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Optimization of Output Functions with Nonholonomic Virtual
Constraints in Underactuated Bipedal Walking Control
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Abstract— Underactuation is a challenging issue to deal with
in bipedal walking control. Because of the highly nonlinear
behaviors of bipedal robotic walking, nonlinear control theories,
especially state feedback control based on input-output feed-
back linearization, has been applied to achieve stable walking.
For underactuated bipeds, control design based on input-output
linearization can result in internal dynamics whose stability
and convergence rate to the desired gait affect the closed-loop
stability and the overall convergence rate. Because the stability
and the convergence rate of the internal dynamics can only be
affected by the output function design, this paper proposes a
general output function design to allow for greater freedom in
output function optimization and better control performance as
compared with previous studies. The proposed output function
design and optimization, as well as the input-output linearizing
controller, are simulated on a planar bipedal robot to validate
the fast convergence rate to desired gait and the high robustness
to external disturbances of the proposed method.

I. INTRODUCTION

Bipedal walking control has been extensively studied for
decades. Besides the well-known concepts such as Zero
Moment Point (ZMP) [1] [2] and Capture Point [3], which
evaluate walking stability based on some ground-reference
points, stable walking has also been achieved through non-
linear control design such as the Hybrid Zero Dynamics
(HZD) approach [4]. Some of the distinctive features of the
HZD approach are that stable walking can be achieved in
the presence of underactuation and that the walking stability
can be guaranteed in a provable way.

In the HZD approach, foot landing is modeled as a rigid
impact between the foot and the ground with an infinites-
imally short impulse effect. During the landing impact, a
discrete jump in the joint velocity is generated, but the
joint position evolution remains continuous. With this impact
modeling, the walking dynamics is established to include a
continuous swing motion and a discrete landing effect. For
underactuated bipeds, due to the lack of control effort at the
unactuated joint, internal dynamics exist within the system
that utilizes input-output feedback linearization for controller
design. The internal dynamics become hybrid zero dynamics
when the output functions are identically zero throughout the
entire walking process that includes continuous and discrete
phases. In the controller design, the output functions are
defined as the tracking errors between the actual trajectories
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and the desired walking gait. Therefore, trajectory tracking
control can be carried out by using state feedback control
with input-output linearization that drives the output func-
tions to zero exponentially fast. The walking stability is
then ensured based on the Poincaré method. In this HZD
framework, HZD can be constructed with a proper design
of the desired walking pattern for bipedal robotic walking
with one degree of underactuation [5]. With the concept
of HZD for underactuated bipeds, the walking stability can
be evaluated through the resulting HZD that implies the
stability of the overall system. As a result, the dimensions
of stability analysis for the biped system is greatly reduced.
In addition to underactuated walking, the HZD framework
has enabled orbital stabilization of fully-actuated bipedal
walking [6]. Moreover, angular momentum has been used
for output function design in order to achieve better con-
trol performance, such as better robustness regarding the
external disturbances, as compared with the configuration-
based output function design [7]. In contrast to the ground-
reference points based approaches, the HZD approach can
achieve high-speed periodic walking with high performance
including formally provable stability, agility, and energy
efficiency.

Previously, time-dependent orbital stabilization of under-
actuated bipedal walking has been achieved by synthesizing
a time-dependent walking gait into the output function design
[9]. Instead of using Poincaré map, this work evaluates
the walking stability through the monodromy matrix of
the variational equations of the equivalent transformed au-
tonomous system. Given that the internal dynamics can only
be affected by the output function definitions when input-
output linearization is utilized for control design, an output
function optimization method, which exploits the effect of
modifying the output function definition on the resulting
internal dynamics, is then proposed to improve the control
performance [10]. By optimizing the linear combination of
the position tracking errors in the output function defini-
tion to satisfy the stability criterion, walking stabilization
for underactuated bipeds has also been achieved with this
approach. However, the output functions have only been
defined as the position tracking errors, which limits the
design freedom in the optimization process. In this study,
a general output function design is proposed, which includes
both position and velocity tracking errors. With the additional
design freedom, control performance, such as convergence
rate to the desired trajectories and the robustness to external
disturbances, can be improved by further optimizing the
output functions from the previous work in [10].
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The rest of the paper will be presented in the following
structure. Section II introduces the full-order hybrid walking
model, the proposed output function design, and the state
feedback controller design. The stability criterion based on
monodromy matrices and the output function optimization
are explained in Section III. Section IV presents the simula-
tion results.

II. BIPEDAL WALKING CONTROL

The goal of the control design in this study is to achieve
orbitally exponential stabilization of underactuated walking
based on nonlinear control theories. In this section, the
dynamic model of bipedal robotic walking is presented.
According to the HZD approach, a complete step includes
a continuous swing motion and a discrete landing impact
with an impulse effect [4]. To perform trajectory tracking
control, the proposed output function design and the state
feedback controller design based on input-output feedback
linearization are utilized to drive all of the output functions
to zero exponentially fast during continuous phases. As
a result, all of the actuated joints will converge to their
desired trajectories during continuous phases. However, due
to underactuation, internal dynamics exist within the system,
and the entire closed-loop system may still be unstable.
Therefore, a systematic optimization method is introduced in
Section III, which, along with the proposed controller design
in this section, guarantees the closed-loop stability.

A. Hybrid Bipedal Walking Dynamics

In bipedal walking, a full step typically includes two
phases, a Single Support Phase (SSP) and a Double Support
Phase (DSP). In an SSP, there is a support foot, which
is in contact with the ground, and a swing foot, which
swings in the air. Same as the HZD framework, the following
assumptions are made to simplify the complicated walking
behaviors [4]:

1) The DSP is assumed to be infinitesimally short;

2) At a landing, there is no rebound or slipping between
the swing foot and the ground, and the support foot im-
mediately leaves the ground without further interaction
with the ground until the next landing.

According to the assumptions above, the contact point be-
tween the support foot and the ground serves as a pin joint
of the biped during an SSP. The dynamics of the swing
motion can be obtained by using the Lagrange’s equation
[11]. At the instantaneous DSP, the rigid impact happens in
an infinitesimal period of time. Similar to the previous work
[4] [9], the impact can be modeled as an impulse effect,
which results in a discrete jump in joint velocities. These
jumps can also be described as a function that represents the
differences between the states right before an impact and
right after an impact.

The biped model considered in this study is a planar robot
with five revolute joints, two identical point feet, and a torso.
As shown in Fig. 1, the biped has four actuators, and thus
one degree of underactuation exists. The full-order walking
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Fig. 1. A planar bipedal robot with five revolute joints. The masses are
lumped at the link centers. [1 and l2 are the lengths of the lower and the
upper limbs, respectively, and [, is the torso length.

dynamics of the bipedal robot can be obtained as:

it q¢5,(q,q);

M(q)q + h(q, q) = B,u, W
if q€ S,(q,9);

[a(t)", 4t ")T]" =1,(q.9),

where q,q,q € IR® are the joint positions, velocities, and
accelerations, respectively, M(q) € IR®® is the inertia
matrix, h(q,q) € IR® is the sum of Coriolis, centrifugal
and gravitational terms, B, € IR is the input matrix,
u € RR* is the joint-torque input, and I, represents the
DSP reset map that initializes the state variables for the
next step by mapping them from the states right before an
impact, (q(t~),q(t™)), to the states right after an impact,
(q(t™),q(t")). The switching surface S,(q, q) is defined as

Ohgy

S(@,@) = {44 €T s how(@) = 0,524 < 0}, @)
where hg,,(q) is the swing foot height.
Define
X = m e R, (4)
X2

where x; := q € IR? and x, := q € IR?. The whole system
can be expressed in the state-space form as:

X2 . .
B f(x)+g(a:>u] o XIS
Ax = I(x), if xeS(x);
where f(x) := —M 'h, g(x) := M 'B,, Ax := x(t1) —

x(t7), I(x) represents the reset map, and S(x) represents
the switching surface. I(x) can be obtained based on I,(q, q).
The switching surface now becomes

Op(x)

S(x) := {x € R" : §(x) := hew(x1) =0, “ox,

Xo < 0}
“)
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B. Output Function Design

In order to stabilize underactuated walking, state feedback
control based on input-output feedback linearization is uti-
lized for trajectory tracking control. Because the output func-
tion definition involves the desired walking trajectories q(¢),
it is necessary to plan q,(t) in the first place. Previously, op-
timization methods based on Bézier curve parameterization
have been utilized to find the desired gait with minimized
torque consumption and desirable walking speed and step
distance [10] [12]. To obtain a practical gait q;(¢) associated
with the actual landing moments, adjustments have been
made to this previous optimization methods [9].

Let

q= [(I17CI2»(]37614>(]5]T € ]]-:{5

and
u= [u17u2a u37u4]T € ]R4
be the joint positions and the torque inputs, respectively.

Previously, the output functions are defined as the linear
combination of the position tracking errors [10], i.e.,

¥(t) = H(Hr(q(t) - q,(1)), 5)
where
01 0 0 O
00 1 00
H:= 00 0 1 0
00 0 01

and Hy € IR is a nonsingular matrix. The resulting in-
ternal dynamics can be stabilized by optimizing the constant
matrix Hy € IR?*® in the output functions. This study takes
a further step based on this previous output function design
by including the velocity terms so as to obtain a more general
class of output functions with additional design freedom. The
proposed output functions can be expressed as

y(t) = H(Hz,(q(t) — q4(t)) + Hro(4(2) — q4(t)),  (6)

where Hr, € IR®*® and Hr, € IR®*® are two independent
constant matrices representing the linear combinations of the
tracking errors.

To show the improvements of the proposed output function
design as compared with previous work, the simulation
results will be discussed for the following two cases:

Case 1 : Hr,, is nonsingular and Hr,, is a zero matrix.
With the zero matrix Hr,,, the nonholonomic terms in the
ouput function can be eliminated, and the output functions
are equivalent to the one in Equation (5) as in prior work
[9].

Case 2 : Both of the matrices Hr,, and Hr, are nonsingular.
Given the nonsingular Hp,, the output function now has
a general form that includes both of position and velocity
tracking errors.

C. State Feedback Controller Design

Given the output function design in Equation (6), the
state feedback controller design will be synthesized based
on input-output linearization [13]. Due to the space limit,
the controller design for Case I is omitted. The controller
design for Case 2 is presented next.

Assume that there are no modeling errors or disturbances.
For convenience, define a transformed state x7 as

Xp = |:XT1:| _ [QT} _ |:HT’U(.]:| c R, )

X772 qr Hr.q

where qr = [qr1, 972,473,474, q75|". Accordingly, the
desired gait can be transformed to

Q7 = [q71d, 724, T34, Tad, 4T54) = HroQy.  (8)

Then, the dynamics of the SSP can be rewritten as

. X71 X792
= AT = , 9
xr [XT2:| |:fT +gT“] ©)
where fr = -Mj;'h, g = M;'B,, My =

—1 —1 —1 —1
M(HT’UXTl)HT'U’ and hT (XT) = h(HTUXTla HT,UXTQ). The
output functions can now be written as

y(t) = HHp,HZ ) (x71 — Qg (1)) + (X2 — Grg(t))). (10)

Taking the first derivative on both sides of the Equation (10)
and substituting the dynamics (9) into it, one obtains the
following output dynamics:

y(t) = H(Hp,Hy, (X2 — Qrg(t) + (fr + gru — drg(t))).

(11)
Input-output feedback linearization is utilized here to cancel
all the nonlinear terms and add a virtual controller for the
linearized dynamics. Following this concept, the controller
can be obtained as

u = (Hgy) ' (V+H(Grg—fr) —HHp, Hy ) (X702 — fle(t)l)2)7
which linearizes the nonlinear output dynamics into )

y=v. (13)
Because of the first-order output dynamics, the virtual control
law can be designed as a proportional controller. Therefore,
let

v=-Kpy, (14)
where K, € IR*** is a diagonal matrix. Then, the linear
dynamics of the output functions can be transformed into:
Y(t) = —Ryp¥y. (15)
As long as K,, is designed to be positive definite, —K,, is
a Hurwitz matrix, and the linearized system y = —K,y
is asymptotically stable, i.e., the output functions y will
converge to zero exponentially fast during each SSP.
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III. STABILITY-BASED OUTPUT FUNCTION
OPTIMIZATION

The stability criterion based on monodromy matrix is
established in [9]. Because of the time-dependent desired
gait, the state-space model obtained in the last section is an
aperiodic time-varying hybrid closed-loop system, whose sta-
bility is challenging to evaluate. Therefore, before applying
the stability criterion to evaluate the stability of the internal
dynamics, system transformation is performed to obtain an
equivalent augmented autonomous system [9].

First, a phase indicator is introduced as

p=t—Ts  Vte(Tp,Ths1], k=0,1,.. (16)

where T}, is the kth actual landing moment. Then, the
state-space system can be transformed into an equivalent
autonomous system:

1
XTe = X792 = Ae(XTe)a if  xre ¢ STe(XTe);
fr +gru
Axre = I7e (Xe)7 if xp. € STe(XTe)§
(17)
where the augmented states are defined as
p
Xre = |x71| € R'Y, (18)
XT2
the augmented reset function can be obtained as
ITe = HT’U 05965 -1 -1 ) (19)
|:0515 HTU:| I‘I(HTUXTla HTUXTQ)

and the switching surface for the augmented system is
defined as
STe(XTe) = {XTe S RH 5¢6(XT6) = hsw(H;lel) =0,
OY(Xre
MA@(XTE) <0},
OXre
(20)
A. Stability Criterion

Based on the resulting augmented autonomous system, the
associated variational equations can be obtained as [14]:

O = OAe A, (RXpea(t))ze, it AT,
Az, = My,zZ,, if tem;
where
awe
15) o 15) 2 3
Mye = — A+—Ae—76 XTe
b aXTe +[ € 8XT@ gxﬁz Ae
with
Ae = Ae(iTed(Tk))v A: = Ae(iTed(T;j)),
Olre 15) (P O, 0Ye
Te = 1 (XTea(T)), Ve _ OV (Xred(Tr)),

8XTe - 8XTE aXTe - 8XTe

and 7y, is the k' landing moment of the desired gait.

Based on the equivalent augmented system in Equation
(17), the stability criterion of the closed-loop system can
be established [9]. If the solution X4(t) of the closed-loop
system in Equation (3) satisfies the following conditions:

(A1) ZE(Xa(7))Xa(Tk) # 0:

(A2) There is no rebound and slipping between the swing

foot and the ground at the impact;
The monodromy matrix of the variational equations
(21) has only one eigenvalue of unity modulus, and
the moduli of all the other eigenvalues are strictly
less than one.

(A3)

Then, the solution X4(¢) is a locally orbitally stable solution,
i.e., the actual trajectories of the biped will converge to the
desired orbit exponentially fast.

B. Output Function Optimization

With the stability criterion above, the stability of the
closed-loop system in Equation (3) can be evaluated by
checking the monodromy matrix of the variational equations
of the equivalent autonomous augmented system. Recall that
the stability of the entire closed-loop system can be implied
by the stability of the resulting internal dynamics and that the
internal dynamics can only be affected by the output function
definition when input-output feedback linearization is used
for control design. Therefore, the goal of the output function
optimization is to search for a specific pair of Hr, and Hr,
such that the monodromy matrix of the associated variational
equations has only one eigenvalue of unity modulus and that
all the other eigenvalues have moduli strictly less than one.
Accordingly, the cost function is defined as the second largest
modulus of all the eigenvalue, )\, of the monodromy matrix.
Thus, the optimization problem is formulated as:

minimize g

if x¢&S(x);

subject to
if xeS(x).

Because it is challenging to optimize two 5 x 5 nonsingular
matrices simultaneously, the optimization procedure will
include two steps. First, the output functions in Case 1 is
utilized to find stable solutions with a specific constant matrix
Hr. Second, fix Hr), as the optimized Hr in (6). The opti-
mized constant matrix Hr,, can be found by further optimize
the output function from the first step. The optimization
results will be presented along with the simulations in the
next section.

IV. SIMULATION RESULTS

In this section, simulation results on a planar bipedal robot
(see Fig.1) will be presented.

With the optimization method proposed in Section III, the
control gain is chosen as

K, = diag(40000, 40000, 40000, 40000),
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and the constant matrices Hp,, and Hyp,, in (6) are optimized
to be:

—-0.14 0.22 0.46 -0.01 —-0.55
-0.82 087 21.79 —22.09 1.95
Hp, = | 0.06 0.01 —21.79 22 —-0.15( ;
-0.06 027 —-1.73 2.25 0.71
1.08 —-1.33 1529 —15.13 —-1.02
0.84 5.12  1.11 -0.32 2.90
-044 1.67 683 —-045 3.18
Hp, =1 0.75 1.08 146 3.18 3.19
-097 065 051 1.1 493
0.1 —0.06 0.58 —0.68 1.55

Then, the eigenvalues of the monodromy matrices corre-
sponding to Case I and Case 2 are computed as:

Case 1 :1.00,0.95,0.72,0,0,0,0,0,0,0,0;

Case 2 :1.00,0.57,0.5,0.5,0.48,0.48,0.0012, 0, 0,0, 0.

A. Orbitally Exponential Stabilization

The validity of the proposed control design is shown
in a fifteen-step walking simulation (see Fig. 2). Physical
parameters of the biped model are given in Table. 1.

TABLE I
PHYSICAL PARAMETERS OF THE SIMULATED BIPEDAL MODEL

mi(kg) ma(kg) mr(kg) lh,l2, 5(m)
3 6 10 0.4

To show the validity of the proposed control design, the
biped model is simulated with some initial tracking errors.
Simulation results in Fig. 2 show that the biped is able to
recover from the initial tracking errors, i.e., stable walking
is achieved under the proposed state feedback control law
and the output function optimization. However, the actual
trajectories do not converge to the desired trajectories q, but
the desired orbit instead. As shown in the figure, there exists
a constant time shift between the actual trajectories and the
desired gait q,;, which indicates that the simulated walking
is orbitally stable.

B. Convergence Rate to the Desired Gait

Orbital stability of a bipedal walking system can be eval-
vated in multiple ways. In this study, the stability criterion
based on variational equations is utilized to evaluate the
stability of the entire closed-loop system. By minimizing the
eigenvalues of the monodromy matrix, the stability of the re-
sulting internal dynamics, which determines the closed-loop
stability, can be guaranteed. In addition, the eigenvalues of
the monodromy matrix of a system can determine the closed-
loop convergence rate. In the output function optimization,
the cost function is defined as the second largest modulus
among all the eigenvalues of the associated monodromy
matrix, and it is further minimized from the previous work
(Case 1). Therefore, the convergence rate of the biped system
is improved by the proposed control strategy as compared
with the previous work in [10].

From the optimization results presented earlier in this
section, it is straightforward to see that the cost function,
i.e., the second largest modulus of all the eigenvalues, is
minimized from 0.95 in Case I to 0.57 in Case 2. In order
to show the improvement in the rate of convergence, the
controller design in both cases are simulated and compared.
In Fig. 3, the last two steps of the simulations for both cases
are compared. Because of the smaller eigenvalues in Case 2
than in Case 1, the trajectories in the right plot reaches the
steady state after twelve steps, which illustrates the faster
convergence rate of Case 2 than Case 1.

C. Robustness

The improvement in the convergence rate can also affect
the robustness of the system. As mentioned, the biped is
simulated with some initial tracking errors to see if it will
converge back to the desired gait. Also, this kind of initial
errors can be caused by an external disturbance such as
a push. Therefore, if the biped system has not recovered
from a disturbance yet, it might lead to a fall if the system
encounters a new disturbance in this situation. In other
words, the convergence rate is related to the system’s ability
to accommodate perturbations from the environment.

Inspired by [7], two sets of simulations corresponding to
different external perturbations are simulated to show the
high robustness of the proposed method.

1) External force:
Gradually increasing an external force at a rate of 0.5N
per step applied at the center of mass of the robot.
2) Slope of the walking terrain:
Gradually increasing the slope of the walking terrain
at a rate of one degree per step.
In these two simulations, the walking speed is plotted to show
the effects of external perturbations on walking. As shown
in Fig. 4, the red lines, which correspond to the proposed
control design, have a stiffer tendency on the walking speed.
The blue lines, which correspond to the prior control design,
show that the prior control design is more sensitive to the
external perturbations.

V. CONCLUSIONS

In this study, feedback controller design based on input-
output linearization is synthesized to achieve orbitally ex-
ponential stabilization of underactuated bipedal walking.
Similar to the HZD approach, the full-order walking dy-
namics are established to include a continuous SSP and
a discrete DSP. The rigid impact between the swing foot
and the ground at a foot landing is modeled as an impulse.
Because of underactuation, internal dynamics exist, which,
along with the state feedback control design, determine the
closed-loop stability. The proposed output function design
includes a general class of tracking errors to allow for high
design freedom, which is important for finding stable internal
dynamics through output function optimization. Finally, the
validity of the proposed control strategy is shown through
walking simulations. Simulation results also show that the
proposed walking strategy greatly improves the closed-loop
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Fig. 2. A twelve-step walking simulation. Control gains: K, = diag([40000,40000,40000,40000]). Initial conditions: q(0") — q4(0F) =
[~0.08,0.15,—0.09, —0.1,0.09]7; ¢(0%) — 4,(0%) = [0.1, —0.15, —0.2,0.2,0.2] 7.

convergence rate and robustness as compared with the pre-
Case 2 vious work.
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Fig. 3. A tracking performance comparison between Case I (Left) and [5]
Case 2 (Right) during the last two steps of walking simulations.
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Fig. 4. Robustness improvement of the proposed walking strategy (Case
2) as compared with previous work (Case 1).
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