS Locomotion
Initialize: i) X̄t0 ∈ SE3(3); ii) Pt0 is symmetric, positive-definite.
while True do

if a foot landing (i.e., a jump) is detected then
Propagation at a jump

X̄t+ = ∆∆∆ut (X̄t), θ̄θθ t+ = θ̄θθ t , Pt+ = Pt + Q̄∆
t

else
Propagation for continuous phases

˙̄Xt = fut (X̄t , θ̄θθ t), ˙̄
θθθ t = 0, Ṗt = AtPt +PtAT

t + Q̄t
Update for continuous phases
Stn = HtnPtnHT

tn + N̄tn

ztn =
[
(X̄tnY1,tn−d1,tn)

T , (X̄tnY2,tn−d2,tn)
T ]T

Ltn =
[
(Lξ

tn)
T , (Lζ

tn)
T
]T

= PtnHT
tnS−1

tn

P†
tn = (I−LtnHtn)Ptn

X̄†
tn = exp

(
Lξ

tnztn

)
X̄tn

θ̄θθ
†
tn = θ̄θθ tn +Lζ

tnztn
end

end

Remark 4 (Imperfect InEKF): In the presence of IMU biases, the proposed filter is no

longer a “perfect” InEKF in the sense that the group affine and invariant form properties no

longer hold for continuous phases. Although the linear equation in Eq. (4.15) is no longer
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independent of the true state, it depends on the true state only through the bias terms while

the remaining part of the Jacobian matrix At is still independent of the true state. Also, the

measurement models are still independent of the true state Xt and θθθ t as highlighted in

Remark 2. For these reasons, the linearization inaccuracy induced by the biases has a limited

impact on the continuous-phase propagation and update. Thus, the “imperfect InEKF” with

biases considered can still ensure rapid and accurate convergence under large errors, which

is experimentally confirmed on DRS locomotion as reported in Sec. 4.4.

4.3 Observability and Convergence Analysis

4.3.1 Observability Analysis for Continuous Phases

As measurement update is performed during continuous phases, we only analyze the

continuous-phase observability.

Recall that the deterministic continuous-phase dynamics in Eq. (4.14) is group affine

in the absence of IMU biases θθθ t (Remark 1). Also, recall that the measurement models in

Eqs. (4.17) and (4.18) are in the right-invariant observation form w.r.t. Xt , regardless of the

presence of biases (Remark 2). Then, by Theorem 20 in [118], the observability of Xt for the

complete continuous-phase system, which has both Xt and θθθ t as its state, is the same as that

of the simplified continuous-phase system without IMU biases. Thus, by Theorem 5 in [24],

the local observability of Xt for the complete system can be determined by the couple (A,

H), with A and H updated with bias-related terms removed. Their updated expressions are

in B.4 of appendix.

With ∆t the duration of one propagation step, the discrete state transition matrix ΦΦΦ is

given by ΦΦΦ = expm(At∆t) [24] (see the Eq.(B.18) for detailed expression). Then, from the

expression of the observability matrix, which is O=
[
(H)T , (HΦΦΦ)T , (HΦΦΦ

2)T , . . .
]T

, we
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have:

O=



(RDRS [0,0,1]T )× 03×3 03×3 03×3

03×3 03×3 −I3 I3

(RDRS [0,0,1]T )× 03×3 03×3 03×3

−1
2(g)×∆t2 −I3∆t −I3 I3

(RDRS [0,0,1]T )× 03×3 03×3 03×3

−2(g)×∆t2 −2I3∆t2 −I3 I3

. . . . . . . . . . . .


. (4.22)

As the first two columns of (g)× are linearly independent, the base roll and pitch angles

are observable. Because all columns in the second column block of O are linear independent,

the base velocity vt is observable. Yet, as the last two column blocks are linearly dependant,

the base position pb
t and contact point position pc

t are unobservable.

The third column of (g)× is always zero because only its z-component is nonzero. Then,

if the surface is non-horizontal, (i.e., the third column of (RDRS [0,0,1]T )× is not all zero),

the yaw will be observable; otherwise, it is unobservable.

From the expression of O, we also know that: a) the contact velocity vc
t does not

affect observability; b) either measurement model ensures observable base roll and pitch;

c) the proposed measurement in Eq. (4.17) renders base yaw observable when the ground

is non-horizontal; and d) the previous measurement in Eq. (4.18) makes base velocity

observable.

4.3.2 Convergence Property for Hybrid Error System

The proposed convergence analysis for the hybrid error system is built upon previ-

ous analysis of the InEKF as a deterministic observer for systems without state-triggered

jumps [24]. Different from the previous work, this subsection analyzes the effects of the

jumps on the error convergence for the overall hybrid error system.

We first analyze the error evolution across the deterministic discrete jump of the system.

Analyzing the state evolution across discrete, state-triggered jumps (e.g., foot-landing

impacts) is typically complex [6].

Yet, since the jump map ∆∆∆ut is a group action, the error ξξξ t does not jump under ∆∆∆ut
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despite the jump of the true state Xt . Also, the bias error ζζζ t is continuous across a jump

event. Thus, the hybrid, deterministic error dynamics is essentially continuous for all time,

and its error convergence is equivalent to that of the deterministic continuous phases.

For continuous phases, the proposed filter meets the group affine condition and invariant

observation form without biases, as discussed in Sec. 4.2. Thus, by the theory of InEKF [24],

the proposed filter is locally asymptotically convergent for the observable variables of

the deterministic continuous phases without biases. Accordingly, the local asymptotic

convergence of the hybrid, deterministic filter system is guaranteed in the absence of biases.

This analysis also supports the local asymptotic convergence of the existing InEKF [29]

designed for static surface locomotion, because the jump model in [29] is a group action

and its continuous-phase design also satisfies the group affine and invariant observation

conditions without biases.

4.4 Experiments

4.4.1 Experimental setup

The setup for experimental data collection (Fig. 4-3) is:

Treadmill (i.e, the tested DRS). A split-belt Motek M-gait treadmill is used as a DRS. Its

dimension is 2.3 m×1.82 m×0.5 m. To emulate a rocking ship in sea waves, it performs a

whole-body pitching motion without belt translation.

Robot. The Digit bipedal robot is 1.6 m tall, and each leg’s kinematic chain used by the filter

has 12 joints. To validate the filter, different robot movements are tested: (RM1) stepping

and (RM2) standing. The robot is about 0.8 m behind the treadmill center.

Treadmill motion profiles. To test filter performance under different relatively significant

DRS motions, two different profiles of the treadmill’s pitch angle θ DRS (Fig. 4-4) are tested:

(TM1) a non-periodic trapezoidal wave, ftrap(t), and (TM2) a sine wave 2.5◦ sin(πt). Under

(TM1) and (TM2), the maximum contact point speeds ∥vc
t ∥ are respectively 0.41 m/s and

0.11 m/s. To test the filter’s robustness under surface motion inaccuracy, a fictitious profile

is considered: (TM3) θ DRS(t) = ftrap(t)+1.7◦ sin(πt), with the actual profile (TM1) used
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Figure 4-3: Experimental setup that includes a Digit bipedal humanoid robot and a pitching
treadmill (i.e., DRS).

Figure 4-4: Profiles (TM1)-(TM3) of the treadmill pitch angle θ DRS(t).

in experiments. The inaccuracy 1.7◦ sin(πt) is about 20% of the true profile in magnitude.

Figure 4-4 shows the three profiles. The motion data streams at a rate of 60-90 Hz.

Figure 4-5: Procedure of obtaining the 3-D contact point position in the DRS frame using
the ArUco markers and the robot’s on-board RGB-D camera.

On-board sensors used. Digit’s on-board sensors used (Fig. 4-3) are: an IMU, joint

encoders, a RealSense RGB-D camera, and the robot’s proprietary contact detector. The

camera returns data at 15 Hz, and the remaining sensors stream data at the same rate within

60-90 Hz. Cortex motion capture cameras provide the ground truth. ArUco markers are

attached to the treadmill, emulating the real-world scenario where legged robots that navigate
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within a DRS (e.g., a vessel at sea) can only see landmarks attached to the DRS but not

any landmarks on the earth’s ground. The markers are sensed by the camera to obtain the

camera pose in the treadmill frame, which is then used to compute contact point velocity as

explained later.

Data collection cases. The proposed filter is simulated in MATLAB using four experimen-

tally collected data sets under different robot and treadmill motions: Case A: Combination

of (RM1) and (TM1); Case B: Combination of (RM1) and (TM2); Case C: Combination of

(RM2) and (TM1); and Case D: Combination of (RM1) and (TM3), where the actual profile

is (TM1) but the filter uses the inaccurate data (TM3).

4.4.2 Filter Setting

Filters compared. The proposed filter (denoted as “InEKF-DRS”) is compared with an

InEKF designed for locomotion on a static rigid surface [29] (denoted as “InEKF-SRS”).

The InEKF-SRS models the deterministic contact point motion as ṗc = 0, and uses the

position measurement in Eq. (4.18) alone. It renders the base orientation (except for yaw)

and velocity observable. It has realized substantially faster convergence under large errors

during stationary surface locomotion, as compared with EKF-based method [32].

Contact point velocity computation. The contact point velocity ṽc serves as an input to

the continuous-phase process model of the proposed InEKF-DRS. To obtain the contact

point velocity ṽc, as summarized in Fig. 4-5, we first obtain the camera pose in the DRS

frame by processing the features of the ArUco markers in the camera images, which we then

use to compute the 3-D contact point position in the DRS frame (DRSpc) through forward

kinematics. Next, we estimate the contact point velocity ṽc based on Eq. (4.4) using the

known treadmill motion data. Details of the procedure are given in Section B.5 of appendix.

Results in Fig. 4-6 validate the accuracy of the proposed contact point velocity sensing.

Covariance settings. Table 4.1 shows the noise standard deviation (SD) of both filters. The

SD for the accelerometer, gyroscope, and their corresponding biases are obtained from the

manufacturer’s manual with a slight adjustment for better performance. The SD for the

joint encoder readings is adopted from the previous filter [29] designed for a similar robot.

The SD for the contact-point velocity and orientation-based measurement are tuned for a
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Figure 4-6: Validation results of the proposed method for obtaining the contact point velocity
ṽc

t ≜ [ṽc
x, ṽ

c
y, ṽ

c
z]

T under Case C. The velocity along the y-direction, ṽc
y, is zero because the

treadmill does not move in that direction.

Table 4.1: Noise standard deviation for inekf-srs and inekf-drs.
Measurement type InEKF-SRS InEKF-DRS (proposed)

Linear acceleration (m/s2) 0.4 0.4
Angular velocity (rad/s) 0.01 0.01

Accelerometer bias (m/s3) 0.001 0.001
Gyroscope bias (rad/s2) 0.0001 0.0001
Contact velocity (m/s) 0.01 0.01

Encoder (◦) 1 1
DRS orientation (◦) N/A 1

reasonable performance.

Initial estimation errors. For a fair comparison, the two filters are simulated under the

same large range of initial estimation errors. The initial velocity and orientation errors in

each direction are respectively uniformly distributed within [−1.5,1.5] m/s and [−1,1] rad.

4.4.3 Computational Time Comparison

In MATLAB, both filters take less than 1 ms to compute one estimation cycle (i.e., one

propagation and one update step), confirming their validity for real-time estimation.

4.4.4 Convergence Rate and Yaw Observability Comparison

Figure 4-7 displays the estimation results of InEKF-DRS (proposed) and InEKF-SRS

under Case A where the treadmill stays at a pitch angle of −8◦ for approximately 2.8 sec

and then begins to pitch until reaching +8◦ in 0.5 sec.
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Figure 4-7: Base velocity and orientation estimation results of the two filters, InEKF-DRS
(proposed) and InEKF-SRS, for Cases A. The thin solid and thick solid lines are the estimates
and ground truth of the base velocity and orientation. The blue-dashed lines are the treadmill
orientation profile.

Both filters drive the error of base roll, pitch, and velocity closer to zero, indicating

their observability as predicted in Sec. 4.3 and previous work [32, 29]. In terms of the

convergence rates for these variables, subplot a) shows that the proposed InEKF-DRS

is faster than InEKF-SRS, driving the error close to zero within 1 sec. This is because

InEKF-DRS considers the surface motion and has an additional measurement (Eq. (4.17))

that corrects estimates.

Under InEKF-DRS, the yaw estimate converges close to the ground truth in approxi-

mately 3 sec, which supports the observability analysis in Sec. 4.3 that the yaw angle is

observable if the DRS/treadmill is not horizontal. Yet, the yaw convergence is slower than

pitch and roll, possibly because both observations in Eqs. (4.17) and (4.18) help correct

the roll and pitch estimates whereas only the former corrects the yaw estimate. Finally, as

previously revealed [32], the yaw error divergence under InEKF-SRS confirms that the base

yaw is indeed non-observable with InEKF-SRS.

Table 4.2 shows the comparison of the root-mean-square (RMS) estimation errors
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Figure 4-8: Accuracy comparison of InEKF-SRS and InEKF-DRS (proposed) for the
estimation of base velocity and roll and pitch angles under Case A.

Table 4.2: RMS error comparison under Case A.
State variables InEKF-SRS InEKF-DRS (proposed)

vx (m/s) 0.3320 0.2051
vy (m/s) 0.2488 0.1955
vz (m/s) 0.1438 0.1025

yaw (rad) 0.9294 0.2516
pitch (rad) 0.0897 0.0413
roll (rad) 0.1365 0.0318

for base orientation (including yaw) and velocity under Case A. Figure 4-8 shows the

corresponding time evolution of the errors for base roll, pitch, and velocity under Case A.

The table and the figure show that the proposed InEKF-DRS is more accurate in velocity

and orientation estimation compared with InEKF-SRS.

4.4.5 Performance under Different DRS and Robot Motions

Figures 4-9 and 4-10 show the estimation results of the two filters under Case B (where

the treadmill motion is different from Case A) and Case C (where the robot stands on the

treadmill instead of walking as in Case A). The plots show that the performance comparison

of the two filters under Cases B and C are similar to Case A (i.e., Fig. 4-7)), in terms of

convergence rate, yaw observability, and accuracy, which indicates the effectiveness of the

proposed InEKF-DRS in handling different DRS and robot movements.

Comparing the convergence rate of the yaw estimate under the proposed InEKF-DRS in

Cases A-C, we notice that the yaw estimate in Case C converges faster than Cases A and

B. In Case C, the treadmill remains horizontal for the first 10 sec, during which the yaw

estimate does not converge. Yet, once the treadmill begins to rock at t = 10 sec, the yaw

estimate converges close to the ground truth within 1 sec, whereas it takes about 3 sec for
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Figure 4-9: Base velocity and orientation estimation results of the two filters, InEKF-DRS
(proposed) and InEKF-SRS, for Cases B. The thin solid and thick solid lines are the estimates
and ground truth of the base velocity and orientation. The blue-dashed lines are the treadmill
orientation profile.

the yaw estimate to enter into a similar neighborhood under Cases A and B. This might be

due to the fact that in Case C, by the time the treadmill begins to pitch, the estimates of the

rest observable state are already sufficiently accurate, making the correction of the yaw error

faster than Cases A and B.

4.4.6 Robustness Assessment

Results from Cases A (Fig. 4-7 and D (Fig. 4-11) confirm the robustness of the proposed

InEKF-DRS under inaccurate surface pose knowledge. Case D emulates the scenario where

the DRS’s motion monitoring system fails to provide accurate DRS pose. Subplots a and b

show that the filter performance (e.g., convergence rate, accuracy, and yaw observability)

under Case D is similar to that under Case A. Specifically, the velocity estimate under

InEKF-DRS converges to the ground truth in all directions within 1 sec. Also, the orientation
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Figure 4-10: Base velocity and orientation estimation results of the two filters, InEKF-DRS
(proposed) and InEKF-SRS, for Cases C. The thin solid and thick solid lines are the estimates
and ground truth of the base velocity and orientation. The blue-dashed lines are the treadmill
orientation profile.

convergence rates are similar: the roll and pitch estimates converge close to the ground truth

within 0.3 sec, and the yaw angle converges within 3 sec.

4.5 Discussion

In this chapter, we have developed an InEKF for estimating a bipedal robot’s orientation

and velocity while it traverses a DRS with known substantial motion. Data from various

sources, including the surface pose profile as well as the leg, visual, and inertial data, are

integrated.

Our filter, similar to InEKF [29] and EKF [32] for stationary surfaces, uses IMU motion

dynamics as the process model and leverages 3-D contact point position data and leg

kinematics for the measurement model. However, it distinguishes itself by not assuming a

static surface-foot contact point; instead, it accounts for its movement in the world frame.
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Figure 4-11: Base velocity and orientation estimation results of the two filters, InEKF-
DRS (proposed) and InEKF-SRS, for Cases D. The thin solid and thick solid lines are the
estimates and ground truth of the base velocity and orientation. The blue-dashed lines are
the treadmill orientation profile.

We have also introduced a new right-invariant measurement model based on the rotational

kinematic relationship between the surface and the support foot. These innovations ensure

accurate estimation even with significant surface motion and estimation errors, as evidenced

by RMS errors in Table 4.2 and state trajectories in Figs. 4-7,4-9,4-10, 4-11, and 4-8.

Our filter is well-suited for DRS scenarios with an accurately known surface pose but

may not be as effective with highly inaccurate or entirely unknown profiles. We plan to

extend it to estimate the surface pose by creating a matrix Lie group that incorporates this

information into the state.

Lastly, we have assumed a relatively flat surface with minimal persistent slippage.

In cases of uneven or slippery surfaces [120], where the robot’s feet slip persistently,

discrepancies can occur between actual robot movement and model predictions. Our method

can be extended to address such situations by incorporating existing techniques such as using

RGB-D sensors to measure base velocity under consistent foot slippage [30]. Figure 4-12

shows screenshots of experiments.
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Figure 4-12: Time-lapse figures of Digit walking on a rocking treadmill. The black arrow
indicates the treadmill’s direction of rotation.

4.6 Summary

• A right-invariant extended Kalman filter that explicitly incorporates known DRS

movement and hybrid robot behaviors is introduced.

• Observability analysis for the continuous locomotion phases shows that the robot’s

base velocity and roll and pitch angles are observable, and the base yaw angle becomes

observable when the DRS is not horizontal.

• Stability analysis proves the asymptotic error convergence of these observable states

for the hybrid deterministic system.

• Experimental results on a pitching treadmill demonstrate the enhanced accuracy and

convergence of the proposed filter when compared to existing methods.

• Two papers on this topic [5, 121] have been published.
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Chapter 5 Foot-Placement Control for Underactuated

Bipedal Walking on Swaying Dynamic Rigid Surfaces

The aim of this chapter is to formulate a planning and control framework for achieving

stable underactuated bipedal locomotion on a horizontally swaying rigid surface. Achieving

this objective poses a significant challenge due to the nonlinear and hybrid dynamics of the

robot [72, 122], the presence of underactuation [3, 82], and the time-varying movement of

the robot-surface contact region [121] (Fig. 5-1).

5.1 Angular Momentum about the Contact Point

This section introduces the concept of angular momentum about the contact point during

bipedal walking, along with its fundamental characteristics and associated advantages.

Initially, we focus on the single support phase of walking, where only one leg maintains

contact with the ground. We also investigate the discrete foot-switching event, which

involves the instantaneous changing of the contact point. Finally, we summarize the benefits

of considering angular momentum at the contact point.

5.1.1 Assumptions

Throughout this chapter, the following assumptions are considered:

A5.1 The CoM height remains constant above the contact point during walking.

A5.2 The terrain is flat; i.e., there is no vertical variation on the terrain.

A5.3 The role switching of the support and the swing legs is instantaneous.

A5.4 The DRS only moves horizontally, and its motion profile is periodic and accurately

known for all time.

A5.5 Foot switching periodically occurs at fixed time instants.
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Figure 5-1: The default controller of the Digit humanoid robot exhibited fast lateral position
drift on a DRS that oscillated at a frequency of 0.25 Hz and a magnitude of 5 cm.

A5.6 The support foot does not slip on the walking surface.

5.1.2 Single Support Phases

During the swing phase of walking, one foot of the biped maintains contact with the

walking surface while the other remains in the air. We will refer to the contact point on the

walking surface as S. In the case of a dynamic rigid surface (DRS), the point S moves in

the world frame. Let A represent a fixed point in the world frame that coincides with S at a

given moment in time.

In the single-support phase, the vector of angular momentum about point S, denoted as

LS = [Lx,S,Ly,S,Lz,S] ∈ R3, is related to the angular momentum about point A, denoted as

LA ∈ R3, as follows:

LS = LA +pSA× (mvCoM), (5.1)

where pSA ∈ R3 represents the position of point A relative to point S, described in the world

frame. It is important to note that pSA is equal to 03×1 since point A and point S coincide

at the given time. The scalar constant m corresponds to the total mass of the robot. The

vector vCoM denotes the linear velocity of the center of mass (CoM) with respect to (w.r.t.)

the world frame.

The relationship presented in Eq. (5.1) will be utilized to derive the dynamics of LS for

legged locomotion on a DRS, as described in Section 5.2.1.
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Figure 5-2: Illustrations of a) the sagittal and lateral plane of a 3-D robot, b) continuous
and c) discrete ALIP dynamics in the sagittal plane, and d) continuous and e) discrete ALIP
dynamics in the lateral plane.

5.1.3 Discrete Foot-Switching Event

Upon completing the swing phase, the swing foot makes contact with the walking

surface. Assuming that the support foot begins its swing immediately after the swing foot

touchdown (A5.3), we derive the robot dynamics associated with the foot landing event

next.

At a foot landing event, there is a sudden change in the position of the contact point. Let

LS,k represent the angular momentum about the kth contact point on the walking surface.

The position vector p(k+1)→k points from the (k+1)th contact point to the kth contact point.

To describe the angular momentum just before and after the kth foot-landing instant, we

use the notations (·)− and (·)+, respectively. Thus, the relationship between the angular

momentum about the new contact point, L−S,k+1, and the previous contact point, L−S,k, can be
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expressed as follows:

L−S,k+1 = L−S,k +p(k+1)→k× (mv−CoM). (5.2)

During the kth foot-landing event, the impact between the surface and the foot at the

new contact point results in zero impulse torque about the (k+ 1)th contact point. As a

consequence, the angular momentum about the (k+1)th contact point, denoted as LS,k+1,

remains unchanged across the foot-landing impact. In other words, L+
S,k+1 is equal to L−S,k+1.

We can express L+
k+1 as follows:

L+
S,k+1 = L−S,k +p(k+1)→k× (mv−CoM). (5.3)

As the robot walks on a flat, horizontal terrain with zero vertical CoM velocity (A5.1

and A5.2), we have p(k+1)→k× (mv−CoM) = 03×1 Thus, based on Eq. (5.3), we know that

L+
S,k+1 = L−S,k holds. This implies that the robot’s angular momentum about the contact

point remains constant across a foot switching event.

5.1.4 Advantages

To summarize, the advantages of using the angular momentum in controller design

are [100]:

• In contrast to the linear CoM velocity, angular momentum provides additional infor-

mation regarding a robot’s inertial properties, such as mass and mass distribution.

• With the zero support-ankle torque, the time derivative of LS is a function of the

relative position of the CoM w.r.t. the support foot. This means the torque peaks

weakly affect LS.

• Unlike the linear COM velocity, the LS is invariant to the impact when the robot walks

on a flat, horizontal surface with zero vertical CoM velocity. This property allows us

to obtain LS at a new contact point without involving the complex impact model.



88

5.2 ALIP Dynamics

This section presents the proposed ALIP model that describes the essential dynamics of a

walking robot on a horizontally swaying surface during continuous phases and across contact

switching. We first derive the three-dimensional (3-D) ALIP model and then we decompose

it into the sagittal and the lateral planes to further simplify the model (see Fig. 5-2).

5.2.1 ALIP Dynamics During a Continuous Swing Phase

Recall that the point A is a static point in the world frame that instantaneously coincides

with the contact point S (which is attached to the DRS) at the given time and that the

3-D angular momentum vectors LA and LS are related through Eq. (5.1). Taking the time

derivative of both sides of Eq. (5.1) yields

L̇S = L̇A + ṗSA× (mvCoM)+pSA× (mv̇CoM). (5.4)

Since pSA = 0 and ṗSA =−ṗS, Eq. (5.4) becomes

L̇S = L̇A− ṗS× (mvCoM), (5.5)

where pS = [xS,yS,zS]
T ∈ R3 is the position of the point S w.r.t. the world frame.

As the time derivative of the angular momentum LA equals the sum of the external

moments about point A, we have

L̇A = pAC× (mg)+ τττA, (5.6)

where pAC ∈ R3 is the position of the CoM relative to point A, g = [0,0,−g]T ∈ R3 is

the gravitational acceleration, and τττA = [τA,x,τA,y,τA,z]
T ∈ R3 is the external torque that is

applied to the contact point.

Since pAC = pSC, where pSC = [xSC,ySC,zSC]
TR3 is the CoM position relative to point S,
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Eq. (5.6) can be rewritten as:

L̇A = pSC× (mg)+ τττA. (5.7)

Combining Eqs. (5.5) and (5.7), we obtain the 3-D dynamic model for LS:

L̇S = pSC× (mg)+ τττA− ṗS× (mvCoM). (5.8)

Because the CoM of the robot has zero vertical velocity (A5.1) and DRS only moves

horizontally (A5.4), we have ṗS× (mvCoM) = 03×1. Thus, Eq. (5.8) becomes

L̇S = pSC× (mg)+ τττA. (5.9)

The relative CoM velocity ṗSC can be expressed as:

ṗSC = vCoM− ṗS, (5.10)

where the expression of vCoM can be obtained through the following relationship between

LS and the robot’s angular momentum about the CoM, denoted as LCoM:

LS = LCoM +pSC× (mvCoM). (5.11)

Supposing that the toe joint of the support foot is disabled (discussed in Section 5.3.2),

we have τA,x = τA,y = 0. Recall that the DRS only moves horizontally (A5.4), and the CoM

does not demonstrate any vertical velocity (A5.1). By putting Eqs. (5.9) and (5.10) into a

scalar form, we have 
L̇x,S

L̇y,S

L̇z,S

=


−mgySC

mgxSC

0

+


0

0

τA,z

 (5.12)
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and 
ẋSC

ẏSC

żSC

=


1

mH Ly,S

−1
mH Lx,S

0

−


ẋS(t)

ẏS(t)

0

−


1
mH Ly,CoM

−1
mH Lx,CoM

0

 , (5.13)

where Lx,CoM and Ly,CoM are the x and y component of LCoM, and H is the CoM height.

Because the whole body does not demonstrate significant angular momentum about the

CoM during walking, we approximately make LCoM = 03×1.

By splitting the first two rows of Eqs (5.12) and (5.13), we have the ALIP dynamics in

the sagittal plane, i.e., ẋSC

L̇y,S


︸ ︷︷ ︸

ẋ

=

 0 1
mH

mg 0


︸ ︷︷ ︸

=:Ax

xSC

Ly,S


︸ ︷︷ ︸

x

−

ẋS(t)

0


︸ ︷︷ ︸
=:fx(t)

, (5.14)

and in the lateral plane, i.e.,ẏSC

L̇S


︸ ︷︷ ︸

ẏ

=

 0 − 1
mH

−mg 0


︸ ︷︷ ︸

=:Ay

ySC

LS


︸ ︷︷ ︸

y

−

ẏS(t)

0


︸ ︷︷ ︸
=:fy(t)

. (5.15)

It is important to note that the proposed continuous-phase ALIP model in Eqs. (5.14)

and (5.15) exhibits explicit time-varying characteristics due to the presence of the time-

varying forcing terms fx(t) and fy(t). This time-varying property sets it apart from the

standard time-invariant LIP model [8]. The explicit time dependence of the forcing terms

fx(t) and fy(t) arise from the time-varying velocity of the support point S. Throughout this

study, we assume that the horizontal surface motion ẋS(t) and ẏS(t) are continuous, differen-

tiable, and periodic such that xS(t) = xS(t +Tx,DRS) and yS(t) = yS(t +Ty,DRS) hold for any

t > 0, where Tx,DRS and Ty,DRS are real, positive constants that represent the periodicity of

the DRS motion in the respective plane.
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5.2.2 ALIP Dynamics at Foot Landing

When a biped undergoes a foot landing event, the roles of its support and swing feet

instantaneously switch, leading to a sudden jump in both the contact point position (xS,yS)

and the relative CoM position (xSC,ySC) (see Figs. 5-2-c and e).

Let the variables ∆xSC and ∆ySC represent the changes in xSC and ySC, respectively, across

a foot landing event. They are defined as: ∆xSC = x+SC− x−SC and ∆ySC = y+SC− y−SC. Here,

x+SC and x−SC are the values of xSC just after and before the foot landing event, respectively.

Similarly, y+SC and y−SC denote the values of ySC just after and before the foot landing event,

respectively. These quantities represent the changes in the CoM position w.r.t. the support

foot in the sagittal (x) and lateral (y) directions during the foot landing event.

As highlighted earlier and discussed in [9], LS remains unaffected by foot landing events

due to its impact invariance property. Consequently, the change in LS during a foot landing

event satisfies ∆Ly,S := L+
y,S−L−y,S = 0 and ∆Lx,S := L+

x,S−L−x,S = 0.

Let ∆x, ∆y represent the difference between the pre- and post-switching states in the

sagittal and lateral planes, respectively. The compact expression of the jump/impact map of

∆x in the sagittal plane is given by:∆xSC

∆Ly,S


︸ ︷︷ ︸

∆x

=

x+SC− x−SC

0

 , (5.16)

and in the lateral plane is given by:∆ySC

∆Lx,S


︸ ︷︷ ︸

∆y

=

y+SC− y−SC

0

 . (5.17)

5.3 Hierarchical Planning and Control Framework

This section presents the proposed hierarchical planning and control framework that

enables stable underactuated bipedal walking on a DRS with a known, periodic, horizontal
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Figure 5-3: Overview of the proposed hierarchical control approach. The ALIP-based
planner generates the desired foot landing locations based on the current state of the full-
order model. The middle-layer walking pattern generator adjusts the desired swing foot
trajectories based on the full-order model and the higher-layer planning result. In the
lower layer, the input-output linearizing controller reliably tracks the full-order reference
trajectories.

motion. As depicted in Fig. 5-3, the higher-layer ALIP-based planner is a component of the

proposed three-layer control approach designed to achieve stable walking on a full-order,

underactuated robot. The main challenge lies in effectively dealing with the complexity of

the hybrid, time-varying, and nonlinear dynamics inherent in underactuated robots. The

middle and lower layers serve two key purposes in achieving the overall control objective.

Firstly, the middle layer generates full-body reference trajectories that are compatible with

the ALIP model, taking into account the model simplifying assumptions underlying the

proposed ALIP model, such as the constant CoM height and the zero angular momentum

about the CoM, to reduce the discrepancies between the real robot and the ALIP model.

Secondly, the middle layer translates the desired footstep locations provided by the higher

layer into reference swing foot trajectories that can be reliably tracked by the lower layer

controller. This ensures that the actual robot faithfully executes the planned foot placements,

thereby ensuring stability for the underactuated dynamics of the full-order robot.
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5.3.1 Higher-Layer ALIP-based Planner

Within this subsection, we present the higher-level planner component of the proposed

hierarchical control method. This planner aims to generate the desired CoM position

trajectory and desired foot placement locations.

The design of the proposed ALIP-based planner begins with the derivation of a discrete-

time foot placement controller based on the hybrid, time-varying ALIP model, as explained

next. As the ALIP model shares the same form in the sagittal and lateral planes, the

derivation focuses on the sagittal plane alone.

5.3.1.1 Discrete-Time Foot Placement Control

The proposed discrete-time foot placement controller regulates the angular momentum

at the end of the next step by choosing the swing foot landing location at the end of the

current step.

From the linear system theory, the solution of Eq. (5.14) between [t1, t2] is expressed as

follows: xSC(t2)

Ly,S(t2)

=

 cosh(l(t2− t1))
sinh(l(t2−t1))

mHl

mHlsinh(l(t2− t1)) cosh(l(t2− t1))


︸ ︷︷ ︸

eAx(t2−t1)

xSC(t1)

Ly,S(t1)



+
∫ t2

t1
eAx(t2−τ)fx(τ)dτ︸ ︷︷ ︸

Vx(t1,t2)=[Vx,1(t1,t2),Vx,2(t1,t2)]T

,

(5.18)

where l =
√

g
H . It is worth highlighting that the computation of Vx(t1, t2) can be readily

carried out when t1, t2, and fx(τ) are known. Since we assume that the DRS motion is known

for all time, we can evaluate fx(τ) at any given time τ .

From the second row of Eq.(5.18), the angular momentum at the end of the next step

Ly,S(T−k+1) is related to the angular momentum at the beginning of the next step Ly,S(T+
k )
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Figure 5-4: Time line illustration. Tk−1 is the desired start instant of the current walking
step, Tk is the desired timing for the end of the current step, and Tk+1 is the desired timing
for the end of the next step. The superscript + and − indicates the right and left limits.

and the relative CoM position at the beginning of the next step xSC(T+
k ) (see Fig. 5-4):

Ly,S(T−k+1) = mHlsinh(lTstep)xSC(T+
k )

+ cosh(lTstep)Ly,S(T+
k )+Vx,2(T+

k ,T−k+1),
(5.19)

where Tstep = T−k+1−T+
k is the desired step duration.

Given that the position of the support foot at T+
k equals that of the swing foot at T−k

(A5.3), we obtain:

xSC(T+
k ) = xSwC(T−k ), (5.20)

where xSwC(T−k ) is the horizontal element of the position vector from the swing foot to the

CoM at T−k (see Fig. (5-2)). As discussed in Section 5.1, LS remains invariant under impact.

As a result, we obtain:

Ly,S(T+
k ) = Ly,S(T−k ). (5.21)

Combining Eqs. (5.19), (5.20), and (5.21), we have

Ly,S(T−k+1) = mHlsinh(lTstep)xSwC(T−k )

+ cosh(lTstep)Ly,S(T−k )+Vx,2(T+
k ,T−k+1).

(5.22)

From Eq. (5.22), we are able to obtain the expression of the swing foot landing location

at the end of the current step T−k :

xSwC(T−k ) =
Ly,S(T−k+1)−Vx,2(T+

k ,T−k+1)− cosh(lTstep)Ly,S(T−k )

mHlsinh(lTstep)
. (5.23)
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In Eq. (5.23), Vx,2(T+
k ,T−k+1) can be directly computed, and cosh(lTstep) and mHlsinh(lTstep)

are known constants.

Let us introduce the desired angular momentum L̃y,S(T−k+1), which will be treated as user

input. Replacing Ly,S(T−k+1) with L̃y,S(T−k+1), Eq. (5.23) can be rewritten as:

xSwC(T−k ) =
L̃y,S(T−k+1)−Vx,2(T+

k ,T−k+1)− cosh(lTstep)Ly,S(T−k )

mHlsinh(lTstep)
. (5.24)

The variable Ly,S(T−K ) can be computed by using the second row of Eq. (5.18) with t1 = T+
k−1

and t2 = T−k .

Figure 5-5 illustrates the procedure for computing the swing foot landing location.

Figure 5-5: Illustration of computing the swing foot landing location

5.3.1.2 Hybrid ALIP Model

Given the combination of continuous-time dynamics and discrete-time behaviors during

walking, it is appropriate to represent the robot dynamics as a hybrid system. To this end,

we formulate the proposed ALIP as a linear hybrid system. This formulation enables us

to use the existing theorems and analysis techniques to study the stability properties of the

ALIP model.



96

By combining Eqs. (5.16) and (5.24), we obtain:

∆xSC

∆LS


︸ ︷︷ ︸

∆x

=

−1 − cosh(lTstep)
mHlsinh(lTstep)

0 0


︸ ︷︷ ︸

=:Bx

xSC(T−k )

LS(T−k )


︸ ︷︷ ︸

x−

+

 L̃S(T−k+1)−V2(T+
k ,T−k+1)

mHlsinh(lTstep)

0


︸ ︷︷ ︸

=:Gx

, if t = T−k (k = 1,2, ...).

(5.25)

Combining Eq. (5.14) and Eq. (5.25), our hybrid linear system has the following format:

 ẋ = Axx−− fx(t), t ̸= T−k (k = 1,2, ...);

∆x = Bxx−+Gx, t = T−k (k = 1,2, ...).
(5.26)

5.3.1.3 Stability Analysis

The stability condition for the periodic solution of linear time-varying nonhomogeneous

hybrid systems, which includes the proposed hybrid ALIP model, is presented in [123]. To

analyze the stability of a linear time-varying nonhomogeneous hybrid system, we need to

consider the corresponding linear time-varying homogeneous hybrid system that is expressed

as:  ż = Axz−, t ̸= T−k (k = 1,2, ...);

∆z = Bxz−, t = T−k (k = 1,2, ...),
(5.27)

where z ∈ R2 is the state variable. This homogeneous equation corresponds to the ALIP

dynamics without the DRS motion.

Theorem 2. (Closed-loop stability conditions of the Hybrid ALIP model) If all eigen-

values of the monodromy matrix of the hybrid homogeneous system (Eq. (5.27)) have

magnitudes less than one, then the hybrid homogeneous system is exponentially stable. Fur-

ther, the periodic solution ψψψ(t) of the overall nonhomogeneous hybrid system (Eq. (5.26))

with a periodicity of Tsys, i.e., ψψψ(t +Tsys) = ψψψ(t), is also exponentially stable.

The proof of this theorem can be found in [123].
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A Specific Scenario: Identical Periodicity of DRS Motion and One Walking Step:

When the periodicity of the DRS motion, denoted as Tx,DRS, is equal to the periodicity of

the walking motion, denoted as Tstep, it can be shown that Tx,DRS = Tstep = Tsys, the matrix

Mx can be calculated using the following expression [123]:

Mx = (I+Bx)eAxTstep

=

 −cosh(lTstep) − cosh2(lTstep)
mHlsinh(lTstep)

mHlsinh(lTstep) cosh(lTstep)

 . (5.28)

To compute the eigenvalues of the monodromy matrix Mx, we start by obtaining the

characteristic equation of Mx. Let λx be an eigenvalue of Mx, and I be the identity matrix

with a proper dimension. The characteristic equation is given by det(Mx−λxI) = 0. Solving

this equation yields the eigenvalues λx,1 and λx,2. These eigenvalues can then be used to

analyze the stability of the hybrid system.

The eigenvalue can be computed from

Mx−λ I =

−cosh(lTstep)−λ − cosh2(lTstep)
mHlsinh(lTstep)

mHlsinh(lTstep) cosh(lTstep)−λ

 (5.29)

as

λx,i = 0 (i = 1,2). (5.30)

Thus, the hybrid system Eq. (5.27) is stable.

Remark 5 (Physical insights on the monodromy matrix): The monodromy matrix Mx

characterizes the relationship between the state x(T+
K−1) and the state x(T+

K ), as mentioned

earlier. This relationship is described by the equation:

x(T+
k ) = Mxx(T+

k−1)+Vx(T+
k−1,T

−
k ). (5.31)

An Extended Scenario: Periodicity of the Overall System (Eq. (5.26)) as the Least

Common Multiple of DRS Motion and Robot Walking:

Now consider a general case (see Fig. 5-6) where N1Tstep = N2Tx,DRS = Tsys, where N1
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Figure 5-6: Illustration of the periodicity of robot walking Tstep, DRS motion TDRS, and the
solution of the hybrid linear system Tsys. This highlights that the proposed formulation does
not require Tstep should equal TDRS.

and N2 are any positive integers. By using Eq.(5.31) recursively, we have

x(T+
k+N1

) = Mxx(T+
k+N1−1)+Vx(T+

k+N1−1,T
−

k+N1
)

= Mx

[
Mxx(T+

k+N1−2)+Vx(T+
k+N1−2,T

−
k+N1−1)

]
+Vx(T+

k+N1−1,T
−

k+N1
)

= M2
xx(T+

k+N1−2)+MxVx(T+
k+N1−2,T

−
k+N1−1)

+Vx(T+
k+N1−1,T

−
k+N1

)

...

= MN1
x︸︷︷︸

M̄x

x(T+
k−1)+

N1

∑
i=1

MN1−i
x Vx(T+

k+i−2,T
+

k+i−1)

(5.32)

Let M̄x denote the monodromy matrix for this specific scenario. In contrast to the

previous scenario, the monodromy matrix in this case can be described by the following

equation:

M̄x = MN1
x . (5.33)

The ith eigenvalues of M̄x, which are denoted as λ̄x,i, can be evaluated by the following

expression:

λ̄x,i = λ
N1
x,i = 0 (i = 1,2). (5.34)

Similarly, the hybrid system Eq. (5.27) is stable.
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5.3.1.4 Hybrid ALIP Planner on the Lateral Plane

The ALIP dynamics in the lateral plane is expressed as Eq. (5.15), and its solution

between [t1, t2] is expressed as:ySC(t2)

Lx,S(t2)

=

 cosh(l(t2− t1)) − sinh(l(t2−t1))
mHl

−mHlsinh(l(t2− t1)) cosh(l(t2− t1))


︸ ︷︷ ︸

eAy(t2−t1)

ySC(t1)

Lx,S(t1)



+
∫ t2

t1
eAy(t2−τ)fy(τ)dτ︸ ︷︷ ︸

Vy(t1,t2)=[Vy,1(t1,t2),Vy,2(t1,t2)]T

,

(5.35)

By following a similar approach as we have discussed, the corresponding landing

location of the swing foot at the end of the current step in the lateral plane is expressed as:

ySwC(T−k ) =
−L̃x,S(T−k+1)+Vy,2(T+

k ,T−k+1)+ cosh(lTstep)Lx,S(T−k )

mHlsinh(lTstep)
. (5.36)

To determine the value of L̄x,S(T−k+1) and minimize lateral motion, we can adopt the

approach used for walking on static terrain [9]. Thus, the expression for L̄x,S(T−k+1) can be

formulated as:

L̄x,S =


1
2

mHW
lsinh(lTstep)

1+ cosh(lTstep)
, right support foot

−1
2

mHW
lsinh(lTstep)

1+ cosh(lTstep)
, left support foot

(5.37)

where W ∈ R is the desired step width.

Remark 6 (Stability result in the lateral plane): The stability analysis for the lateral plane

yields the same result as the stability analysis for the sagittal plane. Specifically, the two

eigenvalues of the monodromy matrix in this case are also equal to 0.

Remark 7 (Walking periodicity in the lateral plane): The walking periodicity in the

lateral plane differs from the walking periodicity in the sagittal plane due to the distinction

between the left support leg and right support leg. We use the term ”gait periodicity” (Tgait)

to denote the periodicity of a complete walking cycle, which includes multiple steps. In the

case of an even step periodicity, we have Tgait = 2Tstep.
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5.3.2 Middle-Layer Walking Pattern Planner

This subsection explains the middle-layer planner. The main role of this layer is to

generate full-body reference motions that are compatible with both the ALIP model and the

desired global behaviors determined by the higher-layer planner. These reference trajectories

serve as input for the lower-layer controller described later.

Figure 5-7: a) Illustration of the joints of Digit, with the highlighted joints on the right
side (q16-q30). Although the joints on the left side (q1-q15) are not shown in this figure,
they are symmtric to the right side. The green joints indicate that they are active when the
corresponding leg is in the swinging phase, but they are deactivated when the corresponding
leg serves as the support leg. The joints label are listed as follows: right upper body joints
(RUPJ), right hip yaw (RHY), right hip pitch (RHP), right hip roll (RHR), right knee (RK),
right shin (RS), right heel spring (RHS) , right tarsas (RTA), right toe A (RTO-A), right
toe B (RTO-B), right ankle roll (RAR), right ankle pitch (RAP) b) Illustration of the three
closed-loop linkage systems that can be characterized via holonomic constraints. This
visualization aids in understanding how passive joints are structured in the system.

5.3.2.1 Generalized coordinates and Holonomic constraints

Let q denote the vector of generalized coordinates for a full-order 3-D Digit robot. In

general, q is defined as q := [pT
b ,γγγ

T
b ,q1, ...,q30], where pb and γγγb represent the pose of
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the robot’s base, including its position and orientation in the world frame (recall Chap. 2

Sec 2.1.2). Additionally, qi (where i = 1, ...,30) corresponds to the angle of the ith revolute

joint of the Digit (Fig. 5-7 a)). The base frame {base} of the robot is fixed and rigidly

attached to a specific point in the torso. Whereas the center of mass frame {CoM} has its

origin located at the center of mass of the robot. The {CoM} frame shares the same yaw

angle as the {base} frame. However, the roll and pitch angles of the {CoM} frame remain

fixed at 0 degree w.r.t. the world frame (See Fig. 5-7 a)).

Considering the floating base joints, the Digit robot is equipped with a total of 36 joints,

out of which 20 are directly actuated. During each step, the support foot maintains full

contact with the ground, enforcing 6 holonomic constraints that ensure the robot’s static

position and orientation w.r.t. the DRS. The passive joints q20 (right shin) and q5 (left shin)

are treated as rigid joints due to their inherent rigidity. Similarly, the heel springs (q21 and

q6) on both legs are also treated as rigid links due to their rigidity.

On each leg, there are three closed-loop bar systems implemented to actuate the passive

joints, as depicted in Fig. 5-7 b). These holonomic constraints are induced by the constant

length of each bar in the closed-loop chain. The 10 scalar holonomic constraints associated

with the passive joints on both legs can be compactly expressed as:

pp j =



q5

q6

Ll
1(q)

Ll
2(q)

Ll
3(q)

q20

q21

Lr
1(q)

Lr
2(q)

Lr
3(q)



= a, (5.38)

where a ∈ R10 is a constant vector, Lr
1, Lr

2, Lr
3, Ll

1, Ll
2, Ll

3 are the length of the rigid bars on

both legs, as depicted in Fig. 5-7.
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During walking, the Toe-A and Toe-B joints of the support foot are deactivated. This

enables Digit to emulate point contact, aligning with the ALIP model. Consequently, the

overall degrees of freedom (DOF) of the Digit during walking are computed as:

DOF = 36−6−10 = 20.

Considering that the number of active actuators, denoted as na, is 18 (with two joints

deactivated), we obtain na < DOF. Therefore, the Digit walking is underactuated, with two

degrees of underactuation.

5.3.2.2 Full-Body Control Variable Selection

Consider the Digit robot with 30 revolute joints (i.e., n = 30) shown in Fig. 5-7 a). Since

the robot has 18 independent actuators, the controller can directly command 18 independent

variables of interest. Let hc ∈ R18 represent the control variables:

hc(q) = [zCoM(q),γγγT
b ,xsw(q),ysw(q),zsw(q),γγγT

sw(q),q
T
upper]

T . (5.39)

Here, zCoM ∈ R denotes the height of CoM. xsw ∈ R and ysw ∈ R respectively represent

the position of the swing foot in the x- and y-directions w.r.t. the {CoM} frame. zsw ∈ R

represents the position of the swing foot in the z-direction w.r.t the world frame. γγγsw(q)∈R3

is the orientation of the swing foot w.r.t the {CoM} frame. qupper ∈ R8 is a vector that

includes all the joints in the upper body.

To enhance the accuracy of the ALIP model, we choose to directly control the CoM

height, zCoM. It is crucial to ensure that the CoM height of the actual robot remains constant

and aligns with the ALIP model. Additionally, we control the trunk orientation, γγγb, to

maintain an upright trunk posture and an approximately zero angular momentum about the

CoM. By controlling the upper body joints, we ensure that there are no unexpected arm

movements during walking. Finally, the control of the swing foot position (xsw, ysw, zsw)

enables the full-order robot to accurately execute the desired footstep locations provided by

the higher-layer planner.
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5.3.2.3 Full-Body Trajectory Generation

Let hd denote the vector of the desired trajectories for the control variables hc. We define

hd as:

hd = φφφ , (5.40)

where φφφ = [φ1,φ2, ..., φ18] ∈ R18 represents the desired trajectories for hc.

Trajectory Parameterization: To parameterize the desired trajectory φi (i = 1, ...,18),

we utilize Bézier polynomials (recall Sec. 2.3). These polynomials are encoded using a

time-based phase variable, s, which represents the progress of a step over time.

Let τk−1 denote the actual switching instant at the beginning of the current walking step

of the full-order robot. The phase variable s is defined as s := t−τk−1
Tk−τk−1

, where t represents

the current time. Therefore, s takes on a value of 0 at the beginning of a planned step and

increases to 1 as the step progresses, reaching its maximum value at the end of the step.

Desired Full-order Trajectory Update:

The higher-level planner continually updates the Bézier coefficients of φ5(s) (desired

swing foot trajectory in the sagittal plane) and φ6(s) (desired swing foot trajectory in the

lateral plane) based on the robot’s current states. The value of a variable at time step t is

denoted by (·)t . The update procedure at time step t is outlined in Algorithm 2.

5.3.3 Lower-Layer Feedback Control based on the Full-Order Model

This subsection describes the feedback controller used to track the desired full-body

motion by commanding the directly controlled variables of the actual robot. Drawing

inspiration from the HZD approach [2], we develop a tracking controller that utilizes the

full-order, hybrid, nonlinear dynamics model of the robot. We employ the exact linearization

technique to approximate the nonlinear mapping between the joint torques and the tracking

error being commanded.

In addition, we address the time-varying nature of the robot dynamics by incorporating

modeling and control techniques, similar to our previous work on the provable stabilization

of DRS walking [6]. By combining these methods, we aim to achieve accurate tracking of

the desired motion while accounting for the complexities of the robot’s dynamics over time.
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Algorithm 2 Pseudocode for updating the Bézier polynomial coefficients at time step t
based on the ALIP planner result
while True do

At time step t, obtain the current generalized coordinates qt of the full-order robot. if
s=0 then

Respectively assign the current swing foot position in the x and y directions to α5,0
and α6,0:
α5,0← xsw(qt), α6,0← ysw(qt).

end
if 0≤ s≤ 1 then

Convert qt into the current ALIP state:
xt ← x(qt), yt ← y(qt).

Compute the pre-impact angular momentum about the contact point Ly,S(Tk), Lx,S(Tk)
based on the known DRS motion and the current state xt and yt using Eqs. (5.18)
and (5.35).
Compute xSwC(T−k ) and ySwC(T−k ) respectively based on Eqs. (5.24) and (5.36).
Assign the planned swing-foot landing locations to α5,M and α6,M:

α5,M← xSwC(T−k ), α6,M← ySwC(T−k ).
Assign α5,1,..., α5,M−1 as the linear interpolation between α5,0 and α5,M,
Assign α6,1,..., α6,M−1 as the linear interpolation between α6,0 and α6,M.

else
No update is applied to α5,0,..., α5,M, α6,0,..., α6,M

end
end
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5.3.3.1 Full-Order Dynamic Model

Due to the combination of continuous dynamics and discrete behaviors, such as foot

landings, bipedal robotic walking on DRS can be effectively modeled as a hybrid dynamical

system. In the following content, we will introduce the full-order continuous dynamics and

the full-order discrete dynamics of the system.

Full-order Continuous-phase Dynamics: During the continuous phase of walking, the

support foot of the Digit robot maintains full contact with the ground. However, both toe

joints of the support foot are deactivated to emulate the zero ankle torque from the ALIP

model in both planes. Let pF(q) denote the position of the robot’s support foot w.r.t. the

world frame. Under the assumption (A5.6) that the support foot does not slip on the DRS

(i.e., pF(q) = pS(t)), the overall holonomic constraint associated with the surface-foot

contact and passive joints (as described in Eq. (5.38)) can be represented as follows:JF

Jp j


︸ ︷︷ ︸

Jc

q̈+

 J̇F

J̇p j


︸ ︷︷ ︸

J̇c

q̇ =

p̈S(t)

010×1


︸ ︷︷ ︸

p̈c(t)

, (5.41)

where JF := ∂pF
∂q (q), and Jp j := ∂pp j

∂q (q).

By incorporating the holonomic constraint, the overall equation of motion is expressed

as:

M(q)q̈+ c̄(t,q, q̇) = B̄ jτττu, (5.42)

where B̄ j ( j ∈ {left, right}) is the input-selection matrix. Note that B̄left and B̄right are differ-

ent because toe joints are deactivated only on the support foot. Please refer to Section 2.2

for derivation details.

Switching Surface and Impact Dynamics: When the swing foot strikes the DRS, an

impact occurs, causing jumps in the generalized velocities q̇ [2]. The switching surface that

determines the occurrence of the impact is given by

Sq := {(q, q̇) : zsw(q) = 0, żsw(q, q̇)< 0}. (5.43)

where zsw is the swing foot height.
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The velocity jump can be described by a reset map:

q̇+ = Rq̇(q−)q̇−, (5.44)

where Rq̇ is the reset map (see Section 2.2).

Unlike the fixed-time switching of the ALIP model, the full-order switching surface is

state-triggered, which accurately captures the actual robot behavior.

5.3.3.2 Input-output Linearizing Control

The tracking error h ∈ R18 is defined as the difference between the hc and hd:

h = hc−hd. (5.45)

The following control law:

τττu = ( ∂hc
∂q M−1B̄ j)

−1[( ∂hc
∂q )M

−1c̄+v− ∂

∂q(
∂hc
∂q q̇)q̇+ 1

T 2
∂hd
∂ s2 ], (5.46)

is an input-output linearizing control law that drives the tracking error to zero. By applying

this control law, the dynamics of the output function h become ḧ = v, where v =−Kph−

Kdḣ. Here Kp and Kd are the proportional and derivative (PD) gain matrices. We can

stabilize this linear, time-invariant system by choosing proper values of Kp and Kd .

Remark 8 (Effects of time-varying Bézier coefficients): The control law described in Eq.

(5.46) assumes that the Bézier coefficients remain constant within a continuous phase, which

allows for the complete cancellation of the nonlinearity present in the continuous-phase

dynamics described by Eq. (5.42). However, the Bézier parameters are constantly updated

by the middle-layer walking pattern planner (see Algorithm 2). Despite the time-varying

nature of the Bézier parameters, the controller in Eq. (5.46) can still be effective as long as

the variations in the Bézier parameters are sufficiently slow.

5.3.3.3 Inverse Kinematics Control

Alternatively, we can use a inverse kinematics approach by providing joint-space refer-

ences for each actuated joint. These references are obtained via a Jacobian-based inverse
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kinematics method that considers the closed-loop chains on the robot’s kinematic tree. For

instance, one of those closed-loop chains are formed by the joints q15 through q18 as shown

in Fig. 5-7).

We express the inverse kinematic problem as a first order control law ḣ(q, q̇) =−κh(q)

to drive h(q)→ 018×1. Here κ∈ R18×18 is a positive-definite matrix. Then, choosing the

joint velocities q̇r as the vector to regulate, the controller can be re-written as:

Jh(q)q̇r = ḣd−κh(q) (5.47)

where, Jh(q) = ∂ ḣc
∂q ∈ R18×36.

Since Jh(q) is not a square matrix, we consider the collection of the Jacobians Jk(q) =[
Jh(q)T ,JF(q)T

]T
∈ R24×36. Furthermore, we split q into the controlled and uncontrolled

joints, with their angles respectively denoted as qc∈ R24 and qu∈ R12. Consequently, we

have Jk(q)q̇ = Jc(q)q̇c +Ju(q)q̇u, with Jc(q)∈ R24×24 and Ju(q)∈ R24×12. This leads to

the inverse kinematics solution:

q̇r
c = Jc(q)−1

−κh(q)

04×1

−Ju(q)q̇u

 and (5.48)

qr
c = qc + q̇r

c∆t, (5.49)

where, ∆t ∈ R represents the period of the control loop.

Finally, we apply a PD controller at joint-level to obtain τττu.

5.4 Simulation Validation

This section presents the results of the simulation validation for the proposed underactu-

ated bipedal robot model, Digit, under various surface movements. The simulations were

carried out using MATLAB.
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5.4.1 Simulation Setup

5.4.1.1 Initial Condition of the Digit

The initial condition of Digit is set to a regular standing pose.

5.4.1.2 Implementation of Higher-layer Planner

In the ALIP model, the following parameters are set:

• Height of the CoM H = 0.9 m,

• Mass m = 46.1 kg,

• Step duration Tstep = 0.4 s,

• Step width W = 0.2 m.

The value of L̄y,S is set differently for each case, as specified in Table 5.1.

5.4.1.3 Implementation of Middle-layer Planner

In the middle layer of the controller, specific coefficients of the Bézier polynomial are

chosen as follows:

• φ1: set to H so that the height of the CoM of the full-order Digit is close to the

corresponding ALIP model.

• φ2, φ3, φ4: set to 0 to maintain a constant orientation of the robot trunk.

• φ5, φ6: see Algorithm 2.

• φ7: set to [0,0.02,0.07,0.15,0.07,0.02,0]T to minimize the desired swing foot height

and reduce swing foot motion.

• φ8, φ9, and φ10: set to 0 so that the swing foot is always ready for landing.

• φ11 to φ18: set to 0 to keep both arms static during walking.
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5.4.1.4 Implementation of Low-layer Planner

In MATLAB, the proposed full model based controller is implemented using Eq.(5.46).

The matrix M and the vector c are obtained using FROST[124]. For all cases, the control

gains are chosen as Kp = KpI (Kp = 2500) and Kd = KdI (Kd = 100), where I is a 18×18

identity matrix. These PD gains are selected to ensure the exponential convergence of the

output function h within a continuous phase.

5.4.1.5 DRS Motions

The study focuses on horizontally and periodically moving surfaces, and it tests four

different horizontal DRS motions. The DRS motions are described as cosine curves with

distinct amplitudes and periodicities. The brief description for each case is as follows:

DRS 1: The DRS motion exists only in the sagittal plane and shares the same periodicity as

the walking.

DRS 2: The DRS motion exists only in the sagittal plane, but its periodicity is 10 times that

of the walking.

DRS 3: The DRS motion exists only in the lateral plane, and the periodicity of the DRS

motion is related to the walking periodicity as 9Tgait = 10Ty,DRS. Please note that the

periodicity of walking in the lateral plane is twice as long as that of walking in the

sagittal plane.

DRS 4: The DRS motion exists in both the sagittal and lateral planes and each direction has

a unique amplitude and periodicity.

The detailed expressions of the DRS motion are listed in the Table 5.1.

5.4.1.6 Simulation Cases

The overall simulation cases are summarized in Table 5.1.
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Table 5.1: Simulation Cases
Cases DRS motion (m) L̄y,S (kgm2/s)

Case A xS(t) = 0.04cos( 2π

0.4 t) 4.1
Case B xS(t) = 0.14cos(2π

6 t) 12.5
Case C yS(t) = 0.06cos( 2π

0.72 t) 0

Case D
xS(t) = 0.04cos( 2π

0.4 t)
6.27

yS(t) = 0.1cos(2π

6 t)

5.4.2 Comparison Results

In this section, we performed a comprehensive performance comparison between our

proposed framework, referred to as the DRS framework, and a previous framework [100],

which we call the static rigid surface (SRS) framework here. The comparison focused on

trajectory convergence, velocity regulation, accuracy of angular momentum prediction, and

overall walking stability. Figure 5-8 illustrates the results of this comparison.

5.4.2.1 Trajectory Convergence and Overall Walking Stability Comparison

The full-body trajectories generated by the DRS framework exhibits significantly closer

tracking of the desired trajectories compared to the SRS framework. This accurate tracking

of the desired trajectory helps ensure the stability of the full-order model. Notably, in Case

C, the DRS framework demonstrates the ability to maintain walking stability, while the SRS

planner failes to do so, resulting in the robot falling over in the lateral direction.

5.4.2.2 Velocity Regulation Comparison

When the robot’s upper body does not exhibit aggressive angular motion, regulating the

desired angular momentum L̄y,S is similar to regulating the linear CoM velocity. Table 5.2

presents a performance comparison between the two frameworks. It is evident that the DRS

framework outperforms the SRS one in terms of linear velocity regulation.

5.4.2.3 Angular Momentum Prediction Comparison

Compared with the SRS framework, the DRS approach demonstrates higher accuracy in

predicting the angular momentum at the end of the current step, as depicted by the yellow
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Figure 5-8: Performance comparison between the proposed DRS framework with the
previous SRS framework. The pink background indicates the left foot support phase and
the blue background indicates the right foot support phase. As we can observe, within all
cases, the full-body trajectory generated by our proposed framework is much closer to the
desired ALIP trajectory. Also, the angular momentum prediction at the end of the current
step (yellow curve) shows much higher accuracy even in the presence of the DRS motion.
In contrast, the SRS framework performs poorer with two failure cases.
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Table 5.2: Linear velocity regulation comparison
Cases desired velocity (m/s) DRS framework error

(m/s)
SRS framework error
sssssss (m/s)

Case A 0.1 0.005 0.32
Case B 0.3 0.13 0.32
Case C 0 0.002 not stable
Case D 0.15 0.01 not stable

curve in Fig. 5-8. This improved prediction accuracy leads to less variation in the planned

stepping location for the swing foot during each step. Consequently, there is a reduced

burden on the lower-layer controller as the coefficients of the Bézier polynomial exhibit less

variation, resulting in better tracking performance.

5.4.2.4 Global-position Tracking Comparison

By adjusting the desired angular momentum L̄y,S and L̄x,S, our framework allows the

robot to track a planned global position trajectory on DRS. This capability is particularly

useful in real-world applications where DRS environments, such as ships or ferries, often

have narrow walkways. By closely following the planned global position trajectory, the robot

can minimize the risk of colliding with walls or other individuals, thereby enhancing safety

and preventing potential accidents. L̄y,S and L̄x,S are adjusted by the following expressions:

L̄y,S = KGPT
x (xre f

DRS− pDRS
b,x )+mHvre f

x,DRS

L̄x,S = KGPT
y (yre f

DRS− pDRS
b,y )+mHvre f

y,DRS

(5.50)

where xre f
DRS and yre f

DRS are the desired position w.r.t. the {DRS} frame. pDRS
b,x and pDRS

b,y are

the actual position w.r.t. the {DRS} frame. vre f
x,DRS and vre f

y,DRS are the desired linear velocity

of the global position trajectory. KGPT
x and KGPT

y are gains that can be assigned by the user.

In Figure 5-9, we set up an simulated situation where Digit navigates through a narrow

pathway inside a ship with the same motion as Case D. The proposed DRS framework

enables the Digit to closely follow the desired walking path while maintaining the desired

forward speed. In contrast, the SRS approach shows limitations in consistently staying close

to the desired path. This becomes problematic in narrow pathways, as it increases the risk of
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Figure 5-9: Comparison of global position tracking capability between the SRS and the DRS
planner. a) Plots show superior tracking performance of the DRS planner in the forward
direction, with the Digit staying within the designated walking area. b) Digit walking on a
narrow DRS walkway under the DRS planner. c) Digit walking on the same walkway under
the SRS planner, resulting in stepping outside the walking surface.

collisions with walls or obstacles.

5.4.3 Robustness

We investigate the robustness of our proposed work by applying sudden pushes and an

unknown load to the robot.

5.4.3.1 Sudden Push

A sudden horizontal force of 200 N is applied to the Digit robot during its walking under

Case A. As shown in Figure 5-10, the Digit is initially heavily affected by this unexpected

push. However, after a few steps, the Digit is able to regain stability and maintain its

walking on the DRS. This demonstrates the robustness of our proposed framework, as it can

effectively handle and recover from external disturbances, such as sudden pushes, which are

commonly encountered in real-world applications.
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Figure 5-10: Simulation results of Case A showing the response of the Digit robot under an
unknwon sudden push lasting 0.1 second. a) Time evolution of the CoM position and the
angular momentum trajectories. b) Time lapse images of a walking Digit robot during push
recovery. The plots demonstrate that the robot maintains stability and effectively regulates
its desired forward speed after the push.

5.4.3.2 Unknown Load

Figure 5-11 showcases the performance of our proposed framework under Case C when

the robot is carrying a 10 kg box, whose weight is unknown to the planner. In Case C,

the intended behavior was for the robot to walk in place. However, due to the presence of

the external load, the robot exhibits a forward drift during the walking process. Despite

this external disturbance, our framework demonstrates robustness, as the walking motion

remains stable throughout the simulation. This further highlights the effectiveness of our

proposed framework in accommodating and adapting to unknown external disturbances.

5.5 Experiment Validation

This section presents the results from the experimental validation of the proposed DRS

framework on a physical Digit robot. Due to hardware constraints, such as the limited region
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Figure 5-11: Simulation results of Case C were obtained when the Digit robot was carrying
a 10 kg box. The weight of the box was unknown to the planner. The results are presented in
the following two figures. a) shows the trajectory evolution along the time axis. b) illustrates
the walking motion of the robot. It is evident that the robot maintains its stability throughout
the walking process, even with the presence of the external load causing forward drift.

and motion capability of the tested DRS, it is not possible to implement all the simulation

scenarios presented earlier. Instead, the main objective of the experiments is to validate the

validity and effectiveness of our proposed framework in the real world.

In this experiment, a modified split-belt Motek M-gait treadmill is used as the DRS

(Fig. 5-12)). Unlike in simulations, the robot’s states are not completely known during exper-

iments, introducing uncertainties stemming from incomplete state information. Additionally,

during the experiments, the Digit robot exhibits position position drifting, which could be

attributed to modeling errors and hardware imperfections.
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Figure 5-12: Experiment setup with the following elements: 1) a Digit robot, 2) a split-belt
Motek M-gait treadmill (i.e., DRS), 3) the moving axis of the treadmill, 4) a laser safety
guard, 5) a safety harness.

5.5.1 Experiment Setup

5.5.1.1 DRS motions

The DRS motion in the experiment will be less aggressive compared to the simulations

due to the limited motion capabilities of the split-belt Motek M-gait treadmill. It is important

to note that the treadmill can only generate horizontal motion along a single axis. As a

result, we will focus on examining a specific type of DRS motion: lateral plane motion with

a periodicity multiple times that of the gait (i.e., Ty,DRS = N1Tgait).

5.5.1.2 Experiment Cases

The experiment cases are listed in Table 5.3. To confine the robot’s movement within

Table 5.3: Experiment Cases
Cases DRS expressions (m) L̄y,S (kgm2/s)

Case A yS(t) = 0.04cos( 2π

6.8 t) 0
Case B yS(t) = 0.03cos( 2π

5.6 t) 0
Case C yS(t) = 0.04cos( 2π

5.6 t) 0

the limited space of the treadmill, L̄y,S is set to 0, resulting in the robot walking in place.
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Figure 5-13: Experimental results showing the task space tracking performance under Case
B. The results reveal accurate CoM height tracking, facilitating the close match between
the full-order robot model and the ALIP model. Additionally, the position tracking of the
swing foot is satisfactory, ensuring accurate placement at the intended destination. While
mild fluctuations are observed in the orientation tracking of both the base and swing foot,
their small magnitude prevents them from compromising the overall walking performance
of Digit.

5.5.1.3 State Estimation

In this experiment, we utilize Digit’s default state estimator since the DRS motion was

relatively mild. To assess its performance, we conduct validation against the ground truth

data obtained from a motion capture system. The validation results indicate that the default

state estimator is reasonably accurate for the experiment.

5.5.1.4 Implementation of the Hierarchical Control Approach

The proposed three-layer hierarchical control approach, known as the DRS framework,

was applied to hardware using C++ within the ROS platform. Notably, instead of employing

input-output linearizing control, inverse-kinematics control was utilized. This choice was

made because inverse-kinematics control is less impacted by model uncertainty, a common
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Figure 5-14: Experimental trajectory tracking performance across Cases A-C. The desired
ALIP trajectories of xSC and Ly feature a level zero line due to a desired forward speed
of 0, preventing the Digit from stepping out of the confined testing area on the treadmill.
Examining ySC and Lx, it becomes evident that the Digit effectively adheres to its desired
trajectory, thereby ensuring its stable locomotion.

issue shared between the theoretical model and the actual system.

5.5.2 Experiment Results

Trajectory Tracking: Figure 5-14 confirms the stable walking of the Digit robot on the

treadmill, demonstrating the successful deployment of our proposed framework on hardware

without extensive parameter tuning. The performance of full-body trajectory tracking in the

task space is shown in Fig. 5-13. The height of the center of mass (CoM) in the experiment

exhibits slight oscillations around the desired height of 0.9 m, indicating close tracking. The

swing foot position tracking performs exceptionally well in all directions. Although the

swing foot orientation tracking is not as accurate, the robot maintains stable walking on the

DRS.
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Figure 5-15: Time-lapse figures of Digit walking on a horizontally moving treadmill under
case B.

5.6 Discussion

This section discusses the limitations of our approach despite its effectiveness demon-

strated through simulations and experiments. The limitations stem from both the proposed

theoretical derivation and experimental validation.

5.6.1 Limitations of the ALIP Model

One limitation of our approach lies in its assumptions, including that the DRS motion

is confined to the horizontal direction, the walking surface is flat, and the CoM height is

constant. However, in real-world environments such as ships and airplanes, vertical vehicle

motions and stairs or uneven terrain inside the vehicles are prevalent. Neglecting these

factors may limit the general applicability of our approach. To overcome this limitation,

we will study controller designs for both vertical [125, 126, 127, 128, 129, 130, 131] and

horizontal DRS movements, as well as variations in surface height.

Furthermore, our approach assumes an accurate prior knowledge of the DRS motion,

which may not be realistic in real-world environments. One promising way to address this

issue is to estimate the DRS motion, allowing the robot system to dynamically adapt to the

varying DRS motion.

5.6.2 Limitations of the Experimental Validation

While the simulations extensively evaluate the performance of our planner in various

scenarios along with a baseline framework that does not consider the DRS motion, it is
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important to note that the experiments primarily focus on assessing the walking performance

on a DRS with a relatively small surface and limited range of motion, which limits the

disturbances, such as unknown weight loads, that can be safely tested on the robot.

To ensure the safety of the experiment, we made the decision to restrict the robot’s

movement to walking in place within the limited walking area of the DRS. This cautious

approach was necessary to prevent the robot from stepping out of the DRS and potentially

causing collisions or accidents. Consequently, we were unable to fully assess the speed

regulation performance of our planner, as it required the robot to achieve forward, backward,

or sideways movement. However, it is important to highlight that our experimental setup

was conducted in a controlled laboratory environment, which provided valuable insights

into the robot’s walking performance on the DRS.

To further enhance the evaluation of our approach, future experimental tests could be

arranged in more practical settings, such as on a ship or mobile offshore platform. This would

provide a more realistic and dynamic environment, allowing for comprehensive assessments

of the robot’s reaction to disturbances, evaluation of speed regulation performance, and

exploration of its robustness in the presence of uncertainties.

Overall, while our experiments were limited in scope, they have provided valuable

insights into the walking performance of the robot on the DRS and highlighted the potential

for future investigations in real-world applications.

5.7 Summary

• A new control approach for achieving stable walking of underactuated bipedal robots

on a horizontally oscillating DRS is presented.

• A discrete feedback control strategy is synthesized to stabilize the periodic solution

of the hybrid ALIP model, addressing the instability and uncontrollability of the

continuous-phase ALIP dynamics.

• A hierarchical control approach is developed to stabilize the unactuated robot dynam-

ics based on the hybrid ALIP model and its footstep controller.
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• Stability analyses are conducted for the reduced ALIP model.

• Simulations, as well as experiments, demonstrate the effectiveness of the proposed

framework in stabilizing underactuated walking on a swaying DRS under various

cases.

• We have published one conference paper on this topic [95]. We are also in the process

of preparing a journal article for submission.
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Chapter 6 Conclusion and Future Work

6.1 Conclusions

In conclusion, this dissertation has delved into the fascinating and challenging realm of

bipedal locomotion, addressing critical aspects, such as motion control and state estimation,

of legged robotics in diverse real-world scenarios. We have ventured into three core

domains: global-position tracking (GPT) control, state estimation for locomotion on dynamic

rigid surfaces (DRSes), and linear inverted pendulum (LIP) based locomotion control for

underactuated bipedal walking on a DRS.

Firstly, we developed a continuous tracking control law that guarantees accurate global-

position tracking for multi-domain bipedal robotic walking. This control law, based on input-

output linearization and proportional-derivative control, ensures exponential stability within

each continuous phase of the hybrid walking process. Stability conditions were established

using multiple Lyapunov functions for control gain tuning. We investigated three-domain and

two-domain gaits to demonstrate the approach’s effectiveness. Additionally, the control law

was cast into a quadratic program (QP) to handle the actuator torque saturation and friction

cone constraint that are commonly encountered in real-world applications. Simulations

on a three-dimensional (3-D) bipedal humanoid robot validated the method across various

scenarios. Finally, we compared the performance of the input-output linearizing control

law with and without the QP formulation to emphasize its effectiveness in mitigating torque

saturation while maintaining stability and trajectory tracking accuracy.

Secondly, we turned our attention to the challenge of state estimation on a DRS. DRSes,

such as ships and aircraft, present unique complexities due to the non-zero surface-foot

contact region velocity. This led to the development of an invariant extended Kalman filter

tailored for bipedal humanoid locomotion on moving surfaces. The filter was explicitly

designed to account for known surface motion and hybrid robot behaviors while maintaining

key advantages such as satisfying the attractive group-affine condition and invariant observa-
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tion form in the absence of the sensor biases of the inertial measurement unit. Observability

analysis confirmed the observability of base velocity, roll, and pitch angles during continu-

ous locomotion phases, with base yaw angle observable when the DRS is not horizontal.

Stability analysis demonstrated asymptotic error convergence for these observable states for

the hybrid deterministic system. Experimental results with humanoid walking on a pitching

treadmill verified the filter’s improved accuracy and convergence rate compared to existing

methods, even under substantial estimation errors and moderate DRS motion.

Lastly, we introduced a control approach for stable underactuated bipedal walking on

horizontally oscillating DRSes, involving an analytically derived angular momentum-based

linear inverted pendulum (ALIP) model that accounts for the DRS’s time-varying motion

and hybrid robot behaviors. A discrete feedback control strategy was devised to stabilize the

periodic solution of the hybrid ALIP model. We developed a hierarchical control strategy

for stabilizing unactuated robot dynamics based on the hybrid ALIP model and its footstep

controller. Stability analyses were conducted for the reduced ALIP model. Simulations

with a 3-D Digit robot demonstrated the framework’s efficacy in stabilizing underactuated

walking on a swaying DRS across various scenarios, with hardware experiments further

confirming practical viability.

In essence, this dissertation has pushed the boundaries of bipedal leg locomotion by

addressing key challenges in global position tracking, state estimation on DRS, and locomo-

tion control on DRS. These contributions represent significant progress in legged robotics,

offering potential applications in dynamic real-world scenarios. The research provides

foundational knowledge for the development of versatile legged robots suitable for diverse

environments.

6.2 Future Work

While this dissertation research has made substantial progress on bipedal locomotion

control, several exciting directions for future work emerge.

Firstly, concerning global-position tracking, one limitation of the current approach is the

potential non-feasibility of meeting the proposed stability conditions if the duration of the
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underactuation phase becomes overly large. This limitation necessitates a careful choice

of the nominal duration of the UA domain, ensuring that it does not extend too long for

practical implementation. Moreover, to enhance the controller’s robustness for real-world

applications, it is imperative to address model parametric errors, external disturbances,

and hardware imperfections, such as sensor noise. Incorporating robust control techniques

into the global-position tracking control law can effectively tackle these uncertainties.

Additionally, the integration of online footstep planning offers the potential to dynamically

adjust the robot’s behavior in real-time, enhancing its ability to cope with modeling errors

and external disturbances. These combined enhancements will make the controller more

reliable and adaptable in complex environments.

Secondly, in the territory of DRS state estimation, the current filter design is well-suited

for scenarios where the surface pose is reasonably accurately known. However, it may

not perform as effectively in situations with highly inaccurate or entirely unknown surface

profiles. A promising avenue for future work is to extend the filter’s capabilities to estimate

the surface pose. This can be achieved by introducing a matrix Lie group that incorporates

surface pose information into the state estimation process. Such an extension will not only

enhance the filter’s applicability in more challenging environments but also contribute to a

broader understanding of state estimation on dynamic rigid surfaces.

Lastly, in the domain of LIP-based planning, significant strides have been made in

developing a planning and control framework for walking on horizontally oscillating DRS.

However, there are promising avenues for further research and improvement. Firstly, opti-

mizing the coefficients for full-body walking parameters holds the potential to significantly

impact overall walking performance. While initial coefficient selections within the mid-

dle layer were made based on intuition and heuristics, a more systematic fine-tuning and

optimization process can provide a deeper understanding of how these coefficients affect

factors, such as energy consumption, landing impact, and robustness against external distur-

bances. Secondly, exploring the utilization of ankle joints in underactuated robots presents

an intriguing research area. Enabling controlled ankle movements could enhance the robot’s

ability to recover from external disturbances and improve stability, potentially lead to better

balance maintenance. Lastly, the integration of locomotion with manipulation tasks on DRS
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is a promising direction. Coordinating locomotion and manipulation actions requires devel-

oping control strategies and addressing challenges in perception, planning, and coordination.

However, this fusion can lead to versatile and robust robotic systems capable of complex

tasks in dynamic settings. This integration is particularly relevant in scenarios such as search

and rescue, manufacturing, and maintenance, and inspection as the execution of these tasks

naturally demands manipulation. Exploring these directions will undoubtedly contribute to

the development of more practical, adaptable, and capable bipedal robots.
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Chapter A Appendix: Supplementary Materials of

Chapter 3

A.1 Appendix: Proofs of Propositions and Theorem 1

A.1.1 Proof of Proposition 2

Integrating both sides of the UA closed-loop dynamics in Eq. (3.18) over time t yields

xη |−3k−1 =
∫ T3k−1

T3k−2

fη(s,xη(s),xξ (s))ds+xη |+3k−2. (A.1)

Then, ∥∥∥xη |−3k−1

∥∥∥≤ ∥∥∥∫ T3k−1

T3k−2

fη(s,xη(s),xξ (s))ds
∥∥∥+∥∥∥xη |+3k−2

∥∥∥
≤
∫ T3k−1

T3k−2

∥∥∥fη(s,xη(s),xξ (s))
∥∥∥ds+

∥∥∥xη |+3k−2

∥∥∥. (A.2)

Since the expression of fη(·) is obtained using the continuous-phase dynamics of the gen-

eralized coordinates in Eq. (2.5) and the expression of the output function yU in Eqs. (3.11)

and (3.12), we know fη(t,xη ,xξ ) is continuously differentiable in t, xη , and xξ . Also, we

can prove that there exists a finite, real, positive number rη such that ∥∂ fη

∂ t ∥, ∥
∂ fη

∂xξ

∥, and

∥ ∂ fη

∂xη
∥ are bounded on (T3k−2,T3k−1)×Brη

(0). Then, fη(t,xη ,xξ ) is Lipschitz continuous

on (T3k−2,T3k−1)×Brη
(0) [81], and we can prove that there exists a a real, positive number

k f such that ∥∥∥fη(t,xη(t),xξ (t))
∥∥∥≤ k f (A.3)

holds for any t× (xη ,xξ ) ∈ (T3k−2,T3k−1)×Brη
(0).

Combining the two inequalities above, we have

∥∥∥xη |−3k−1

∥∥∥≤ k f (T3k−1−T3k−2)+
∥∥∥xη |+3k−2

∥∥∥. (A.4)
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The duration (T3k−1−T3k−2) of the UA phase can be estimated as:

|T3k−1−T3k−2|= |T3k−1− τ3k−1 + τ3k−1−T3k−2|

≤ |T3k−1− τ3k−1|+δτU ,
(A.5)

where δτU := τ3k−1−T3k−2 is the expected duration of the UA phase and |T3k−1− τ3k−1|

is the absolute difference between the actual and planned time instants of the UA→OA

switching.

From our previous work [60], we know there exists small positive numbers εU and rU1

such that

|T3k−1− τ3k−1| ≤ εU δτU (A.6)

holds for any k ∈ {1,2, ...} and xU ∈ BrU1(0).

Thus, using Eqs. (A.4)-(A.6), we have

∥∥∥xη |−3k−1

∥∥∥≤ k f (1+ εU)δτU +
∥∥∥xη |+3k−2

∥∥∥. (A.7)

Substituting Eqs. (3.24) and (A.7) into Eq. (3.20) gives

VU |−3k−1 =Vξ |+3k−1 +β

∥∥∥xη |+3k−1

∥∥∥2

≤e−c3ξ (T3k−1−T3k−2)Vξ |+3k−2 +2β

∥∥∥xη |+3k−2

∥∥∥2

+2βk2
f (1+ εU)

2
δ

2
τU

≤2VU |+3k−2 +2βk2
f (1+ εU)

2.

(A.8)

Thus, for any xU ∈ BrU2(0) with rU2 := min(rη ,rU1),

VU |−3k−1 ≤ wu(VU |+3k−2)

holds, where wu(VU |+3k−2) := 2VU |+3k−2 + 2βk2
f (1+ εU)

2. It is clear that wu(VU |+3k−2) is a

positive-definite function of VU |+3k−2. ■



143

A.1.2 Proof of Proposition 3

For brevity, we only show the proof for ... ≤ VF |+3k ≤ VF |+3k−3 ≤ ... ≤ VF |+3 ≤ VF |+0 ,

based on which the proofs for the other two sets of inequalities in Eq. (3.28) can be readily

obtained.

To prove that VF |+3k ≤VF |+3k−3 for any k ∈ {1,2, ...}, we need to analyze the evoluation of

the state variables for the kth actual complete gait cycle on t ∈ (T3k−3,T3k), which comprises

three continuous phases and three switching events.

Analyzing the continuous-phase state evolution: We analyze the state evolution during

the three continuous phases based on the convergence and boundedness results established

in Propositions 1 and 2.

Similar to the boundedness of the UA→OA switching time discrepancy given in

Eq. (A.6), there exist small positive numbers εF , εO, rtF and rtO such that for any xF ∈

BrtF (0) and xO ∈ BrtO(0),

∣∣∣T3k−2− τ3k−2

∣∣∣≤ εFδτF and
∣∣∣T3k− τ3k

∣∣∣≤ εOδτO (A.9)

hold, where δτF and δτO are the desired periods of the FA and OA phases of the planned

walking cycle, with δτF := τ3k−2−T3k−3 and δτO := τ3k−T3k−1 .

Substituting Eq. (A.9) into Eqs. (3.22) and (3.23) yields

∥∥∥xF |−3k−2

∥∥∥≤√ c2F
c1F

e−
c3F
2c2F

(1+εF )δτF
∥∥∥xF |+3k−3

∥∥∥ (A.10)

and ∥∥∥xO|−3k

∥∥∥≤√ c2O
c1O

e−
c3O

2c2O
(1+εO)δτO

∥∥∥xO|+3k−1

∥∥∥ (A.11)

for any xi ∈Br̄i(0) (i∈ {F,O}), with the small positive number r̄i defined as r̄i :=min{ri,rti}.

From the definition of the Lyapunov-like function VU in Eq. (3.20), the continuous-phase

boundedness of VU in Eq. (A.8), and the continuous-phase convergence of Vξ in Eq. (3.24),

we obtain the following inequality characterizing the boundedness of the state variable xU
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within the UA phase:

∥∥∥xU |−3k−1

∥∥∥2
≤ 2

c̃2ξ

c̃1ξ

∥∥∥xU |+3k−2

∥∥∥2
+

2βk2
f

c̃1ξ
(1+ εU)

2 (A.12)

where the real scalar constants c̃1ξ and c̃2ξ are defined as c̃1ξ := min(c1ξ ,β ) and c̃2ξ :=

max(c2ξ ,β ).

Since
2

c̃2ξ

c̃1ξ

∥∥∥xU |+3k−2

∥∥∥2
+

2βk2
f

c̃1ξ
(1+ εU)

2

≤

(√
2

c̃2ξ

c̃1ξ

∥∥∥xU |+3k−2

∥∥∥+√2βk2
f

c̃1ξ
(1+ εU)

)2

,

we rewrite Eq. (A.12) as:

∥∥∥xU |−3k−1

∥∥∥≤√2
c̃2ξ

c̃1ξ

∥∥∥xU |+3k−2

∥∥∥+√2βk2
f

c̃1ξ
(1+ εU)

=: α1

∥∥∥xU |+3k−2

∥∥∥+α2.

(A.13)

Analyzing the state evolution across a jump: Without loss of generality, we first examine

the state evolution across the F→U switching event by relating the norms of the state variable

just before and after the impact.

Using the expression of the reset map ∆∆∆F→U at the switching instant t = T−3k−2 (k ∈

{1,2, ...}), we obtain the following inequality

∥∥∥xU |+3k−2

∥∥∥=∥∥∥∆∆∆F→U(T3k−2,xF |−3k−2)
∥∥∥

=
∥∥∥(∆∆∆F→U(T3k−2,xF |−3k−2)−∆∆∆F→U(τ3k−2,xF |−3k−2))

+(∆∆∆F→U(τ3k−2,xF |−3k−2)−∆∆∆F→U(τ3k−2,0))

+∆∆∆F→U(τ3k−2,0)
∥∥∥

≤
∥∥∥∆∆∆F→U(T3k−2,xF |−3k−2)−∆∆∆F→U(τ3k−2,xF |−3k−2)

∥∥∥
+
∥∥∥∆∆∆F→U(τ3k−2,xF |−3k−2)−∆∆∆F→U(τ3k−2,0)

∥∥∥
+
∥∥∥∆∆∆F→U(τ3k−2,0)

∥∥∥.

(A.14)

Next, we relate the three terms on the right-hand side of the inequality in Eq. (A.14)
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explicitly with the norm of the state just before the switching (i.e., xF |−3k−2).

Recall that the expressions of ∆∆∆F→U(t,xF) solely depends on the expressions of: (i)

the impact dynamics ∆∆∆q̇(q)q̇, which is continuously differentiable on (q, q̇) ∈ T Q; (ii) the

output functions yF(t,q), which is continuously differentiable on t ∈ R+ and q ∈Q under

assumption (A7); and (iii) the time derivative ẏF(t,q, q̇), which, also under assumption

(A7), is continuously differentiable on t ∈ R+ and (q, q̇) ∈ T Q. Thus, we know ∆∆∆F→U is

continuously differentiable for any t ∈ R+ (i.e., including any continuous phases) and state

xF ∈ R2n.

Similarly, under assumption (A7), we can prove that there exists a small, real constant lF

such that ∥∂∆∆∆F→U
∂ t ∥ and ∥∂∆∆∆F→U

∂xF
∥ are bounded for any t ∈ R+ (including all continuous FA

phases) and xF ∈ BlF (0). Thus, for any k ∈ {1,2, ...}, the function ∆∆∆F→U is Lipschitz contin-

uous on for any t ∈ [T3k−2;τ3k−2] and xF ∈ BlF (0), where [T3k−2;τ3k−2] equals [T3k−2,τ3k−2]

if T3k−2 < τ3k−2, and it equals [τ3k−2,T3k−2] if T3k−2 > τ3k−2.

Thus, there exist Lipschitz constants LtF and LxF such that:

∥∥∥∆∆∆F→U(T3k−2,xF |−3k−2)−∆∆∆F→U(τ3k−2,xF |−3k−2)
∥∥∥

≤LtF |T3k−2− τ3k−2|
(A.15)

and ∥∥∥∆∆∆F→U(τ3k−2,xF |−3k−2)−∆∆∆F→U(τ3k−2,0)
∥∥∥

≤LxF

∥∥∥xF |−3k−2

∥∥∥ (A.16)

hold on [T3k−2;τ3k−2]×BlF (0) for any k ∈ {1,2, ...}.

From condition (A2) and Eqs. (3.25), (A.9), and (A.14)-(A.16), we know that

∥∥∥xU |+3k−2

∥∥∥≤ LxF

∥∥∥xF |−3k−2

∥∥∥+LtFεFδτF + γ∆. (A.17)

Analogous to the derivation of the inequality in Eq. (A.17), we can show that there exist

a real, positive number lU and Lipschitz constants LtU and LxU such that:

∥∥∥xO|+3k−1

∥∥∥≤ LxU

∥∥∥xU |−3k−1

∥∥∥+LtU εU δτU + γ∆ (A.18)
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holds for any xU |−3k−1 ∈ BlU (0).

As the robot has full control authority within the OA domain, we can establish a tighter

upper bound on
∥∥∥xF |+3k

∥∥∥ than Eqs. (A.17) and (A.18) by applying Proposition 3 from our

previous work [75]. That is, there exists a real, positive number lO and Lipschitz constants

LtO and LxO such that

∥∥∥xF |+3k

∥∥∥≤ LtO

√
c2O
c1O

e−
c3O

2c2O
δτO
∥∥∥xO|+3k−1

∥∥∥+LxO

∥∥∥xO|−3k

∥∥∥ (A.19)

for any xO|−3k ∈ BlO(0).

From Eqs. (A.10), (A.11), (A.13), and (A.17)-(A.19), we obtain:

∥∥∥xF |+3k

∥∥∥≤ N̄ + L̄
∥∥∥xF |+3k−3

∥∥∥. (A.20)

where
N̄ :=

(
LtU εU δτU + γ∆ +LxU(α1LtFεFδτF +α1γ∆ +α1α2)

)
·
(
LtO

√
c2O
c1O

e−
c3O

2c2O
δτO +LxO

√
c2O
c1O

e−
c3O
2c2O

(1+εO)δτO
)

and
L̄ :=LxU α1LxF

√
c2F
c1F

e−
c3F
2c2F

(1+εF )δτF

·
(
LtO

√
c2O
c1O

e−
c3O

2c2O
δτO +LxO

√
c2O
c1O

e−
c3O

2c2O
(1+εO)δτO

)
,

Using Eqs. (3.21) and (A.20), we obtain

VF |+3k ≤ 2c2F N̄2 + 2c2F L̄2

c1F
VF |+3k−3. (A.21)

Note that the scalar positive parameters N̄ and L̄ in Eq. (A.21) are both dependent on

the continuous-phase convergence rates of the Lyapunov-like functions within the OA and

FA domains (i.e., c3F and c3O), Specifically, N̄ and L̄ (and accordingly 2c2F L̄2

c1F
and 2c2F N̄2)

will decrease towards zero as the continuous-phase convergence rates increase towards the

infinity.

If condition (A3) holds (i.e., the PD gains can be adjusted to ensure a sufficiently high

continuous-phase convergence rate), we can choose the PD gains such that 2c2F L̄2

c1F
is less
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than 1 and 2c2F N̄2 is sufficiently close to 0, which will then ensure VF |+3k ≤VF |+3k−3 for any

k ∈ {1,2, ...}.

■

A.1.3 Proof of Theorem 1

By the general stability theory based on multiple Lyapunov functions [83], the origin

of the overall hybrid error system described in Eqs. (3.16) and (3.18) is locally stable in

the sense of Lyapunov if the Lyapunov-like functions VF , VO, and VU satisfy the following

conditions:

(C1) The Lyapunov-like functions VF and VO exponentially decrease within the continuous

FA and OA phases, respectively.

(C2) Within the continuous UA phase, the “switching-out” value of the Lyapunov-like

function VU is bounded above by a positive-definite function of the “switching-in”

value of VU ; and

(C3) The values of each Lyapunov-like functions at their associated “switching-in” instants

form a nonincreasing sequence.

If the proposed IO-PD control law satisfies condition (B1), then the control law ensures

conditions (C1) and (C2), as established in Proposition 1 and 2, respectively. By further

meeting conditions (B2) and (B3), we know from Proposition 3 that condition (C3) will

hold. Thus, under conditions (B1)-(B3), the closed-loop control system meets conditions

(C1)-(C3), and thus the origin of the overall hybrid error system described in Eqs. (3.16)

and (3.17) is locally stable in the sense of Lyapunov. ■
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Chapter B Appendix: Supplementary Materials of

Chapter 4

B.1 Expression of Right-Invariant and Logarithmic Errors

The right-invariant error ηηη t is defined as:

ηηη t = X̄tX−1
t =

ηηηR,t [ηηηv,t , ηηη p,t ,ηηη pc,t ]

03×3 I3

 , (B.1)

with the individual terms expressed as:

ηηηR,t = R̄tRT
t , ηηηv,t = v̄t− R̄tRT

t vt , ηηη p,t = p̄t− R̄tRT
t pt , and ηηη pc,t = p̄c

t − R̄tRT
t pc

t .

(B.2)

Denote ξξξ t =
[
(ξξξ

R
t )

T , (ξξξ
v
t )

T , (ξξξ
p
t )

T , (ξξξ
pc

t )T
]T

. Then, the variable ξξξ
∧
t on the Lie algebra

g is ξξξ
∧
t =

(ξξξ R,t)× [ξξξ v,t , ξξξ p,t , ξξξ pc,t ]

03×3 03×3

, where (·)× is a skew-symmetric matrix.

B.2 Linearization of Continuous-Phase Error Propagation

Equation

To obtain the linearized dynamic of the logarithmic error ξξξ t , we first apply the chain

rule to obtain the time derivatives of the individual terms of the invariant error ηηη t as:

η̇ηηR,t ≈ (R̄t(wω
t −ζζζ

ω

t ))×,

η̇ηηv,t ≈ (g)×ξξξ
R
t +(v̄t)×R̄t(wω

t −ζζζ
ω

t )+ R̄t(wa
t −ζζζ

a
t ),

η̇ηη p,t ≈ ξξξ
v
t +(p̄t)×R̄t(wω

t −ζζζ
ω

t ), and

η̇ηη pc,t≈ (ṽc
t )×ξξξ

R
t +(d̄t)×R̄t(wω

t −ζζζ
ω

t )+ R̄twc
t ,

(B.3)
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where ζζζ t =
[
(ζζζ

ω

t )
T , (ζζζ

a
t )

T
]T

is the IMU bias error.

Then, we use ηηη t = exp(ξξξ t) = expm(ξξξ
∧
t ) and its first-order approximation expm(ξξξ

∧
t )≈

I+ξξξ
∧
t to obtain the following approximations:

(ξξξ R,t)× ≈ R̄tRT
t − I3, ξξξ v,t ≈ v̄t− R̄tRT

t vt , ξξξ p,t ≈ p̄t− R̄tRT
t pt , and ξξξ

d
t ≈ d̄t− R̄tRT

t dt .

(B.4)

By combining these equations and applying the chain rule to find the time derivative of

ξξξ t , we obtain the linearized error equation in Eq. (4.15) of Chapter 4.

In Eq. (4.15) of Chapter 4, the expression of the adjoint matrix AdXt is obtained through

its basic definition given in Chapter 2 (Preliminaries). Its specific expression in Eq. (4.15)

is:

AdX̄t
=


R̄t 0 0 0

(v̄t)×R̄t R̄t 0 0

(p̄t)×R̄t 0 Rt 0

(p̄c
t )×R̄t 0 0 R̄t

 , (B.5)

where the matrix 0 is a 3×3 zero matrix.

B.3 Linearization of Continuous-Phase Error Update Equa-

tion

This section explains the derivation of the linearized update equation for the errors ξξξ tn

and ζζζ tn in Eq. (4.20) of Chapter 4. We will first derive the linearized update equation for

ξξξ tn .

From the estimate update equation in Eq. (4.20) of Chapter 4, we have

X̄†
tn = exp

Lξ

tn

X̄tnY1,tn−d1,tn

X̄tnY2,tn−d2,tn

 X̄tn. (B.6)
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Multiplying X−1
tn on both sides of Eq. (B.6) gives:

X̄†
tnX−1

tn = exp

Lξ

tn

X̄tnY1,tn−d1,tn

X̄tnY2,tn−d2,tn

 X̄tnX−1
tn . (B.7)

Simplifying the above equation yields:

ηηη
†
tn = exp

Lξ

tn


ηηη tnd1,tn + X̄tn

V1,tn

03×1

−d1,tn

ηηη tnd2,tn + X̄tn

 ∂hp
∂q (qtn)w

q
tn

03×1

−d2,tn



ηηη tn . (B.8)

By utilizing the approximations ηηη tn ≈ I+ ξξξ
∧
tn and exp(a) ≈ I+ a∧ where a is the vector

inside the parentheses of Eq. (B.8), and by neglecting higher-order terms, we obtain:

ξξξ
†
tn ≈ ξξξ tn +Lξ

tn


ξξξ
∧
tnd1,tn +Xtn

V1,tn

03×1


ξξξ
∧
tnd2,tn +Xtn

 ∂hp
∂q (qtn)w

q
tn

03×1





= ξξξ tn−Lξ

tn

H̃1,tnξξξ tn

H̃2,tnξξξ tn

+Lξ

tn



V1,tn

03×1


 ∂hp

∂q (qtn)w
q
tn

03×1





= ξξξ tn−Lξ

tnHtn

ξξξ tn

ζζζ tn

+Lξ

tn



V1,tn

03×1


 ∂hp

∂q (qtn)w
q
tn

03×1





= ξξξ tn−Lξ

tnHtn

ξξξ tn

ζζζ tn

+Lξ

tn



ηηη tn(R̃
DRS
tn

[
0 0 1

]T
)×wDRS

tn + R̄tn
∂hR,3

∂q (q̃tn)

03×1


R̄tn

∂hp
∂q (q̃tn)

03×1



 .

(B.9)
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As ηηη tn and wDRS
tn are small quantities, their product can be ignored. Thus, we have:

ξξξ
†
tn ≈ ξξξ tn−Lξ

tnHtn

ξξξ tn

ζζζ tn

+Lξ

tn



R̄tn
∂hR,3

∂q (q̃tn)

03×1

R̄tn
∂hp
∂q (q̃tn)

03×1



 . (B.10)

Next, we will derive the linearized update equation for ζζζ tn . From the definition of ζζζ t ,

we know:

ζζζ
†
tn = θ̄θθ

†
tn−θθθ tn. (B.11)

Also, from the estimate update equation in Eq. (4.19) of Chapter 4, we have:

θ̄θθ
†
tn = θ̄θθ tn +Lζ

tn

X̄tnY1,tn−d1,tn

X̄tnY2,tn−d2,tn

 . (B.12)

Combining Eqs. (B.11) and (B.12) yields:

ζζζ
†
tn = ζζζ tn +Lζ

tn




ηηη tnd1,tn−d1,tn + X̄tn

V1,tn

03×1


ηηη tnd2,tn−d2,tn + X̄tn

∂hp
∂q (qtn)w

q
tn

03×1





 . (B.13)
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By utilizing the approximation ηηη tn ≈ I+ξξξ
∧
tn and neglecting higher-order terms, we obtain:

ζζζ
†
tn ≈ ζζζ tn +Lζ

tn


ξξξ
∧
tnd1,tn + X̄tn

V1,tn

03×1


ξξξ
∧
tnd2,tn + X̄tn

 ∂hp
∂q (qtn)w

q
tn

03×1





= ζζζ tn +Lζ

tn


−H̃1,tnξξξ tn + X̄tn

V1,tn

03×1


−H̃2,tnξξξ tn + X̄tn

 ∂hp
∂q (qtn)w

q
tn

03×1





= ζζζ tn−Lζ

tn

H̃1,tnξξξ tn

H̃2,tnξξξ tn

+Lζ

tn



ηηη tn(R̃
DRS
tn

[
0 0 1

]T
)×wDRS

tn + R̄tn
∂hR,3

∂q (qtn)

03×1


R̄tn

∂hp
∂q (qtn)

03×1





≈ ζζζ tn−Lζ

tn

H̃1,tnξξξ tn

H̃2,tnξξξ tn

+Lζ

tn



R̄tn
∂hR,3

∂q (qtn)

03×1


R̄tn

∂hp
∂q (qtn)

03×1



 .

(B.14)

Arranging Eqs.(B.10) and (B.14) into the matrix forms gives:

ξξξ
†
tn

ζζζ
†
tn

= (I−LtnHtn)

ξξξ tn

ζζζ tn

+Ltn


R̄tn

∂hR,3
∂q (q̃tn)

03×1

R̄tn
∂hp
∂q (q̃tn)

03×1

wq
tn. (B.15)
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B.4 Matrices Used in Observability analysis

In the observability analysis in the Section 4.3 of Chapter 4, the updated expressions of

the matrices At and Ht in the absence of IMU biases are:

At =



03×3 03×3 03×3 03×3

(g)× 03×3 03×3 03×3

03×3 I3 03×3 03×3

(ṽc
t )× 03×3 03×3 03×3

06×3 06×3 06×3 06×3


(B.16)

and

Ht =

H1,t

H2,t

=


(RDRS

t [0,0,1]T )× 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 I3 I3

03×3 03×3 03×3 03×3

 . (B.17)

In Eq. (4.22) of the observability analysis in the Chapter 4, the discrete state transition

matrix ΦΦΦ is given by:

ΦΦΦ = expm(At∆t) =


I3 03×3 03×3 03×3

(g)×∆t I3 03×3 03×3

1
2(g)×∆t2 I3∆t I3 03×3

(ṽc
t )×∆t 03×3 03×3 I3

 , (B.18)

where ∆t is the duration of one propagation step.

B.5 Contact Point Velocity Sensing

This section explains how to obtain the contact point velocity in the world frame, vc
t ,

which is briefly summarized in Section 4.4.2 of Chapter 4. For brevity, we drop the time t

from the subscripts of all variables in this section.

We first obtain the 3-D contact point position in the DRS frame, DRSpc := [DRS pc
x,

DRS pc
y,

DRS pc
z]

T
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(see Fig. 4-1 in Chapter 4), by using the RGB-D camera to track features of the ArUco mark-

ers in the camera images, as summarized in Fig. 4-5 of Chapter 4. The detailed procedure of

this step is:

(a) Obtain the pixel coordinates (ximg
marker,i,y

img
marker,i) of the ith corner for all markers in the

image frame;

(b) Extract the depth value dimg
mark,i of the pixel (ximg

marker,i,y
img
marker,i) ;

(c) Apply deprojection [132] to obtain the 3-D coordinates (xcam
marker,i,y

cam
marker,i,z

cam
marker,i) of

the ith corner with respect to (w.r.t.) the camera frame;

(d) With all the detected corners of the markers and their corresponding known position

w.r.t. the treadmill, apply Kabsch algorithm [133] to obtain the optimal estimated

camera orientation DRSR̃cam and position DRSp̃cam of the RGB-D camera w.r.t. the

treadmill frame.

Second, we compute the surface-foot contact point position w.r.t. the treadmill frame
DRSpc := [DRS pc

x,
DRS pc

y,
DRS pc

z]
T through forward kinematics hcam(q). Here, hcam(q) is the

contact point position in the camera frame. Let DRSp̃c = [DRS p̃c
x,

DRS p̃c
y,

DRS p̃c
z]

T denote the

computed value of DRSpc. Then we have DRSp̃c = DRSR̃camhcam(q̃)+DRSp̃cam.

Finally, we estimate the contact point velocity vc as ṽc = [ṽc
x, ṽ

c
y, ṽ

c
z]

T based on the known

treadmill pitch angle θ̃ DRS and velocity ˙̃
θ DRS and forward kinematics:

∥ṽc∥= ( ˙̃
θ

DRS)(DRS p̃c
x), ṽc

x = ∥ṽc∥sin(θ̃ DRS), ṽc
y = 0, and ṽc

z = ∥ṽc∥cos(θ̃ DRS).

(B.19)
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