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I. MOTIVATION

Exoskeletons have the potential to enhance the endurance
of able-bodied individuals engaged in prolonged and physi-
cally demanding tasks in various settings [1]–[3]. However,
the challenges associated with the use of exoskeletons by
able-bodied wearers include the lack of accommodation for
fatigue and inadequate sensing capabilities, leading to exces-
sively high levels of continuous actuation, consuming more
power than necessary, and reducing human capability with
continued use. Recently, the advancement of soft sensors
has provided the possibility of measuring human movement
more comfortably [4]. In this study, we propose an online
auto-calibration algorithm to accurately map the raw data
obtained from soft sensors to the wearer’s leg joint angles.

II. METHODOLOGY

Extended Kalman filtering (EKF) is used in this study
because of the model’s nonlinearity. The proposed algo-
rithm intends to estimate the wearer’s left knee joint angle
accurately by using the raw fabric sensor reading as one
input. We assume a linear relationship between the raw soft
sensor reading and the joint angle as θ := kα + b, where
θ is the left knee joint angle, k is the slope, and b is the
angle offset. The state variables are X := [p,v,R,θ ,k,b]T ,
where p, v, and R are the position, velocity, and orientation
of the inertial measurement unit (IMU) at the left ankle
exoskeleton, expressed in the world frame, respectively. The
non-slip condition between the subject’s right foot and the
ground is utilized as one measurement model [5] [6], which
is given as:

ḋ = 0 = v+RJ(θ)θ̇ +R(ωωω)×h(θ), (1)

where d is the right foot position, ωωω is the angular velocity
obtained from the IMU, h(θ) is the forward kinematics from
the IMU to the right foot that contains the joint angle state,
and J(θ) is the Jacobian matrix of h(θ).

This work was supported by the National Science Foundation under
Grants NSF IIS-1955979, IIS-1954591, and CRA-2030859.

1Z. Zhu is with the School of Mechanical Engineering, Purdue Univer-
sity, West Lafayette, IN 47907, USA zhu 1134@purdue.edu.

1Y. Gu is with the School of Mechanical Engineering, Purdue University,
West Lafayette, IN 47907, USA.

2J. Clark and H. Yanco are with the Richard A. Miner School of
Computer & Information Sciences, University of Massachusetts Lowell,
Lowell, MA 01854, USA.

2P. Kao is with the Department of Physical Therapy and Kinesiology,
University of Massachusetts Lowell, Lowell, MA 01854, USA.

3L. Sanchez-Botero, A. Agrawala, and R. Kramer-Bottiglio are with
the Department of Mechanical Engineering & Materials Science at Yale
University, New Haven, CT 06520, USA.

Fig. 1. (a) Experimental setup used to collect the ground truth of the
estimated state variables and the sensor data required for the proposed filter.
(b) Estimation results of joint angle, angle slope, and angle offset of the
left knee joint.

III. PRELIMINARY RESULTS AND DISCUSSION

A new fabric sensor developed in the Faboratory Lab at
Yale University [7] has been utilized in this work. The fabric
sensor was attached over the left knee joint along the sagittal
plane, and a motion capture system and reflective markers
were used to obtain the joint angle data as ground truth (as
shown in Fig. 1(a)). The subject was asked to perform the
squatting motions for one minute while wearing a pair of
ankle exoskeletons.

Fig. 1(b) shows that the estimated joint angle converges
to the true value even with 50 degrees initial joint angle
error. The initial validation confirms the effectiveness of the
proposed approach. Our future work aims to simultaneously
estimate both hip and knee joint angles for both legs.
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